A. Agashe, K. Lauter, and R. Venkatesan, Constructing elliptic curves with a known number of points over a prime field, High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of H C Williams, pp.1-17, 2004.
DOI : 10.1090/fic/041/01

A. O. Atkin and F. Morain, Elliptic curves and primality proving, Mathematics of Computation, vol.61, issue.203, pp.29-68, 1993.
DOI : 10.1090/S0025-5718-1993-1199989-X

URL : https://hal.archives-ouvertes.fr/inria-00075302

R. Bröker, A $p$-adic algorithm to compute the Hilbert class polynomial, Mathematics of Computation, vol.77, issue.264, 2007.
DOI : 10.1090/S0025-5718-08-02091-7

J. M. Cerviño, Supersingular elliptic curves and maximal quaternionic orders, Math. Institut G-A-Univ. Göttingen, pp.53-60, 2004.

H. Cohen, A course in computational algebraic number theory. GTM 138, 1996.

H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange et al., Handbook of Elliptic and Hyperelliptic Curve Cryptography. Discrete mathematics and its applications, 2006.

J. Couveignes and T. Henocq, Action of Modular Correspondences around CM Points, LNCS, vol.2369, pp.234-243, 2002.
DOI : 10.1007/3-540-45455-1_19

M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenk??rper, Abhandlungen aus dem Mathematischen Seminar der Universit??t Hamburg, vol.14, issue.1, pp.197-272, 1941.
DOI : 10.1007/BF02940746

A. Enge, The complexity of class polynomial computation via floating point approximations . HAL-INRIA 1040 and ArXiv cs, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00001040

A. Enge and R. Schertz, Constructing elliptic curves over finite fields using double eta-quotients, Journal de Th??orie des Nombres de Bordeaux, vol.16, issue.3, pp.555-568, 2004.
DOI : 10.5802/jtnb.460

URL : http://archive.numdam.org/article/JTNB_2004__16_3_555_0.pdf

M. Fouquet and F. Morain, Isogeny Volcanoes and the SEA Algorithm, ANTS-V, pp.276-291, 2002.
DOI : 10.1007/3-540-45455-1_23

J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, Algebraic Number Fields (L-functions and Galois properties), pp.409-464, 1977.

S. Lang, Elliptic Functions. GTM 112, 1987.

J. E. Littlewood, ), Proceedings of the London Mathematical Society, vol.2, issue.1, pp.358-372, 1928.
DOI : 10.1112/plms/s2-27.1.358

R. Schertz, Weber's class invariants revisited, Journal de Th??orie des Nombres de Bordeaux, vol.14, issue.1, pp.325-343, 2002.
DOI : 10.5802/jtnb.361

R. Schoof, The exponents of the groups of points on the reductions of an elliptic curve, Arithmetic Algebraic Geometry, pp.325-335, 1991.
DOI : 10.1007/978-1-4612-0457-2_15

R. Schoof, Counting points on elliptic curves over finite fields, Journal de Th??orie des Nombres de Bordeaux, vol.7, issue.1, pp.219-254, 1995.
DOI : 10.5802/jtnb.142

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

I. Schur, Einige Bemerkungen zu der vorstehenden Arbeit des Herrn G. Pólya: ¨ Uber die Verteilung der quadratischen Reste und Nichtreste, Nachr. Kön. Ges. Wiss. Göttingen, Math.-Phys. Kl, pp.30-36, 1918.

P. Stevenhagen, Hilbert's 12th problem, complex multiplication and Shimura reciprocity, Class field theory?its centenary and prospect, pp.161-176, 2001.

J. Zur-gathen and J. Gerhard, Modern Computer Algebra, 1999.
DOI : 10.1017/CBO9781139856065

W. C. Waterhouse, Abelian varieties over finite fields, Annales scientifiques de l'??cole normale sup??rieure, vol.2, issue.4, pp.521-560, 1969.
DOI : 10.24033/asens.1183