
HAL Id: inria-00243131
https://inria.hal.science/inria-00243131

Submitted on 23 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Termination of Priority Rewriting
Isabelle Gnaedig

To cite this version:

Isabelle Gnaedig. Termination of Priority Rewriting. [Research Report] 2008, pp.13. �inria-00243131�

https://inria.hal.science/inria-00243131
https://hal.archives-ouvertes.fr

Termination of Priority Rewriting

Isabelle GNAEDIG
LORIA-INRIA

BP 239 F-54506 Vandffuvre-l „es-Nancy Cedex
France

Isabelle.Gnaedig@loria.fr

ABSTRACT

Introducing priorities on rules in rewriting increases their
expressive power and helps to limit computations. Priority
rewriting is used in rule-based programming as well as in
functional programming. Termination of priority rewriting
is then important to guarantee that programs give a result.
We describe in this paper an inductive proof method for
termination of priority rewriting, relying on an explicit in-
duction on the termination property. It works by generating
proof trees, modeling the rewriting relation by using abstrac-
tion and narrowing. As it specifically handles priorities on
the rules, our technique allows proving termination of term
rewrite systems that would diverge without priorities.

Categories and Subject Descriptors

F.3.1 [LOGICS AND MEANINGS OF PROGRA-

MS]: Specifying and Verifying and Reasoning about Pro-
grams—Logics of programs, Mechanical verification, Speci-
fication techniques; F.4.2 [MATHEMATICAL LOGIC

AND FORMAL LANGUAGES]: Grammars and Other
Rewriting Systems; F.4.3 [MATHEMATICAL LOGIC

AND FORMAL LANGUAGES]: Formal Languages—
Algebraic language theory ; I.1.3 [SYMBOLIC AND AL-

GEBRAIC MANIPULATION]: Languages and Sys-
tems—Evaluation strategies; I.2.3 [ARTIFICIAL INT-

ELLIGENCE]: Deduction and Theorem Proving—Deduc-
tion, Inference engines, Mathematical induction; D.3.1 [PR-

OGRAMMING LANGUAGES]: Formal Definitions
and Theory; D.2.4 [SOFTWARE ENGINEERING]:
Software/Program Verification—Correctness proofs, Formal
methods, Validation

General Terms

Algorithms, Languages, Verification

Keywords

Abstraction, Constraint, Narrowing, Priority, Termination

1. INTRODUCTION
In [3, 4], priority rewriting systems (PRS’s in short) have

been introduced. A PRS is a term rewrite system (TRS in
short) with a partial ordering on rules, determining a pri-
ority between some of them. Considering priorities on the
rewrite rules to be used can be very useful for an implemen-
tation purpose, to reduce the non-determinism of computa-
tions or to enable divergent systems to terminate, and for
a semantical purpose, to increase the expressive power of
rules. Priority rewriting is enabled in rule-based languages
like ASF+SDF [23] or Maude [15]. It is also used as a com-
putation model for functional programming [18], and is un-
derlying in the functional strategy, used for example in Lazy
ML [1], Clean [5], or Haskell [13]. Let us also cite recent
works on specification and correctness of security policies
using rewriting with priorities [7, 8].

But priority rewriting is delicate to handle. First, the
priority rewriting relation is not always decidable, because
a term rewrites with a given rule only if in the redex, there is
no reduction leading to another redex, reducible with a rule
of higher priority. A way to overcome the undecidability can
be to force evaluation of the terms in reducing subterms to
strong head normal form via some strategy [18], or to use the
innermost strategy [16]. But in these cases, normalization
can lead to non-termination.

Second, the semantics of a PRS is not always clearly de-
fined. In [3], a semantics is proposed, relying on a notion
of unique sound and complete set of closed instances of
the rules of the PRS, and it is showed that bounded -the
bounded property is weaker than termination- PRS’s have a
semantics. In [21], a fixed point based technique is proposed
to compute the semantics of a PRS. It is also proved that for
a bounded PRS with finitely many rules, the set of succes-
sors of any term is finite and computable. In [16], a logical
semantics of PRS’s, based on equational logic is given. A
particular class of PRS’s is proved sound and complete with
respect to the initial algebra, provided every priority rewrit-
ing sequence from every ground term terminates.

Then the termination problem of the priority rewriting
relation naturally arises, either to guarantee that it has
a semantics, or to ensure that rewriting computations al-
ways give a result. Surprisingly, it seems not to have been
much investigated until now. Let us cite [19], discussing
a normalizing strategy of PRSs i.e., a strategy giving only
finite derivations for terms having a normal form with usual
rewriting, and [22], where it is proved that termination of
innermost rewriting implies termination of generalized in-
nermost rewriting with ordered rules. But to our knowledge,

the problem of finding a specific termination proof technique
has only been specifically addressed in [16], where the use of
reduction orderings is extended with an instantiation condi-
tion on rules linked with the priority order.

Our purpose here is to consider termination of priority
rewriting from an operational point of view, with the con-
cern of guaranteeing a result for every computation. So it
seems interesting to focus on the innermost priority rewrit-
ing of [16], because it is decidable, easy to manipulate, and
the innermost strategy is often used in programming con-
texts where priorities on rules are considered. The security
policies given in [7] have indeed been executed in TOM [17]
with an innermost evaluation mechanism.

Obviously, a PRS is terminating if the underlying TRS is.
So usual rewriting termination proof techniques can be used
for priority rewriting. Here, we propose to be finer in con-
sidering non (innermost) terminating TRS’s, that become
terminating using priorities on rules.

We use an inductive method, whose principle has already
been applied for proving termination of rewriting (without
priorities) under strategies [12]. The idea is to prove on the
ground term algebra that every derivation starting from any
term terminates, supposing that it is true for terms smaller
than the starting terms for an induction ordering.

Priority rewriting is defined in Section 2. In Section 3,
we present the inductive proof principle of our approach.
Section 4 develops the basic concepts of the inductive proof
mechanism relying on abstraction and narrowing, and the
involved constraints. Section 5 presents the proof procedure
and the related correctness and completeness theorem. Sec-
tion 6 describes a variant of the previous procedure, dealing
with the unsatisfiability of the involved constraints. We con-
clude in Section 7.

2. PRIORITY REWRITING

2.1 The background
We assume that the reader is familiar with the basic def-

initions and notations of term rewriting given for instance
in [2, 9, 20]. T (F ,X) is the set of terms built from a given
finite set F of function symbols f having arity n ∈ N, and
a set X of variables denoted by x, y T (F) is the set of
ground terms (without variables). The terms reduced to a
symbol of arity 0 are called constants. Positions in a term are
represented as sequences of integers. The empty sequence
ǫ denotes the top position. Let p and p′ be two positions.
The position p′ is said to be a (strict) suffix position of p if
p′ = pλ, where λ is a (non-empty) sequence of integers. For
a position p of a term t, we denote by t|p the subterm of t

at position p, and by t[s]p the term obtained by replacing
with s the subterm at position p in t.

A substitution is an assignment from X to T (F ,X), writ-
ten σ = (x = t, . . . , y = u). It uniquely extends to an
endomorphism of T (F ,X). The result of applying σ to a
term t ∈ T (F ,X) is written σ(t) or σt. The domain of
σ, denoted by Dom(σ) is the finite subset of X such that
σx 6= x. The range of σ, denoted by Ran(σ), is defined by
Ran(σ) =

S

x∈Dom(σ) V ar(σx). An instantiation or ground

substitution is an assignment from X to T (F). Id denotes
the identity substitution. The composition of substitutions
σ1 followed by σ2 is denoted by σ2σ1. Given a subset X1

of X , we write σX1 for the restriction of σ to the variables
of X1 i.e., the substitution such that Dom(σX1) ⊆ X1 and

∀x ∈ Dom(σX1) : σX1x = σx.

A set R of (term) rewrite rules or term rewrite system
on T (F ,X) is a set of pairs of terms of T (F ,X), denoted
by l → r, such that l 6∈ X and V ar(r) ⊆ V ar(l). Given a
term rewrite system R, a function symbol in F is called a
constructor iff it does not occur in R at the top position of a
left-hand side of rule, and is called a defined function symbol
otherwise. The set of defined function symbols is denoted
by DR (R is omitted when there is no ambiguity). In this
paper, we only consider finite sets of function symbols and
of rewrite rules.

The rewriting relation induced by R is denoted by →R

(→ if there is no ambiguity on R), and defined by s → t

iff there is a substitution σ and a position p in s such that
s|p = σl for some rule l → r of R, and t = s[σr]p. This is
written s →R

p,l→r,σ t where p, l → r, σ or R may be omitted;
s|p is called a redex. The reflexive transitive closure of the

rewriting relation induced by R is denoted by
∗
→

R
. The

innermost rewriting relation consists of always rewriting at
the lowest possible positions.

