N

N
N

HAL

open science

Finding Frequent Subsequences in a Set of Texts

Alban Mancheron, Jean-Emile Symphor

» To cite this version:

Alban Mancheron, Jean-Emile Symphor. Finding Frequent Subsequences in a Set of Texts. [Research

Report] 2007, pp.13. inria-00257561

HAL 1d: inria-00257561
https://inria.hal.science/inria-00257561
Submitted on 19 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00257561
https://hal.archives-ouvertes.fr

Finding Frequent Subsequences in a Set of Texts.
[version 1.8.2.9]

Alban MANCHERON' and Jean-Emile SympHORY

# INRI1A, Centre Lille — Nord-Europe, France.
alban.mancheron@inria.fr
¥ GRIMAAG, Université des Antilles et de la Guyane, Martinique, France.
je.symphor@martinique.univ-ag.fr

Abstract. Given a set of strings, the Common Subsequence Automaton
accepts all common subsequences of these strings. Such an automaton
can be deduced from other automata like the Directed Acyclic Subse-
quence Graph or the Subsequence Automaton. In this paper, we intro-
duce some new issues in text algorithm on the basis of Common Subse-
quences related problems. Firstly, we make an overview of different ex-
isting automata, focusing on their similarities and differences. Secondly,
we present a new automaton, the Constrained Subsequence Automaton,
which extends the Common Subsequence Automaton, by adding an in-
teger ¢ denoted quorum.

1 Introduction

In many research areas (such as network monitoring, molecular biology, data
mining), extracting all common subsequences from a set of texts is one of the
major issues on today. It allows to characterize some properties of the set of texts.
In the field of text algorithmic, a well known problem is to find the longest
common subsequence of a set of strings. This problem is known as the LCS
Problem. Before giving this problem statement and some connected one, we
need to introduce some usual definitions. A sequence s of symbols taken in a set
X is called a string; the set X' is then called the alphabet. A subsequence of a
string s is a string ¢ such that ¢ can be obtained from s by deleting zero or more
symbols. Given a set of strings S, the string t is called a common subsequence
if ¢ is a subsequence of every s from S.

In 1986, HEBRARD and CROCHEMORE proposed an algorithm for building
a deterministic and acyclic automaton that accepts all subsequences of a given
string s [1]. Their algorithm processes the string s from right to left. They
called this structure the Directed Acyclic Subsequence Graph (DASG). This way,
BAEZA-YATES extended the structure in 1991 for the case of multiple texts
[2]. The DASG is now an acyclic and deterministic automaton that accepts all
subsequences of any of the input texts. In the following, we denote the DASG
of a set S by DASG(S). So, given a set of sequences S, he presented a right-
to-left algorithm for building DASG(S). TRONICEK and MELICHAR introduced



a left-to-right algorithm for constructing a DASG for one text and a quasi left-
to-right algorithm for building DASG(S) in 1998 [3] (see also [4]). A left-to-right
algorithm allows to construct such an automaton without parsing the whole texts
from Sa priori. We use the quasi qualifier because, their algorithm processes the
strings from left to right, but it requires to have a look straight forward in
the sequences. In 2000, HOSHINO & al. [5] introduced a new structure close to
the DASG, which accepts exactly the same language, which is still acyclic (with
a slightly modification) and deterministic, called the Subsequence Automaton
(sa); and they provide a left-to-right algorithm that constructs the structure.
On the basis of these results, TRONICEK recently introduced an algorithm that
builds an acyclic and deterministic automaton that accepts only the common
subsequences of a set of texts from S. He called this structure the Common
Subsequence Automaton (CsA) [6]. In the following, we denote by CSA(S) the
CSA build from §. It is obvious that all these structures may help a lot for many
of subsequence problems.

