Computing Hilbert Class Polynomials - Archive ouverte HAL Access content directly
Conference Papers Year : 2008

Computing Hilbert Class Polynomials

(1) , (2) , (3) , (2)
1
2
3
Juliana Belding
  • Function : Author
  • PersonId : 846666
Reinier Bröker
  • Function : Author
  • PersonId : 846667
Andreas Enge
Kristin Lauter
  • Function : Author
  • PersonId : 846668

Abstract

We present and analyze two algorithms for computing the Hilbert class polynomial $H_D$ . The first is a p-adic lifting algorithm for inert primes p in the order of discriminant D < 0. The second is an improved Chinese remainder algorithm which uses the class group action on CM-curves over finite fields. Our run time analysis gives tighter bounds for the complexity of all known algorithms for computing $H_D$ , and we show that all methods have comparable run times.
Fichier principal
Vignette du fichier
ants8.pdf (228.32 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

inria-00246115 , version 1 (07-02-2008)

Identifiers

  • HAL Id : inria-00246115 , version 1
  • ARXIV : 0802.0979

Cite

Juliana Belding, Reinier Bröker, Andreas Enge, Kristin Lauter. Computing Hilbert Class Polynomials. ANTS-VIII - Eighth Algorithmic Number Theory Symposium, May 2008, Banff, Canada. pp.282-295. ⟨inria-00246115⟩
335 View
620 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More