Let R be a term rewrite system on T (F ,X). A term t is
narrowed into t′, at the non-variable position p, using the
rewrite rule l → r of R and the substitution σ, when σ is
a most general unifier of t|p and l, and t′ = σ(t[r]p). This
is denoted by t ❀

R
p,l→r,σ t′ where p, l → r, σ or R may be

omitted. It is always assumed that there is no variable in
common between the rule and the term i.e., that V ar(l) ∩
V ar(t) = ∅.

An ordering ≻ on T (F ,X) is said to be noetherian iff there
is no infinitely decreasing chain for this ordering. It is mono-
tone iff for any pair of terms t, t′ of T (F ,X), for any context
f(.), t ≻ t′ implies f(. . . t . . .) ≻ f(. . . t′ . . .). It has the
subterm property iff for any t of T (F ,X), f(. . . t . . .) ≻ t.

For F and X finite, if ≻ is monotone and has the subterm
property, then it is noetherian [14]. If, in addition, ≻ is
stable under substitution (for any substitution σ, any pair
of terms t, t′ ∈ T (F ,X), t ≻ t′ implies σt ≻ σt′), then it is
called a simplification ordering.

2.2 Priority rewriting
A priority term rewrite system (PRS in short) is a pair

(R, ◮) of an underlying rewrite system R (always considered
as finite in this paper) and a partial ordering ◮ on the rules
of R. A rule r1 has a higher priority than a rule r2 iff r1 ◮ r2,
which is also written ↓r1

r2
.

Definition 1. [16] Let R be a PRS on T (F ,X). A term
s is IP -reducible and (IP -) rewrites to t at position p with
the rule l → r, and the substitution σ which is written
s →IP

p,l→r,σ t iff:

• s →p,l→r,σ t

• no proper subterm of the redex s|p is IP -reducible

• s|p is not IP -reducible by any rule in R of higher pri-
ority than l → r.

Example: With the rewrite system

f(g(x)) → b (1)
?

?

?

y

g(a) → c (2)
g(a) → d (3)

on the term f(g(a)), Rule (1) should apply, but this would
not be an innermost rewriting step. So Rule (2) applies, but
Rule (3) does not, because (2) ◮ (3).

A PRS R IP -terminates if and only if every IP -derivation

of the rewriting relation induced by R is finite. If t
∗
→

IP
t′

with t′ IP -irreducible, then t′ is called a(n) (IP -) normal
form of t and denoted by t↓. Note that given t, t↓ may be
not unique.

3. INDUCTIVELY PROVING TERMINA-

TION OF IP-REWRITING
We prove termination of IP -rewriting by induction on the

ground terms. Working on ground terms is appropriate,
since most of the time, the algebraic semantics of rule-based
languages is initial. Moreover, in [16], to guarantee stability
by substitution of the innermost rewriting relation, the rules
without highest priority only can reduce ground terms. Fi-
nally, there are TRS’s which are non-innermost terminating
on T (F ,X) and innermost terminating on T (F). A termi-
nation proof method working on T (F ,X) could not handle
them.

For proving that a priority term rewrite system on T (F)
IP -terminates, we reason with a local notion of termination
on terms: a term t of T (F) is said to be IP -terminating for
a PRS R if every IP -rewriting chain (or derivation) starting
from t is finite.

For proving that a term t of T (F) is IP -terminating, we
proceed by induction on T (F) with a noetherian ordering
≻, assuming the property for every t′ such that t ≻ t′.
To guarantee non emptiness of T (F), we assume that F
contains at least one constructor constant. The main in-
tuition is to observe rewriting derivations starting from a
ground term t ∈ T (F) which is any instance of a pattern
g(x1, . . . , xm) ∈ T (F ,X), for some defined function symbol
g ∈ D, and variables x1, . . . , xm. Proving the property of
IP -termination on ground terms amounts to proving that
every ground instance of the patterns g(x1, . . . , xm), for all
g ∈ D, is terminating.

Rewriting derivations are simulated, using a lifting mech-
anism, by a proof tree developed from g(x1, . . . , xm) on
T (F ,X), for every g ∈ D, by alternatively using narrowing
and an abstraction mechanism. Narrowing schematizes the
rewriting possibilities of terms, abstraction simulates the re-
duction of subterms in the derivations until these subterms
become normal forms. It expresses the application of the
induction hypothesis on these subterms, for which, as they
are supposed to be IP -terminating, a normal form exists.

The nodes of the developed proof trees are composed of a
current term of T (F ,X), and a constraint composed of two
kinds of formulas: ordering constraints, set to guarantee the
validity of the inductive steps, and abstraction constraints
combined to narrowing substitutions. Each node in a proof
tree schematizes the set of ground instances of the current
term, which are solutions of the abstraction constraint.

For a term t of T (F ,X) occurring in a proof tree issued
from an initial pattern tref = g(x1, . . . , xm),

• first, some subterms θt|j of θt are supposed to be IP -
terminating for every θ solution of the constraint asso-
ciated to t, by the induction hypothesis, if θtref ≻ θt|j
for the induction ordering ≻. So the t|j are replaced
in t by abstraction variables Xj representing respec-

tively any of their normal forms. Reasoning by in-
duction allows us to only suppose the existence of
the normal forms without explicitly computing them.
If the ground instances of the resulting term are IP -
terminating (either if the induction hypothesis can be
applied to them, or if they can be proved IP -terminating
by other means, which we will present later), then the
ground instances of the initial term are IP -terminating.
Otherwise,

• the resulting term u = t[Xj]{i1,...,ip} (where i1, . . . , ip
are the abstraction positions in t) is narrowed in all
possible ways into terms v, with an appropriate nar-
rowing relation corresponding to IP -rewriting u ac-
cording to the possible instances of the Xj .

Then IP -termination of the ground instances of t is re-
duced to IP -termination of the ground instances of the terms
v. Now, if θtref ≻ θv for every ground substitution θ that is
a solution of the constraint associated to v, by the induction
hypothesis, θv is supposed to be IP -terminating. Otherwise,
the process is iterated on v, until we get a term t′ such that
either θtref ≻ θt′, or θt′ can be proved IP -terminating.

This technique was inspired from the one we proposed for
proving the innermost termination of classical rewrite sys-
tems in [12]. We now give the concepts needed to formalize
and automate it.

4. ABSTRACTION, NARROWING, CONS-

TRAINTS
The induction ordering is constrained along the proof by

inequalities between terms that must be comparable, each
time the induction hypothesis is used in the abstraction
mechanism.

This ordering is not defined a priori, but just has to verify
inequalities of the form t > u1, . . . , um, accumulated along
the proof, and which are called ordering constraints. Thus,
for establishing the inductive termination proof, it is suffi-
cient to decide whether ordering constraints are satisfiable.

Definition 2 (ordering constraint). An ordering
constraint is a pair of terms of T (F ,X) denoted by (t >

t′). It is said to be satisfiable if there is an ordering ≻,
such that for every instantiation θ whose domain contains
Var(t) ∪ Var(t′), we have θt ≻ θt′. We say that ≻ satisfies
(t > t′).

A conjunction C of ordering constraints is satisfiable if
there is an ordering satisfying all conjuncts. The empty con-
junction, always satisfied, is denoted by ⊤.

Satisfiability of a constraint conjunction C of this form is
undecidable. But a sufficient condition for an ordering ≻P

on T (F ,X) to satisfy C is that t ≻P t′ for every constraint
t > t′ of C, and ≻P is stable under substitution.

Simplification orderings fulfill such a condition. So, in
practice, it is sufficient to find a simplification ordering ≻P

such that t ≻P t′ for every constraint t > t′ of C.
The ordering ≻P , defined on T (F ,X), can then be seen

as an extension of the induction ordering ≻ on T (F). For
convenience sake, ≻P will also be written ≻.

Solving ordering constraints in finding simplification or-
derings is a well-known problem. The simplest way and an
automatable way to proceed is to test simple existing order-
ings like the subterm ordering, the Recursive Path Ordering,

or the Lexicographic Path Ordering. This is often sufficient
for the constraints considered here: thanks to the power of
induction, they are often simpler than for termination meth-
ods directly using ordering for orienting rewrite rules.

If these simple orderings are not powerful enough, auto-
matic constraint solvers like Cime 1 can provide adequate
polynomial orderings.