In this paper, we introduce some new issues in text algorithm on the basis of
Lcs related problems. The first one that we introduce can be stated as following:
given a set of texts S, and an integer ¢ (denoted quorum) such that 1 < ¢ <|S],
find the longest common subsequence of at least ¢ string from S. We denote this
problem by LcCS,. This problem can be extended to other text algorithm issues,
such as the shortest distinguishing subsequence problem (sDs). Recall this last:
given two sets of texts S and 7, find the shortest common subsequence from S
that is not a subsequence of any text from 7. Integrating a quorum constraint
1 < ¢ < 8 can be resumed as to find the shortest common subsequence of at least
q strings from S that is not a subsequence of any text from 7 (we denote this
problem SDS, ). This issue can also be extended with a second quorum constraint:
given two sets of texts S (positive set) and 7 (negative set) and ¢, g2 two integers
such that 1 < ¢ < [S] and 1 < g2 < |7, find the shortest common subsequence
of at least ¢; strings from S that is not a subsequence of at least ¢o texts from
7 (we denote this problem by SDS,, 4, in the subsequent). All these issues have
applications in many fields, such as molecular biology (e.g., the identification of
haplotypes in chromosomes) or SPAM detection in mails.

The LcS problem can easily be solved using the CsA of the set of input
strings. In the same way, finding a solution to the SDS problem can be achieved by
building the csa of the positive set of strings and the DASG (or SA) of the negative
set of strings. It is obvious that solutions of the more general problems LCS,,
SDS4 and SDSg, 4, can be computed using structures similar to CSA and DASG /SA.
Indeed, the main result of this paper is the description of an automaton which
is a generalization of both the CSA and the sA. Actually, we describe an acyclic
and deterministic automaton which accepts all the subsequences common to at
least ¢ strings from a set S. We call this structure a Constrained Subsequence
Automaton with quorum ¢, and we denote it csa,. We obviously support our
result of an algorithm.



The subsequent is organized as follow: second section presents the definitions
of the DASG, the sA and the CSA; in the third section is formally introduced the
CsA, and we present an algorithm that build this structure; and the last one
illustrates how the LCS, and related problems can be solved using the CSA,.

2 Requirements & Overview

Before giving a description of the existing automata mentioned in the above
section, we first recall some notations and definitions. First recall that X denotes
a finite alphabet, thus we denote by e the empty string (of length 0). Given a
string w € X*, we denote by Sub(w) the set of all subsequences of w and by |w|
the length of w. We denote by wli] (1 < i < |wl|) the i'" character of w and by
wli..j] (1 < ¢ < j < |w|) the substring of w starting at position ¢ and ending
at position j, that is w[i..j] = w[i] - - - w[j]. A subsequence of a string w is any
string obtained by deleting zero or more symbols from w.

We use in this paper the standard notation of finite automata [7]. A finite
automaton is a 5-tuple (Q, X, §,Z, F) where Q is a finite set of states, X an input
alphabet, 0 : Q x X — Q is a transition function, Z C Q is the set of initial
states and F C Q is the set of final states.

2.1 The Directed Acyclic Subsequence Graph (original version)

Definition 1. Given a string s of length n in X*, an integer p € [0;n] and a
symbol o € X which at least once occurs in s[p + 1..n], we define the D-Reached

Position (denoted dRPs(p,c)) as p’, where p’ = min({j i >pAsj] = a}).
This definition allows us to define the DASG for one string.
Definition 2. Given a string s of length n in X, we define the Directed Acyclic

Subsequence Graph for the string s as the 5-tuple DASG(s) = (Q,X,0,Z,F),
where:

Q = [0;n], 7 =10}, 0 =dRP; and F=9

Thus, the DASG(s) = (Q,X,d,7,F) accepts a string ¢ if and only if ¢ is
a subsequence of s [3]. The automaton can be partial in the sense that each

state needs not to have transitions for all @ € X. We show an example of the
DASG(aba) in Fig.

2.2 The Directed Acyclic Subsequence Graph (extended version)

Let S denote a set of texts {s1, ..., sk} Let n; be the length of s; and s;[j] be
4" symbol of s; for all j € [1;n;] and all i € [1; k]. We say that ¢ is a subsequence
of § if and only if some 7 € [1; k] exists such that ¢ is a subsequence of s;. The
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Fig. 1. pAsG(aba) (original version).

DASG can be extended to a deterministic finite automaton which accepts all
subsequences of s; for all i € [1;k].

