S. Badia, F. Nobile, and C. Vergara, Fluid???structure partitioned procedures based on Robin transmission conditions, Journal of Computational Physics, vol.227, issue.14, pp.7027-7051, 2008.
DOI : 10.1016/j.jcp.2008.04.006

K. J. Bathe and H. Zhang, Finite element developments for general fluid flows with structural interactions, International Journal for Numerical Methods in Engineering, vol.60, issue.1, 2004.
DOI : 10.1002/nme.959

R. Becker, P. Hansbo, and R. Stenberg, A finite element method for domain decomposition with non-matching grids, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.2, pp.209-225, 2003.
DOI : 10.1051/m2an:2003023

URL : https://hal.archives-ouvertes.fr/inria-00073065

E. Burman and M. A. Fernández, Stabilized explicit coupling for fluidstructure interaction using Nitsche's method, C. R. Math. Acad. Sci. Paris, issue.8, pp.345467-472, 2007.

E. Burman and P. Hansbo, A unified stabilized method for Stokes??? and Darcy's equations, Journal of Computational and Applied Mathematics, vol.198, issue.1, pp.35-51, 2007.
DOI : 10.1016/j.cam.2005.11.022

E. Burman and P. Zunino, A Domain Decomposition Method Based on Weighted Interior Penalties for Advection???Diffusion???Reaction Problems, SIAM Journal on Numerical Analysis, vol.44, issue.4, pp.1612-1638, 2006.
DOI : 10.1137/050634736

P. Causin, J. Gerbeau, and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid???structure problems, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.42-44, pp.42-444506, 2005.
DOI : 10.1016/j.cma.2004.12.005

URL : https://hal.archives-ouvertes.fr/inria-00071499

S. Deparis, M. Discacciati, G. Fourestey, and A. Quarteroni, Fluidstructure algorithms based on Steklov-Poincaré operators, Comput. Methods Appl. Mech. Engrg, vol.195, pp.41-435797, 2006.

S. Deparis, M. A. Fernández, and L. Formaggia, Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.4, pp.601-616, 2003.
DOI : 10.1051/m2an:2003050

URL : https://hal.archives-ouvertes.fr/hal-00705114

J. Donéa, S. Giuliani, and J. P. Halleux, An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions, Computer Methods in Applied Mechanics and Engineering, vol.33, issue.1-3
DOI : 10.1016/0045-7825(82)90128-1

C. Farhat, K. Van-der-zee, and P. Geuzaine, Provably second-order timeaccurate loosely-coupled solution algorithms for transient nonlinear aeroelasticity, Comput. Methods Appl. Mech. Engrg, vol.195, pp.17-181973, 2006.

M. A. Fernández, J. F. Gerbeau, and C. Grandmont, A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, International Journal for Numerical Methods in Engineering, vol.9, issue.4, pp.794-821, 2007.
DOI : 10.1002/nme.1792

M. A. Fernández and M. Moubachir, An exact Block???Newton algorithm for solving fluid???structure interaction problems, Comptes Rendus Mathematique, vol.336, issue.8, pp.336681-686, 2003.
DOI : 10.1016/S1631-073X(03)00151-1

M. A. Fernández and M. Moubachir, A Newton method using exact jacobians for solving fluid???structure coupling, Computers & Structures, vol.83, issue.2-3, pp.127-142, 2005.
DOI : 10.1016/j.compstruc.2004.04.021

L. Formaggia, J. Gerbeau, F. Nobile, and A. Quarteroni, On the coupling of 3D and 1D Navier???Stokes equations for flow problems in compliant vessels, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.6-7, pp.6-7561, 2001.
DOI : 10.1016/S0045-7825(01)00302-4

URL : https://hal.archives-ouvertes.fr/inria-00072794

C. Förster, W. A. Wall, and E. Ramm, Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.7, pp.1278-1293, 2007.
DOI : 10.1016/j.cma.2006.09.002

J. Gerbeau and M. Vidrascu, A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.4, pp.631-648, 2003.
DOI : 10.1051/m2an:2003049

URL : https://hal.archives-ouvertes.fr/inria-00071895

P. Hansbo, Nitsche's method for interface problems in computa-tional mechanics, GAMM-Mitteilungen, vol.15, issue.2, pp.183-206, 2005.
DOI : 10.1002/gamm.201490018

P. Hansbo and J. Hermansson, Nitsche's method for coupling non-matching meshes in fluid-structure vibration problems, Computational Mechanics, vol.32, issue.1-2, pp.134-139, 2003.
DOI : 10.1007/s00466-003-0467-7

P. Hansbo, J. Hermansson, and T. Svedberg, Nitsche's method combined with space???time finite elements for ALE fluid???structure interaction problems, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.39-41, pp.4195-4206, 2004.
DOI : 10.1016/j.cma.2003.09.029

F. Hecht, O. Pironneau, A. L. Hyaric, and K. Ohtsuka, FreeFem++ v. 2.11. User's Manual

]. E. Järvinen, P. , and M. Lyly, Optimization of fluid-structure interaction scheme for arterial flow simulations, 2nd International Symposium on Modelling of Physiological Flows ? MPF 2005, 2005.