4.1 Abstraction
Let us define the abstraction variables more formally.

Definition 3. Let N be a set of variables disjoint from
X . Symbols of N are called abstraction variables. Substitu-
tions and instantiations are extended to T (F ,X ∪N) in the
following way: for any substitution σ (resp. instantiation
θ) such that Dom(σ) (resp. Dom(θ)) contains a variable
X ∈ N , σX (resp. θX) is in IP -normal form.

Definition 4 (term abstraction). The term
t[t|j]j∈{i1,...,ip} is said to be abstracted into the term u (cal-
led abstraction of t) at positions {i1, . . . , ip} iff

u = t[Xj]j∈{i1,...,ip},

where the Xj , j ∈ {i1, . . . , ip} are fresh distinct abstraction
variables.

IP -termination on T (F) is in fact proved by reasoning on
terms with abstraction variables i.e., on terms of T (F ,X ∪
N). Ordering constraints are extended to pairs of terms of
T (F ,X ∪N). When subterms t|j are abstracted by Xj , we
state constraints on abstraction variables, called abstraction
constraints to express that their instances can only be nor-
mal forms of the corresponding instances of t|j . Initially,
they are of the form t↓ = X where t ∈ T (F ,X ∪N), and
X ∈ N , but we will see later how they are combined with
the substitutions used for the narrowing process.

4.2 Narrowing
After abstracting the current term t into t[Xj]j∈{i1,...,ip},

we test whether the possible ground instances of t[Xj]j∈{i1,

...,ip} are reducible, according to the possible values of the
instances of the Xj . This is achieved by innermost narrowing
t[Xj]j∈{i1,...,ip}, with the priority rewrite system.

In a first time, to schematize innermost rewriting on grou-
nd terms, we need to refine the usual notion of narrowing.
In fact, with the usual innermost narrowing relation, if a
position p in a term t is a narrowing position, no suffix po-
sition of p can be a narrowing position as well. However,
if we consider ground instances of t, we can have rewriting
positions p for some instances, and p′ for other instances,
such that p′ is a suffix position of p. So, when using the nar-
rowing relation to schematize innermost rewriting of ground
instances of t, the narrowing positions p to consider depend
on a set of ground instances of t, which is defined by ex-
cluding the ground instances of t that would be narrowable
at some suffix position of p. For instance, with the TRS
R = {g(a) → a, f(g(x)) → b}, the innermost narrowing
positions of the term f(g(X)) are 1 with the narrowing sub-
stitution σ = (X = a), and ǫ with any σ such that σX 6= a.
This leads us to introduce constrained substitutions.

1Available at http://cime.lri.fr/

Let σ be a substitution on T (F ,X ∪N). In the following,
we identify σ = (x1 = t1, . . . , xn = tn) with the equality for-
mula

V

i(xi = ti), with xi ∈ X ∪N , ti ∈ T (F ,X ∪N). Sim-
ilarly, we call negation σ of the substitution σ the formula
W

i(xi 6= ti). The negation of Id means that no substitution
can be applied.

Definition 5. A substitution σ is said to satisfy a con-
straint

V

j

W

ij
(xij 6= tij), iff for every ground instantiation

θ,
V

j

W

ij
(θσxij 6= θσtij). A constrained substitution σ is

a formula σ0 ∧
V

j

W

ij
(xij 6= tij), where σ0 is a substitution,

and
V

j

W

ij
(xij 6= tij) the constraint to be satisfied by σ0.

Definition 6 (Innermost narrowing [12]). A term
t ∈ T (F ,X ∪N) innermost narrows into a term t′ ∈ at the
non-variable position p of t, using the rule l → r ∈ R with
the constrained substitution σ = σ0 ∧

V

j∈[1..k] σj, which is
written

t ❀
Inn
p,l→r,σ t

′

iff t′ = σ0(t[r]p), where σ0 is the most general unifier of t|p
and l and σj , j ∈ [1..k] are all most general unifiers of σ0t|p′

and a left-hand side l′ of a rule of R, for all suffix position
p′ of p in t.

Notice that we are interested in the narrowing substitution
applied to the current term t, but not in its definition on the
variables of the left-hand side of the rule. So, the narrowing
substitutions we consider are restricted to the variables of
the narrowed term t.

Now, we have to see how to simulate the IP -rewriting
steps of a given term following the possible instances of
its variables, by narrowing it with the rules, considering
their priority. Unlike for simulating rewriting without pri-
orities, where the narrowing process only depends on the
term to be rewritten and of the rule considered, simulating
IP -rewriting of ground instances of a term with a given rule
requires to consider the narrowing steps with the rules hav-
ing a higher priority. This also requires to use negations of
substitutions. Let us consider the following example:

?

?

?

?

?

y

f(g(x), y) → a

f(x, h(y)) → b

f(x, y) → c.

The term f(x, y) innermost narrows into a with the first
rule and the most general unifier (x = g(x′)), into b with
the second rule, the most general unifier (y = h(y′)) and
the constraint x 6= g(x′), and finally into c with the third
rule, the most general unifier equal to Id and the constraint
x 6= g(x′) ∧ y 6= h(y′). So, applying the rules one after
the other, with the current narrowing most general unifier
we have to accumulate the negation of the most general
unifiers of the previous constrained substitutions, ignoring
their constraint part.

If the narrowing substitutions σ0 ∧
V

j∈[1..k] σj of the pre-

vious rules have a constraint part coming from the inner-
most mechanism of Definition 6, this constraint part is also
ignored by the priority mechanism. Indeed, the constraint
part is defined from σ0, and has no meaning for the negation
of σ0. With the PRS:

?

?

?

?

?

y

f(g(h(x))) → a

h(a) → b

f(g(x)) → c

the term f(x) innermost narrows with the first rule and
σ1 = (x = g(h(x′)) ∧ x′ 6= a), the second rule does not
apply, and the third rule applies with σ3 = (x = g(x′′)∧x 6=
g(h(x′))).

Also, if the constraint part of a substitution is due to the
priority mechanism, the negation of this substitution by the
innermost mechanism also only considers the most general
unifier of the substitution. With the PRS:

?

?

?

y

f(g(h(x, y)), z) → a

f(x, y) → b
?

?

?

y

h(a, x) → a

h(x, b) → b

the term f(x, y) innermost narrows into a with the first
rule and the constrained substitution (x = g(h(x′, y′))∧x′ 6=
a∧y′ 6= b), because h(x′, y′) narrows with the third rule and
the substitution (x′ = a), and with the fourth rule and the
substitution (y′ = b ∧ x′ 6= a).

The term f(x, y) also innermost narrows into b with the
second rule and the substitution (Id ∧ x 6= g(h(x′, y′))).

Definition 7 (Inner. prior. narrowing). Let R be
a priority term rewrite system. A term t ∈ T (F ,X ∪N)
IP -narrows into t′ ∈ T (F ,X ∪N) at the non-variable po-
sition p of t, using the rule l → r ∈ R with the constrained

substitution σ = σ0 ∧
V

j∈[1..k] σj

V

i∈[1..n] σ
i
0, which is writ-

ten

t ❀
IP
p,l→r,σ t

′

iff t′ = σ0(t[r]p), where σ0 is the most general unifier of t|p
and l, σj , j ∈ [1..k] are all most general unifiers of σ0t|p′ and
a left-hand side l′ of a rule of R, for all suffix position p′

of p in t, and σ1
0 , . . . , σn

0 are the most general unifiers of t|p
with the left-hand sides of the rules having a greater priority
than l → r.

4.3 Accumulating constraints
Abstraction constraints have to be combined with the

narrowing substitutions to characterize the ground terms
schematized by the current term t in the proof tree. Indeed,
a narrowing step on the current term u with narrowing sub-
stitution σ represents a rewriting step for any ground in-
stance of σu. So, when narrowing, σ, considered as the nar-
rowing constraint attached to the narrowing step, is added
to the abstraction constraint. Note that if σ does not satisfy
the abstraction constraint, the narrowing step is meaning-
less: it does not correspond to any rewriting step of the
considered ground instances. This leads to the introduction
of abstraction constraint formulas.

Definition 8. An abstraction constraint formula (ACF
in short) is a formula

V

i(ti↓ = t′i) ∧
V

j(xj = uj), where

xj ∈ X ∪N , ti, t
′
i, uj ,∈ T (F ,X ∪N).

Definition 9. An abstraction constraint formula A =
V

i(ti↓ = t′i) ∧
V

j(xj = uj) is satisfiable iff there is at least

one instantiation θ such that
V

i(θti↓ = θt′i) ∧
V

j(θxj =

θuj). The instantiation θ is then said to satisfy the ACF A

and is called solution of A.