So, each state of the DASG corresponds to positions in texts. We start the
reading by setting a “cursor” in front of the first symbol of each text. This set of
cursor positions corresponds to the initial state of the automaton. For a given
set of cursor positions, we check for all & € X if o can be read from this cursor
positions in at least one sequence. Thus, when a new symbol is processed, the
position in texts may change. For a symbol «, the new position is obtained by
searching the first a after the current position in each text. If there is no such
symbol after the current position in some string s;, we set the current reading
position in this string after the last symbol of s; (i.e., no more symbol can be
read from this position in this string). The following definition formally state
what is the set of available cursor positions.

Definition 3. Given a set of strings S = {s1,...,sx} from X*, we define a
position point of the set S as an ordered k-tuple [p1, ..., px], where p; € [0,n;] is
a position in string s;. If p; = 0, then it denotes the empty string € in front of
the first position of s;, otherwise it denotes the position of the p;!" symbol of s;,
for alli € [1;k].

The particular position where p; = 0 for all ¢ € [1;k] is called the initial
position point (denoted g5 in the subsequent). We also denote by Pos(S) the
set of all position points of S.

Definition 4. Given a set of strings S = {s1,...,8x} from X* and a position
point [p1,...,pr] € Pos(S), we define the subsequence position alphabet as the
subset of X composed of all symbols which are contained in texts s;[p; + 1..n;]
for alli € [1;k]. We denote this set by:

k

Ys(lp1,---,pk]) = U{Oé € X|3j € [pi + Lini], 8] = a}.

The “jump” between two position points of Pos(S) when reading a symbol
« can easily be stated from the two previous definitions.

Definition 5. Given a set of strings S = {s1,..., sk} from X*, a position point
[p1,-..,pK] € Pos(S) and « € 25([171, .. .pk]), we define the D-Reached Position
Point (denoted alRPPS([pl7 . ,pk],a)) as [ph, Db, ..., D), where Vi € [1;k], p}, =

min({j |5 > ps A sili] = a} U {ni}).




Actually, we now can formally define the DASG of a set of texts.

Definition 6. Given a set of strings S = {s1,...,sk} from X*, we define the
Directed Acyclic Subsequence Graph for the strings si,...,S, as the 5-tuple
DASG(S) = (Q, X,0,Z,F), where:

Q = Pos(S), T={¢, 0 =dRPPs and  F = Pos(S)

Naturally, the DASG(S) accepts a string ¢ if and only if ¢ € (J .5 Sub(s). We
illustrate in Fig. [2 an example of DASG for three texts. The string s; = aba is
the one that we use in Fig. [1l We choose for the second string so = aabb and

s3 = aab for the third.
()
a b
AN
\ b
b b\ a/
—{

Fig. 2. pasc({aba, aabb, aab}), where qo := [0,0,0], ¢1 := [1,1,1], ¢2 := [2,3, 3],
q3 ‘= [33252]7 qa = [37373} and qs ‘= [37473]

2.3 The Subsequence Automaton

HOSHINO & al. [5] introduced an algorithm for building an new deterministic
complete finite automaton that recognizes exactly the same language than the
DASG for a given set of strings. Since their structure is complete, they introduce
a sink state, which is the only one that have cycles; so their automaton can be
considered as acyclic, by not considering this state.

An important aspect of this automaton remains from the fact they introduce
in their algorithm, a major difference in comparison with the DASG. Indeed, in
the processing of position points in texts for a given symbol, they denote by oo
the fact that the symbol of the alphabet doesn’t occur in a string s; after the
position p;, instead of using n; (see definition [3).

More formally, for a position point (i.e., a k-tuple [p1,...,px]), where p; €
[0, n;] a position in string s;, the main difference compared to definition 3lappears
in the case p; = n;. Indeed, it denotes the position of the last symbol of s; if and
only if this last symbol is the currently processed one. By opposite, they denote
by oo the particular case for which the current processed symbol doesn’t occur
in s;[p; + 1..n;].



The definition of the position point can easily be modified by adding the oo
value, which corresponds to the last position after the last symbol of any string
s;. Thus, that means that the symbol looked for in the alphabet doesn’t exist
in the rest of the string. So, it induces a new set of position points, which is a
superset of Pos(S): this new set is called Pos/(S).