W. Layton, H. K. Lee, and J. Peterson, A defect-correction method for the incompressible Navier???Stokes equations, Applied Mathematics and Computation, vol.129, issue.1, pp.1-19, 2002.
DOI : 10.1016/S0096-3003(01)00026-1

P. , L. Tallec, and J. Mouro, Fluid structure interaction with large structural displacements, Comput. Meth. Appl. Mech. Engrg, vol.190, pp.3039-3067, 2001.

D. P. Mok and W. A. Wall, Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures

D. P. Mok, W. A. Wall, and E. Ramm, Partitioned analysis approach for the transient, coupled response of viscous fluids and flexible structures, Proceedings of the European Conference on Computational Mechanics. ECCM'99, 1999.

D. P. Mok, W. A. Wall, and E. Ramm, Accelerated iterative substructuring schemes for instationary fluid-structure interaction, Computational Fluid and Solid Mechanics, pp.1325-1328, 2001.
DOI : 10.1016/B978-008043944-0/50907-0

H. Morand and R. Ohayon, Fluid-Structure Interaction: Applied Numerical Methods, 1995.

]. J. Nitsche, ??ber ein Variationsprinzip zur L??sung von Dirichlet-Problemen bei Verwendung von Teilr??umen, die keinen Randbedingungen unterworfen sind, Abhandlungen aus dem Mathematischen Seminar der Universit??t Hamburg, vol.12, issue.1, pp.9-15, 1971.
DOI : 10.1007/BF02995904

F. Nobile, Numerical approximation of fluid-structure interaction problems with application to haemodynamics, 2001.

K. C. Park, C. A. Felippa, and J. A. Deruntz, Stabilization of staggered solution procedures for fluid-structure interaction analysis, Computational Methods for Fluid-Structure Interaction Problems, pp.95-124, 1977.

S. Piperno, Simulation numérique de phénomènes d'interaction fluidestructure, Ecole Nationale des Ponts et Chaussées, 1995.

S. Piperno, Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations, International Journal for Numerical Methods in Fluids, vol.134, issue.10, pp.251207-1226, 1997.
DOI : 10.1002/(SICI)1097-0363(19971130)25:10<1207::AID-FLD616>3.0.CO;2-R

URL : https://hal.archives-ouvertes.fr/hal-00607776

A. Quaini and A. Quarteroni, A SEMI-IMPLICIT APPROACH FOR FLUID-STRUCTURE INTERACTION BASED ON AN ALGEBRAIC FRACTIONAL STEP METHOD, Mathematical Models and Methods in Applied Sciences, vol.17, issue.06, pp.957-983, 2007.
DOI : 10.1142/S0218202507002170

P. R. ?-aback, J. Ruokolainen, M. Lyly, and E. Järvinen, Fluid-structure interaction boundary conditions by artificial compressibility, ECCOMAS Computational Fluid Dynamics Conference, 2001.

K. Riemslagh, J. A. Vierendeels, and E. Dick, Coupling of a Navier-Stokes solver and an elastic boundary solver for unsteady problems, Computational Fluid Dynamics '98: Proceeding of the Fourth European Computational fluid Dynamics Conference, pp.1040-1045, 1998.

H. J. Stetter, The defect correction principle and discretization methods, Numerische Mathematik, vol.11, issue.4, pp.425-443, 1978.
DOI : 10.1007/BF01432879

T. E. Tezduyar, Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces, Arch. Comput. Methods Engrg, vol.8, pp.83-130, 2001.
DOI : 10.1002/0470091355.ecm069

V. Thomée, Galerkin finite element methods for parabolic problems, of Springer Series in Computational Mathematics, 2006.
DOI : 10.1007/978-3-662-03359-3

J. A. Vierendeels, K. Riemslagh, E. Dick, and P. R. Verdonck, Computer Simulation of Intraventricular Flow and Pressure Gradients During Diastole, Journal of Biomechanical Engineering, vol.122, issue.6, pp.667-674, 2000.
DOI : 10.1115/1.1318941

I. Unité-de-recherche and . Lorraine, Technopôle de Nancy-Brabois -Campus scientifique 615, rue du Jardin Botanique -BP 101 -54602 Villers-lès-Nancy Cedex (France) Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu -35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l'Europe -38334 Montbonnot Saint-Ismier (France) Unité de recherche, 2004.

I. De-voluceau-rocquencourt, BP 105 -78153 Le Chesnay Cedex (France) http://www.inria.fr ISSN, pp.249-6399