An ACF A is attached to each term u in the proof trees;
the ground substitutions solutions of A define the instances
of the current term u, for which we are observing IP -termina-
tion. When A has no solution, the current node of the proof

tree represents no ground term. Such nodes are then irrele-
vant for the proof. Detecting and suppressing them during
a narrowing step allows us to control the narrowing mecha-
nism, well known to easily diverge. So, we have the choice
between generating only the relevant nodes of the proof tree,
by testing the satisfiability of A at each step, or stopping the
proof on a branch on an irrelevant node, by testing the un-
satisfiability of A.

The satisfiability of A is in general undecidable, but it
is often easy in practice to exhibit an instantiation satisfy-
ing it: most of the time, solutions built on constructor terms
can be synthesized in an automatic way. Other automatable
sufficient conditions, relying in particular on the character-
ization of normal forms, are also under study. The unsat-
isfiability of A is also undecidable in general, but here also,
simple automatable sufficient conditions can be used [12],
as to test whether A contains equalities t↓ = u, where u is
reducible. In the following section, we present the proce-
dure exactly simulating the rewriting trees i.e., dealing with
the satisfiability of A. In the next section, we present the
alternative approach dealing with the unsatisfiability.

5. THE IP-TERMINATION PROCEDURE
We are now ready to describe the inference rules defining

our proof mechanism. They transform a set T of 3-tuples
(U, A, C) where U = {t} or ∅, t is the current term whose
ground instances have to be proved IP -terminating, A is an
abstraction constraint formula, C is a conjunction of order-
ing constraints.

• The first rule abstracts the current term t at given
positions i1, . . . , ip into t[Xj]j∈{i1,...,ip}.
The constraint

V

j∈{i1,...,ip} tref > t|j is set in C. The

abstraction constraint
V

j∈{i1,...,ip} t|j↓ = Xj is added

to the ACF A. We call this rule Abstract.

The abstraction positions are chosen so that the ab-
straction mechanism captures the greatest possible nu-
mber of rewriting steps: then we abstract all of the
greatest possible subterms of t = f(t1, . . . , tm). More
concretely, we try to abstract t1, . . . , tm and, for each
ti = g(t′1, . . . , t

′
n) that cannot be abstracted, because

C ∧
V

j∈{i1,...,ip} tref > t|j cannot be proved satisfi-

able, we try to abstract t′1, . . . , t
′
n, and so on. In the

worst case, we are driven to abstract leaves of the term,
which are either variables, or constants.

Note also that it is not useful to abstract non-narrowa-
ble subterms of T (F ,N). Indeed, by Definition 3, ev-
ery ground instance of such subterms is in IP -normal
form.

• The second rule narrows the resulting term u in all pos-
sible ways in one step, with all possible rewrite rules
of the rewrite system R, and all possible substitutions,
into terms v1, . . . , vq, according to Definition 7. This
step is a branching step, creating as many states as
there are narrowing possibilities. The substitution σ is
integrated to A. If A∧σ is not satisfiable, the narrow-
ing step with σ is meaningless: it does not represent
any rewriting step for the ground instances of u. So it
can be discarded. This is the Narrow rule.

• We finally have a Stop rule halting the proof pro-
cess on the current branch of the proof tree, when the

Table 1: Inference rules for IP-temination

Abstract:
{t}, A, C

{u}, A ∧
^

j∈{i1,...,ip}

t|j↓ = Xj , C ∧
^

j∈{i1,...,ip}

HC(t|j)

where t is abstracted into u at positions i1, . . . , ip 6= ǫ

if C ∧ HC(t|i1) . . . ∧ HC(t|ip) is satisfiable

Narrow:
{t}, A, C

{vi}, A ∧ σ, C
if t ❀

IP
σ vi and A ∧ σ is satisfiable

Stop:
{t}, A, C

∅, A ∧ HA(t), C ∧ HC(t)
if (C ∧ HC(t)) is satisfiable.

——————————————–

HA(t) =

8

<

:

⊤ if t is in T (F ,N)
and is not narrowable

t↓ = X otherwise.
HC(t) =



⊤ if IPT (t)
tref > t otherwise.

ground instances of the current term can be stated as
IP -terminating. This happens when the whole cur-
rent term u can be abstracted i.e., when C ∧ tref > u

is satisfiable.

Let us note that the inductive reasoning can be completed
as follows. When the induction hypothesis cannot be applied
to a term u, it may be possible to prove IP -termination of
every ground instance of u in another way. Let IPT (u) be
a predicate that is true iff every ground instance of u is IP -
terminating. In the first and third inference rules, we then
associate the alternative predicate IPT (u) to the condition
t > u.

To establish IPT (u), decidable sufficient conditions exist,
applicable in practice, because the predicate is only consid-
ered for particular terms introduced along the proof, and
not for any term.

In particular, IPT (u) is true when every instance of u is
in normal form. This is the case when u is in T (F ,N) and
is not narrowable. This includes the cases where u itself is
an abstraction variable, and where u is a non-narrowable
ground term.

We also have IPT (u) for narrowable terms u ∈ T (F ,N)
whose narrowing substitutions are not compatible with A

i.e., such that A ∧ σ is not satisfiable. As said just before
Definition 8, these narrowing possibilities do not represent
any reduction step for the ground instances of u, which are
then irreducible.

Otherwise, to establish IPT (u), we can use the notion of
usable rule, as in [12].

The inference rules are given in Table 1. They use an
initial patten tref = g(x1, . . . , xm), where x1, . . . , xm ∈ X
and g ∈ D (if g is a constant, then tref = g).

We generate the proof trees of R by applying, for each
defined symbol g ∈ D, the inference rules on the initial set
of 3-tuples {({tref = g(x1, . . . , xm)},⊤, ⊤)}, with a spe-
cific strategy S, repeating the following steps: first, apply
Abstract, and then try Stop. Then try all possible appli-
cations of Narrow. Then, try Stop again.

Let us clarify that if A is satisfiable, the transformed forms
of A by Abstract and Stop are also satisfiable. Moreover,

the first application of Abstract generates A = (
V

i xi↓ =
Xi), always satisfied by the constructor constant supposed
to exist in F . Thus, with strategy S, it is useless to prove
the satisfiability of A in the Abstract and Stop rules.

The process may not terminate if there is an infinite num-
ber of applications of Abstract and Narrow on the same
branch of a proof tree. It may stop on the rule Abstract

when the ordering constraints cannot be proved satisfiable,
on the rule Narrow when the abstraction constraints can-
not be proved satisfiable. Nothing can be said in these cases
about IP -termination. The good case is when all branches
of the proof trees end with an application of Stop: then
IP -termination is established.

A finite proof tree is said to be successful if its leaves are
states of the form (∅, A, C). We write SUCCESS(g , ≻) if the
application of S on ({g(x1, . . . , xm)},⊤,⊤) gives a successful
proof tree, whose sets C of ordering constraints are satisfied
by the same ordering ≻.

Theorem 1. Let R be a priority term rewrite system on
T (F ,X) having at least one constructor constant. Every
term of T (F) is IP -terminating iff there is a noetherian
ordering ≻ such that for each symbol g ∈ D, we have SUC−
CESS(g ,≻).

Note that because it is the induction relation, the ordering
≻ has to be the same for all proof trees.

Example: Let us consider the PRS
?

?

?

?

?

y

f(g(h(x))) → a

h(a) → g(a)
f(g(x)) → f(g(h(x)))

whose underlying TRS is neither terminating, nor inner-
most terminating. Theorem 1 is applied to prove that it is
IP -terminating.

For a better readability of the proof, whenever we have
A ∧ σ, we propagate σ into A, by applying the substitution
part of σ to A. Moreover, the sets A and C are not repeated
on a branch, when they do not change. The proof tree of f

is given in Figure 1.

Figure 1: Proof tree for symbol f

tref = f(x)

A = ⊤, C = ⊤

Abstract
��

f(X)
A = (x↓ = X)

C = (f(x) > x)

NarrowX=g(h(X′))∧X′ 6=a

xxppppppppppp
X=g(X′′)∧X 6=g(h(X′))

&&MMMMMMMMMM

a

A = (x↓ = g(h(X′))

∧X′ 6= a)

Stop

��

f(g(h(X′′)))

A = (x↓ = g(X′′)∧

g(X′′) 6= g(h(X′)))

NarrowX′′=a

xxrrrrrrrrrrr
Id∧X′′ 6=a

&&LLLLLLLLLL

∅

f(g(g(a)))
A = (x↓ = g(a)

∧g(a) 6= g(h(X′)))

Narrow Id

��

a

A = (x↓ = g(X′′)∧

g(X′′) 6= g(h(X′))

∧X′′ 6= a)

Stop
��

f(g(h(g(a))))

Narrow Id

��

∅

a

Stop
��
∅

Abstract applies on f(x) because the ordering constraint
f(x) > x is satisfiable by any noetherian ordering having the
subterm property. Then, Narrow applies on f(X) using the
first and third rules, according to Definition 7.

On the second branch, the term f(g(h(X ′′))) narrows into
f(g(g(a))) with the second rule, and σ = (X ′′ = a), into a

with the first rule and σ = (Id ∧ X ′′ 6= a), but does not
narrow with the third rule: the negation of Id does not
exist.

The set A after the Abstract step is trivially satisfied by
the instantiation θ = (x = X = a). One can take θ = (x =
g(h(g(a))), X ′ = g(a)) for the next set A on the first branch,
θ = (x = g(a), X = X ′ = X ′′ = a) for the next set A on the
second branch, and θ = (x = g(a), X = X ′ = a) for the last
set A on the second branch.

In the proof tree of h, we just have an Abstract, a Nar-

row and a Stop step. The ordering constraints are satisfied
by the same noetherian ordering than above. Applying The-
orem 1, we conclude that the PRS is IP -terminating.

Example: Consider now the following IP -terminating
specification of the or operator, whose underlying RS is also
neither terminating nor innermost terminating, because of
the commutativity rule:

?

?

?

?

?

y

or(0, y) → y (1)
or(x, 1) → 1 (2)
or(x, y) → or(y, x) (3).

The proof tree of or is given in Figure 2. The Stop rule
applies on Y ∈ N because, by definition of an abstraction
variable, we have IPT (Y). Stop applies on or(Y, X) be-

cause the term would only be narrowable with the substitu-
tion σ = (Id ∧ Y 6= 0 ∧ X 6= 1). But A ∧ σ = (x↓ = X, y↓ =
Y) ∧ X 6= 0 ∧ Y 6= 1 ∧ Y 6= 0 ∧ X 6= 1) would be unsatisfi-
able: X and Y could only be of the form or(X ′, Y ′), which
is impossible since or(X ′, Y ′) is always reducible.

The set A after the Abstract step is trivially satisfied by
the instantiation θ = (x = X = y = Y = 0). One can take
θ = (x = y = Y = 0) for the next set A on the first branch,
θ = (x = X = y = 1) for the set A on the second branch,
and θ = (x = X = 1, y = Y = 0) for the set A on the third
branch.

Note that in the two examples above, the irreducible con-
stants of the algebra, and more generally the constructors,
can be used in an automatic way to find a solution of A.

6. DEALING WITH THE UNSATISFIABIL-

ITY OF A
We present in this section an alternative approach to our

procedure, dealing with the unsatisfiability of A instead of
the satisfiability. As said in Section 4.3, instead of testing
whether each node generated in the proof tree is relevant i.e.,
whether A is satisfiable, we test whether we have generated
irrelevant nodes.

As explained in Section 5, the satisfiability test of A in
the inference rules of our procedure (see Table 1) is given
in the condition of Narrow. The unsatisfiability test only
localizes in the condition of Stop, because the underlying
idea is to stop the proof process on a branch whose current
node is detected to be irrelevant. It is given as an alternative
to the initial condition of Stop. The new conditions of the
inference rules are given in Table 2.

Figure 2: Proof tree for symbol or

tref = or(x, y)
A = ⊤, C = ⊤

Abstract
��

or(X, Y)
A = (x↓ = X ∧ y↓ = Y)

C = (or(x, y) > x, y)

Narrow(X=0)

wwoooooooooooooo

(Y =1)∧(X 6=0)

��

Id∧(X 6=0)∧(Y 6=1)

''PPPPPPPPPPPP

Y
A = (x↓ = 0 ∧ y↓ = Y)

Stop

��

1
A = (x↓ = X ∧ y↓ = 1)

∧X 6= 0

Stop

��

or(Y, X)
A = (x↓ = X ∧ y↓ = Y)

∧X 6= 0 ∧ Y 6= 1

Stop
��

∅ ∅ ∅

Table 2: Conditions for inference rules dealing with the unsatisfiability of A

COND−ABSTRACT : C ∧ HC(t|i1) . . . ∧ HC(|tip) is satisfiable

COND−NARROW : t ❀
IP
σ vi

COND−STOP : (C ∧ HC(t)) is satisfiable or A is unsatisfiable.

The following automatable sufficient conditions for the un-
satifiability of an abstraction constraint t↓ = t′ are often
applicable in practice.

Case 1: t↓ = t′, with t′ reducible. Indeed, in this case, any
ground instance of t′ is reducible, and hence cannot be
a normal form.

Case 2: t↓ = t′∧ . . .∧ t′↓ = t′′, with t′ and t′′ not unifiable.
Indeed, any ground substitution θ satisfying the above
conjunction is such that (1) θt↓ = θt′ and (2) θt′↓ =
θt′′. In particular, (1) implies that θt′ is in normal form
and hence (2) imposes θt′ = θt′′, which is impossible
if t′ and t′′ are not unifiable.

Case 3: t↓ = t′ where top(t) is a constructor, and top(t) 6=
top(t′). Indeed, if the top symbol of t is a constructor
c, then any normal form of any ground instance of t is
of the form c(u), where u is a ground term in normal
form. The above constraint is therefore unsatisfiable
if the top symbol of t′ is g, for some g 6= c.

Case 4: t↓ = t′ with t, t′ ∈ T (F ,XA) not unifiable and
V

t❀Sv v↓ = t′ unsatisfiable. This criterion is of inter-

est if the unsatisfiability of each conjunct v↓ = t′ can
be shown with one of the four criteria we present here.

As these four conditions only work on the equality part
of A, dealing with the unsatisfiability of A instead of the
satisfiability is of particular interest when the abstraction
formula A involves many negations of substitutions. The
satisfiability test instead requires to verify that the solutions
of the equational part verify the disequality part of A.

The unsatisfiability test is precisely advantageous for a
succession of priority rules involving more than two or three
rules, since narrowing with the nth rule requires to accumu-
late the negation of the narrowing substitutions of the n−1
previous ones.

Moreover, since the unsatisfiability test is an alternative
condition of Stop, dealing with the unsatisfiability of A in-
stead of the satisfiability is obviously interesting when Stop

applies with the first condition ((C ∧ HC(t)) is satisfiable).
Analyzing A can then be completely avoided. This case is
illustrated on the example we give now.

As said in the introduction, rewriting-based specifications
with priorities on rules have recently been used to specify se-
curity policies, with a concern of verification of consistency,
termination and completeness. The example we give be-
low has been proposed in [7], for a conference management
system described in [10]. Its termination, due to priority
arguments, could not be formally proved until now.

Example: If we do not consider priorities, the following
rewrite system is divergent, because of the eighth rule. Let
us prove that it is IP -terminating.

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

y

aut(q(author(x), SP, pap(x, z)), SUBMIS, u)
→ PERMIT

aut(q(author(x), SP, pap(x, z)), v, u)
→ DENY

aut(q(author(x), RSC, pap(x, z)), v, u)
→ DENY

aut(q(revr(x), w, p), v, conf(x, p))
→ DENY

aut(q(revr(x), SR, pap(y, z)), REV, ass(x, pap(y, z)))
→ PERMIT

aut(q(revr(x), SR, pap(y, z)), v, ass(x, pa(y, z)))
→ DENY

aut(q(revr(x), RSC, pap(y, z)), MEE, ass(x, pap(y, z)))
→ PERMIT

aut(q(revr(x), w, pap(x, z)), v, u)
→ aut(q(revr(x), w, pap(x, z)), v, conf(x, pap(x, z)))

aut(x, y, z) → NAPPLIC .

Let us apply the strategy S on the initial pattern tref =
aut(x, y, z). The proof tree is given below.

We first have an Abstract step. Then, a Narrow step
gives 9 branches, following the 9 rewrite rules. With the con-
strained narrowing substitutions σ1, (σ2 ∧ σ1), . . . (σ7 ∧ σ1 ∧
. . . ∧ σ6), the first seven ones give respectively the states
PERMIT, DENY, DENY, DENY, PERMIT, DENY,

PERMIT , on which Stop then applies. Indeed, we have
IPT (PERMIT) and IPT (DENY) because PERMIT and
DENY are irreducible constants. The ninth branch gives
the state NAPPLIC, on which Stop applies too.

The interesting branch is the eighth one, giving the state
aut(q(revr(X ′), w, pap(X ′, Z′)), Y, conf(X ′, pap(X ′, Z′)))
with the substitution σ8 = (X = q(revr(X ′), w, pap(X ′, Z′)))
constrained by σ1 ∧ . . . σ7. To lighten the figure, we only
specify this branch in the proof tree.

tref = aut(x, y, z)
A = ⊤, C = ⊤

Abstract
��

aut(X, Y, Z)
A = (x↓ = X, y↓ = Y, z↓ = Z)

C = (aut(x, y, z) > x, y, z)

Narrow
Rule 8

σ8∧σ1...σ7

��

aut(q(revr(X ′), w, pap(X ′, Z′)), Y,

conf(X ′, pap(X ′, Z′)))

A = (x↓ = X, y↓ = Y, z↓ = Z

∧X = q(revr(X ′), w, pap(X ′, Z′))
∧σ1 . . . σ7)

Narrow
Rule 4

σ10=Id

��

DENY

Stop
��

∅

From this last state, we still apply Narrow, with two
narrowing possibilities: one, with the fourth rule and the
narrowing substitution σ10 = Id, gives the state DENY , on
which Stop then applies, because we have IPT (DENY).
The other one, using the ninth rule, has also Id as narrowing
substitution, but once constrained by σ10 = Id, the substi-
tution becomes empty, so this second narrowing possibility
is not valid.

Applying the inference rules dealing with the satisfiability
of A would have required to perform the satisfiability test
for the nine branches of the first Narrow step, and on the
branch of the second Narrow step of the eighth branch,
which is avoided here.

As one can see, the rule Stop applies on all branches of
the proof tree thanks to the predicate IPT . So, on this
example, we do not even need to consider A.

As on the examples of Section 6, to satisfy the ordering
constraints, any simplification ordering holds. So this ex-
ample can also be treated in a completely automatic way.

7. CONCLUSION
In this paper, we have proposed an inductive method

for proving termination of the decidable innermost priority
rewriting relation of C.K. Mohan [16]. This work is an ex-
tension to priority rewriting of an inductive approach given
in [12] for proving innermost termination of rewriting.

The priority mechanism localizes in the narrowing relation
used to model the rewriting relation. We then have gener-
alized the innermost narrowing relation introduced in [12],
to model the IP -rewriting relation on ground terms, and
showed, through Theorem 1, that the approach of [12] still
holds with the generalized narrowing relation. A lifting
lemma involving priorities on the rules establishes correct-
ness of this modelization, and then of Theorem 1. For de-
tails, see the appendix.

In fact, our innermost termination technique lends itself
to this extension: as explained in Section 4.2, the priority
mechanism can be expressed through negations of substitu-
tions, then introducing constraints similar to those already
required to model ground innermost rewriting.

Constraints are crucial in our approach: ordering con-
straints guarantee the applicability of the induction prin-
ciple, abstraction constraints define the ground terms con-
sidered at each step of the proof, and help to contain the
narrowing mechanism. The first ones are often satisfiable
by a Path Ordering. Otherwise, any automatic ordering
constraint solver can be used. For the second ones, if the
satisfiability is considered, constructor-based solutions can
be synthesized in an automatable way, like for the two ex-
amples of Section 5. Otherwise, solutions based on the char-
acterization of normal forms of the rewrite system may be
considered [11, 6]. If the usatisfiability of abstraction con-
straints is considered instead, simple automatable sufficient
conditions as those given in Section 6 can be used. Analyz-
ing A can even be completely avoided for examples exploit-
ing the first condition of the Stop rule.

As termination of the original priority rewriting relation
of [4] guarantees a semantics for this relation, one can think
that IP -termination guarantees a semantics for the IP -rewri-
ting relation. This has to be investigated. We also plan to
generalize our technique to the termination proof of other
priority rewriting relations.

8. REFERENCES

[1] L. Augustsson. A compiler for lazy ML. In LFP ’84:
Proceedings of the 1984 ACM Symposium on LISP
and functional programming, pages 218–227, New
York, NY, USA, 1984. ACM.

[2] F. Baader and T. Nipkow. Term rewriting and all
that. Cambridge University Press, New York, NY,
USA, 1998.

[3] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Term
rewriting systems with priorities. In Proceedings of the
2nd International Conference on Rewriting Techniques
and Applications, volume 256 of Lecture Notes in
Computer Science, pages 83–94. Springer Verlag, 1987.

[4] J. C. M. Baeten, J. A. Bergstra, J. W. Klop, and
W. P. Weijland. Term-rewriting systems with rule
priorities. Theoretical Computer Science,
67(2-3):283–301, 1989.

[5] Home of Clean. http://clean.cs.ru.nl/index.html.

[6] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata
techniques and applications, 1997. Release October,
1rst 2002.

[7] A. S. de Oliveira. Réécriture et Modularité pour les
Politiques de Scurité. PhD thesis, Univesité Henri
Poincaré, Nancy, France, 2008.

[8] A. S. de Oliveira, E. K. Wang, C. Kirchner, and
H. Kirchner. Weaving rewrite-based access control
policies. In FMSE ’07: Proceedings of the 2007 ACM
workshop on Formal methods in security engineering,
pages 71–80, New York, NY, USA, 2007. ACM.

[9] N. Dershowitz and D. A. Plaisted. Rewriting. In
A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, volume I, chapter 9, pages
535–610. Elsevier Science, 2001.

[10] D. J. Dougherty, K. Fisler, and S. Krishnamurthi.
Specifying and reasoning about dynamic access-control
policies. In Proceedings of the 3rd International Joint
Conference on Automated Reasoning (IJCAR), volume
4130 of Lecture Notes in Computer Science, pages
632–646, Seattle, Washington, USA, 2006. Springer.

[11] T. Genet. Decidable approximations of sets of
descendants and sets of normal forms. In Proceedings
of the 9th Conference on Rewriting Techniques and
Applications, Tsukuba (Japan), volume 1379 of
Lecture Notes in Computer Science, pages 151–165.
Springer-Verlag, 1998.

[12] I. Gnaedig and H. Kirchner. Termination of Rewriting
under Strategies. ACM Transactions on
Computational Logic, 2007. To appear. Preliminary
version available at
http://www.loria.fr/∼gnaedig/PAPERS/REPORTS/-
S-termin-2007-preli.pdf.

[13] Wiki homepage of Haskell.
http://www.haskell.org/haskellwiki/Haskell.

[14] J. B. Kruskal. Well-quasi ordering, the tree theorem
and Vazsonyi’s conjecture. Trans. Amer. Math. Soc.,
95:210–225, 1960.

[15] N. Marti-Oliet, J. Meseguer, and A. Verdejo. Towards
a strategy language for Maude. In Proceedings of the
Fifth International Workshop on Rewriting Logic and
Its Applications, volume 117 of Electronic Notes in
Theoretical Computer Science, pages 417–441. Elsevier
Science, 2004.

[16] C. K. Mohan. Priority rewriting: Semantics,
confluence, and conditionals. In Proceedings of the 3rd
International Conference on Rewriting Techniques and
Applications, volume 355 of Lecture Notes in
Computer Science, pages 278–291. Springer Verlag,
1989.

[17] P.-E. Moreau, C. Ringeissen, and M. Vittek. A
Pattern Matching Compiler for Multiple Target
Languages. In G. Hedin, editor, Proceedings of the
12th Conference on Compiler Construction, Warsaw
(Poland), volume 2622 of Lecture Notes in Computer
Science, pages 61–76. Springer, May 2003.

[18] R. Plasmeijer and M. van Eekelen. Functional
Programming and Parallel Graph Rewriting. Addison
Wesley, 1993.

[19] M. Sakai and Y. Toyama. Semantics and strong
sequentiality of priority term rewriting systems.

Theoretical Computer Science, 208(1–2):87–110, 1998.

[20] Terese. Term Rewriting Systems. Number 55 in
Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2003.

[21] J. van de Pol. Operational semantics of rewriting with
priorities. Theoretical Computer Science,
200(1-2):289–312, 1998.

[22] J. van de Pol and H. Zantema. Generalized innermost
rewriting. In Proceedings of the 16th International
Conference on Rewriting Techniques and Applications,
volume 3467 of Lecture Notes in Computer Science,
pages 2–16, Nara, Japan, 2005. Springer.

[23] M. G. van den Brand, P. Klint, and C. Verhoef. Term
Rewriting for Sale. In Proceedings of the First
International Workshop on Rewriting Logic and its
Applications, volume 15 of Electronic Notes in
Theoretical Computer Science, pages 139–161. Elsevier
Science, 1998.

APPENDIX

A. THE LIFTING LEMMA
For the proof of Theorem 1, we need the following lifting

lemma.

Lemma 1 (Priority Inner. Lifting Lemma). Let R
be a term rewrite system. Let s ∈ T (F ,X), α a ground
substitution such that αs is IP -reducible at a non variable
position p of s, and Y ⊆ X a set of variables such that
V ar(s) ∪ Dom(α) ⊆ Y. If αs →IP

p,l→r t′, then there ex-
ist a term s′ ∈ T (F ,X) and substitutions β, σ = σ0 ∧
V

j∈[1..k] σj

V

i∈[1..n] σ
i
0. such that:

1. s ❀
IP
p,l→r,σ s′,

2. βs′ = t′,

3. βσ0 = α[Y ∪ V ar(l)]

4. β satisfies
V

j∈[1..k] σj

V

i∈[1..n] σ
i
0.

where σ0 is the most general unifier of s|p and l and σj , j ∈
[1..k] are all most general unifiers of σ0s|p′ and a left-hand
side l′ of a rule of R, for all suffix position p′ of p in s,
and σ1

0 , . . . , σn
0 are the most general unifiers of s|p with the

left-hand sides of the rules having a greater priority than
l → r.

For the proof of the lemma, we need the two following
propositions.

Proposition 1. Let t ∈ T (F ,X) and σ be a substitu-
tion of T (F ,X). Then V ar(σt) = (V ar(t) − Dom(σ)) ∪
Ran(σV ar(t)).

Proposition 2. Suppose we have substitutions σ, µ, ν and
sets A, B of variables such that (B−Dom(σ))∪Ran(σ) ⊆ A.
If µ = ν[A] then µσ = νσ[B].

Proof. Let us consider (µσ)B , which can be divided as
follows: (µσ)B = (µσ)B∩Dom(σ) ∪ (µσ)B−Dom(σ).
For x ∈ B∩Dom(σ), we have Var(σx) ⊆ Ran(σ), and then
(µσ)x = µ(σx) = µRan(σ)(σx) = (µRan(σ)σ)x. Therefore
(µσ)B∩Dom(σ) = (µRan(σ)σ)B∩Dom(σ).
For x ∈ B − Dom(σ), we have σx = x, and then (µσ)x =
µ(σx) = µx. Therefore we have (µσ)B−Dom(σ) = µB−Dom(σ).
Henceforth we get (µσ)B = (µRan(σ)σ)B∩Dom(σ) ∪µB−Dom(σ).
By a similar reasoning, we get (νσ)B = (νRan(σ)σ)B∩Dom(σ)∪
νB−Dom(σ).
By hypothesis, we have Ran(σ) ⊆ A and µ = ν[A]. Then
µRan(σ) = νRan(σ). Likewise, since B − Dom(σ) ⊆ A, we
have µB−Dom(σ) = νB−Dom(σ).
Then we have (µσ)B = (µRan(σ)σ)B∩Dom(σ) ∪µB−Dom(σ) =
(νRan(σ)σ)B∩Dom(σ)∪νB−Dom(σ) = (νσ)B . Therefore (µσ) =
(νσ)[B]. ✷

Proof of Lemma 1. In the following, we assume that
Y ∩ Var(l) = ∅ for every l → r ∈ R.
If αs →IP

p,l→r t′, then there is a substitution τ such that
Dom(τ) ⊆ Var(l) and (αs)|p = τ l. Moreover, since p is a
non variable position of s, we have (αs)|p = α(s|p). Denot-
ing µ = ατ , we have:
µ(s|p) = α(s|p) for Dom(τ) ⊆ Var(l) and Var(l)∩

Var(s) = ∅
= τ l by definition of τ

= µl for Dom(α) ⊆ Y and Y ∩ Var(l) = ∅,
and therefore s|p and l are unifiable. Let us denote by σ0

the most general unifier of s|p and l, and s′ = σ0(s[r]p).

Since σ0 is more general than µ, there is a substitution ρ

such that ρσ0 = µ[Y ∪ V ar(l)]. Let Y1 = (Y − Dom(σ0)) ∪
Ran(σ0). We define β = ρY1 . Clearly Dom(β) ⊆ Y1.
We now show that Var(s′) ⊆ Y1, by the following reasoning:

• since s′ = σ0(s[r]p), we have Var(s′) = Var(σ0(s[r]p));

• the rule l → r is such that Var(r) ⊆ Var(l), there-
fore we have Var(σ0(s[r]p)) ⊆ Var(σ0(s[l]p)), and then,
thanks to the previous point, Var(s′) ⊆ Var(σ0(s[l]p));

• since σ0(s[l]p) = σ0s[σ0l]p and since σ0 unifies l and
s|p, we get σ0(s[l]p) = (σ0s)[σ0(s|p)]p = σ0s[s|p]p = σ0s

and, thanks to the previous point: Var(s′) ⊆ Var(σ0s);

• according to Proposition 1, we have Var(σ0(s)) = (Var
(s) −Dom(σ0))∪ Ran(σ0Var(s)); by hypothesis, Var(s)
⊆ Y. Moreover, since Ran(σ0Var(s)) ⊆ Ran(σ0), we
have Var(σ0(s)) ⊆ (Y − Dom(σ0)) ∪ Ran(σ0), that is
Var(σ0s) ⊆ Y1. Therefore, with the previous point, we
get V ar(s′) ⊆ Y1.

From Dom(β) ⊆ Y1 and V ar(s′) ⊆ Y1, we infer Dom(β)∪
V ar(s′) ⊆ Y1.

Let us now prove that βs′ = t′.
Since β = ρY1 , we have β = ρ[Y1]. Since V ar(s′) ⊆ Y1,
we get βs′ = ρs′. Since s′ = σ0(s[r]p), we have ρs′ =
ρσ0(s[r]p) = µ(s[r]p) = µs[µr]p. Then βs′ = µs[µr]p.
We have Dom(τ) ⊆ Var(l) and Y ∩ Var(l) = ∅, then we
have Y ∩Dom(τ) = ∅. Therefore, from µ = ατ [Y ∪ V ar(l)],
we get µ = α[Y]. Since Var(s) ⊆ Y, we get µs = αs.
Likewise, by hypothesis we have Dom(α) ⊆ Y, Var(r) ⊆
Var(l) and Y ∩Var(l) = ∅, then we get V ar(r)∩Dom(α) =
∅, and then we have µ = τ [V ar(r)], and therefore µr = τr.
From µs = αs and µr = τr we get µs[µr]p = αs[τr]p. Since,
by hypothesis, αs →p t′, with τ l = (αs)|p, then αs[τr]p = t′.
Finally, as βs′ = µs[µr]p, we get βs′ = t′ (2).

Next let us prove that βσ0 = α[Y]. Reminding that Y1 =
(Y−Dom(σ0))∪Ran(σ0), Proposition 2 (with the notations
A for Y1, B for Y, µ for β, ν for ρ and σ for σ0) yields βσ0 =
ρσ0[Y]. We already noticed that µ = α[Y]. Linking these
two equalities via the equation ρσ0 = µ yields βσ0 = α[Y]
(3).

Let us now suppose that there exist a rule l′ → r′ ∈
R, a suffix position p′ of p and a substitution σi such that
σi(σ0(s|p′)) = σil

′.
Let us now suppose that β does not satisfy

V

j∈[1..k] σj .

There is i ∈ [1..k] such that β satisfies σi =
V

il∈[1..n](xil
=

uil
). So β is such that

V

il∈[1..n](βxil
= βuil

).

Thus, on Dom(β) ∩ Dom(σi) ⊆ {xil
, il ∈ [1..n]}, we have

(βxil
= βuil

), so βσi = β. Moreover, as β is a ground
substitution, σiβ = β. Thus, βσi = σiβ.

On Dom(β) ∪ Dom(σi) − (Dom(β) ∩ Dom(σi)), either
β = Id, or σi = Id, so βσi = σiβ.

As a consequence, α(s) = σiα(s) = σiβσ0(s) = βσiσ0(s)
is reducible at position p′ with the rule l′ → r′, which is
impossible by definition of innermost reducibility of α(s) at
position p. So the ground substitution β satisfies

V

i∈[1..k] σi

for all most general unifiers σi of σ0s and a left-hand side of
a rule of R at suffix positions of p.

Let us now suppose that there exist a rule l′ → r′ ∈ R of
higher priority than l → r and a substitution σi

0 such that
σi

0(s|p) = σi
0l

′. With a similar reasoning than previously, we
get that α(s) is reducible at position p with the rule l′ → r′,
which has higher priority than l → r. This is impossible
by definition of IP -reducibility of α(s) by l → r at position

p. So the ground substitution β also satisfies
V

i∈[1..n] σ
i
0

where σ1
0 , . . . , σn

0 are the most general unifiers of s|p with
the left-hand sides of rules having a greater priority than
l → r (4).

Therefore, denoting σ = σ0 ∧
V

j∈[1..k] σj ∧
V

i∈[1..n] σ
i
0,

from the beginning of the proof, we get s ❀
IP
p,l→r,σ s′, and

then the point (1) of the current lemma holds. ✷

B. THE IP-TERMINATION THEOREM
Theorem 1. Let R be a priority term rewrite system

on T (F ,X) having at least one constructor constant. Ev-
ery term of T (F) is IP -terminating iff there is a noethe-
rian ordering ≻ such that for each symbol g ∈ D, we have
SUCCESS(g ,≻).

Proof. Let us suppose that every ground term is IP -
terminating and show that the construction of the proof
trees always terminate. Let f(x1, . . . , xm), f ∈ D any initial
pattern of a proof tree.

The Abstract rule applies to give f(X1, . . . , Xm), X1, . . . ,

Xm ∈ N . Indeed, by hypothesis, we have IPT (xi). Then
Stop applies, because we also have IPT (f (X1 , . . . , Xm)).
So any proof tree is finite, and SUCCESS(f ,≻) for every
f ∈ D, with any noetherian ordering ≻.

For the converse part, we prove by induction on T (F)
that any ground instance θf(x1, . . . , xm) IP -terminates for
any term f(x1, . . . , xm) ∈ T (F ,X) with f ∈ F . We use
an abstraction lemma, a narrowing lemma, and a stopping
lemma, which are given after this main proof.

The induction ordering is constrained along the proof. At
the beginning, it has at least to be noetherian. Such an or-
dering always exists on T (F) (for instance the embedding
relation). Let us denote it by ≻.

If f is a defined symbol, let us denote it by g and prove
that g(θx1, . . . , θxm) is IP -terminating for any θ satisfying
A = ⊤ if we have SUCCESS (h,≻) for every defined symbol
h. Note that g may be a reducible constant. Let us denote
g(x1, . . . , xm) by tref in the sequel of the proof.

To each state s of the proof tree of g, characterized by a
current term t and the set of constraints A, we associate the
set of ground terms G = {αt | α satisfies A}, that is the set
of ground instances represented by s. When t is a reducible
constant, the set of ground instances is reduced to t itself.

The Abstract inference rule (resp. Narrow) transforms
({t}, A, C) into ({t′}, A′, C′) to which is associated G′ =
{βt′ | β satisfies A′} (resp. into ({t′i}, A

′
i), i ∈ [1..q] to which

are associated G′ = {βit
′
i | βi satisfies A′

i}).
By abstraction (resp. narrowing) Lemma, when apply-

ing Abstract (resp. Narrow), for each reducible αt in G,
there is a βt′ (resp. there are βit

′
i) in G′ and such that IP -

termination of βt′ (resp. of the βit
′
i) implies IP -termination

of αt.
When the Stop inference rule applies on ({t}, A, C), by

stopping lemma, every term of G = {αt | α satisfies A} is
IP -terminating. Therefore, IP -termination is ensured for
all terms in all sets G in the proof tree.

As the process is initialized with {tref } and a set A of
abstraction constraints satisfiable by any ground substitu-
tion, we get that g(θx1, . . . , θxm) is IP -terminating, for any
tref = g(x1, . . . , xm), and any ground instance θ.

If f is a constructor, either it is a constant, which is irre-
ducible, and then IP -terminating, or we consider the pat-
tern f(x1, . . . , xm). The proof then works like in the case
of defined symbols, but with just an application of Abstract

and Stop. Indeed, f(x1, . . . , xm) always abstracts into f(X1,

. . . , Xm). Then Stop applies because f(X1, . . . , Xm) is not
narrowable and all its variables are in N . ✷

Lemma 2 (Abstraction lemma). Let ({t}, A, C) be a
state of any proof tree, giving the state
({t′ = t[Xj]j∈{i1,...,ip}}, A′, C′) by application of Abstract.

For any ground substitution α satisfying A, if αt is re-
ducible, there is β such that IP -termination of βt′ implies
IP -termination of αt. Moreover, β satisfies A′.

Proof. We prove that αt
∗
→S βt′, where β = α∪

S

j∈{i1,...,ip} Xj = αt|j↓.

First, the abstraction positions in t are chosen so that the
αt|j can be supposed IP -terminating. Indeed, each term t|j
is such that:

• either IPT (t |j) is true, and then by definition of the
predicate IPT , αt|j is IP -terminating;

• or tref > t|j is satisfiable by ≻, and then, by induction
hypothesis, αt|j is IP -terminating.

So, αt|j reduces to an IP -normal form αt|j↓. Then, what-

ever the positions i1, . . . , ip in the term t, we have αt
∗
→

IP

αt[αt|i1↓]i1 . . . [αt|ip↓]ip = βt′.

Thus, αt
∗
→

IP
βt′ for every derivation that normalizes all

subtems αt|j↓, for j ∈ {p1, . . . , pk}. As every βt′ represents
a reduced form of αt on every possible rewriting branch of
αt, then IP-termination of βt′ implies IP-termination of αt.

Finally, , β satisfies A′ = A∧ t|i1↓ = Xi1 . . .∧ t|ip↓ = Xip ,
provided the Xi are neither in A, nor in Dom(α), which is
true since the Xi are fresh variables, neither appearing in
A, nor in Dom(α). ✷

Lemma 3 (Narrowing lemma). Let ({t}, A, C) be a
state of any proof tree, giving the states ({vi}, A′

i, C
′
i), i ∈

[1..l], by application of Narrow. For any ground substi-
tution α satisfying A, if αt is IP -reducible, then, for each
i ∈ [1..l], there is βi such that IP -termination of the βivi, i ∈
[1..l], implies IP -termination of αt. Moreover, βi satisfies
A′

i for each i ∈ [1..l].

Proof. For any rewriting step αt →IP
p,l→r t′, by Lift-

ing Lemma, there is a term v ∈ T (F ,X) and substitutions

β, σ = σ0 ∧
V

j∈[1..k] σj ∧
V

i∈[1..n] σ
i
0 such that:

1. t ❀
IP
p,l→r,σ v,

2. βv = t′,

3. βσ0 = α[Y ∪ V ar(l)]

4. β satisfies
V

j∈[1..k] σj ∧
V

i∈[1..n] σ
i
0

where σ0 is the most general unifier of t|p and l, σj , j ∈
[1..k] are all the most general unifiers of σ0t|p′ and a left-
hand side l′ of a rule of R, for all suffix positions p′ of p in
s, σi

0, i ∈ [1..n] are all the most general unifiers of t|p with
the left-hand sides of the rules having greater priority than
l → r.

The narrowing steps are effectively produced in the proof
tree by the Narrow rule, applied in all possible ways on
t. Then, the narrowing step t ❀

IP
p,l→r,σ v is produced. So

a term βv is produced for every IP -rewriting branch start-
ing from αt. Then IP -termination of the βv implies IP -
termination of αt.

Let us prove that β satisfies A′ = A ∧ σ0 ∧
V

j∈[1..k] σj ∧
V

i∈[1..n] σ
i
0.

By Lifting Lemma, we have α = βσ0 on Y. As we can
take Y ⊇ V ar(A), we have α = βσ0 on V ar(A).

More precisely, on Ran(σ0), β is such that βσ0 = α and
on V ar(A) \ Ran(σ0), β = α. As Ran(σ0) only contains
fresh variables, we have V ar(A)∩Ran(σ0) = ∅, so V ar(A)\
Ran(σ0) = V ar(A). So β = α on V ar(A) and then, β

satisfies A.
Moreover, as βσ0 = α on Dom(σ0), β satisfies σ0.
So β satisfies A ∧ σ0. Finally, with the point 4. of the

lifting lemma, we conclude that β satisfies A′ = A ∧ σ0 ∧
V

j∈[1..k] σj ∧
V

i∈[1..n] σ
i
0. ✷

Lemma 4 (Stopping lemma). Let ({t}, A, C) be a state
of any proof tree, with A satisfiable, and giving the state
(∅, A′, C′) by application of an inference rule. Then for ev-
ery ground substitution α satisfying A, αt is IP -terminating.

Proof. The only rule giving the state (∅, A′, C′) is Stop.
When Stop is applied, then

• either IPT (t) and then αt is IP -terminating for every
ground substitution α,

• or (tref > t) is satisfiable. Then, for every ground sub-
stitution α satisfying A, αtref ≻ αt. By induction hy-
pothesis, αt is IP -terminating.

✷