Definition 7. Given a set of strings S = {s1,...,sk} from X*, we define an
extended position point of the set S as an ordered k-tuple [p1,...,pg], where
p;i € [0,n;] U {0} is a position in string s;. If p; = 0, then it denotes the empty
string € in front of the first position of s;, if p; = 0o, then it denotes the empty
string behind the last position of s;, otherwise it denotes the position of the p;"
symbol of s;, for all i € [1;k].

This slight modification induces the creation of the particular state qualified
as a “sink state”, which corresponds to the extended position point where all
p; = oo (denoted ¢* ). As a matter of fact, the use of the subsequence alphabet
becomes obsolete. Consequently, the D-Reached Position Point has to be adapted
too.

Definition 8. Given a set of strings S = {s1,..., sk} from X*, an extended po-
sition point [p1,...,pg] € Pos'(S) and o € X, we define the s-Reached Position
Point (denoted sRPPs([p1,...,pkl,)) as [p},ph, ..., p)], where Vi € [1; k], p; =

min({j |7 >piAsifjl=a} U {oo})

This idea is inducted in the TRONICEK approach [4], as he avoids the creation
of the sink state by taking in consideration the subsequence position alphabet.
Indeed, there is no transition created for the symbols non belonging to this
alphabet, that is the case for the symbols presenting transitions leading to the
sink state.

Definition 9. Given a set of strings S = {s1,...,sx} from X*, we define
the Subsequence Automaton for the strings si,...,sp as the 5-tuple SA(S) =
(Q,%,0,Z,F), where:

Q="Pos'(S), IT={q¢k}, 6=sRPPs and F = Pos'(S)\{¢"}

Such a SA accepts a string ¢ if and only if ¢ € (J,.g Sub(s). We illustrate in
Fig.[3 an example of sA for the same strings than the previous example: s; = aba,
S$o = aabb and s3 = aab.

2.4 The Common Subsequence Automaton

Given a set of strings S, a string ¢ is a common subsequence of § if and only
if ¢ is a subsequence of every string from S.

According to the definition of the set Pos’(S) of extended position point,
the value co matches the situation which the currently processed symbol of the



Fig. 3. sa({aba, aabb, aab}), where gy := [0,0,0], ¢1 := [1,1,1], g2 := [2,3,3],
q3 = [37272]7 qq = [007373]7 qs = [3700700]7 q6 : [00,4, OO] and oo =
[00, 00, o¢].

alphabet doesn’t occur. So, given a state ¢ in SA(S) and « € X, such that oo
occurs in sSRPPs(q,«), for any string ¢ spelled out by a path from the initial
state to the state ¢ in SA(S), the string ¢ « is not a subsequence of at least one
string from S. Thus, the CSA can be obviously deduced from the SA by pruning
all states associated to a position point which contains the value co.

We can deduce the CSA from the DASG too by deriving the common subse-
quence position alphabet from definition

Definition 10. Given a set of strings S = {s1,..., s} from X* and a position
point [p1,...,pr] € Pos(S), we define the common subsequence position alphabet
as the subset of X composed of all symbols which are simultaneously contained
in texts s;[p; + 1..n;] for alli € [1;k]. We denote this set by:

k
Zs(lprs--mkl) = (Ha € T[35 € [pi+ Lini, s:[5] = a}.

i=1

We need to define what is a reachable position, as for DASG or SA.

Definition 11. Given a set of strings S = {si1,...,8x} from X*, a position
point [p1,...,pr] € Pos(S) and a € Eg([pl, .. ,pk]), we define the C-Reached
Position Point (denoted cRPPs([p1,...,pk],a)) as [p}.ph,...,D}], where Vi €
(154, py = min({j 1) > pi Asilj] = a}).

From now, we can formally define the Common Subsequence Automaton.
Definition 12. Given a set of strings S = {s1,...,8,} from X*, we define

the Common Subsequence Automaton for the strings si,...,sp as the b-tuple
CsA(S) = (Q, X,0,Z,F), where:

Q = Pos(S), 7 ={q¢}, 0 = cRPPs and F = Pos(S)

Such a CSA accepts a string ¢ if and only if t € [, Sub(s). We illustrate
in Fig. [4] an example of CSA for the same strings than the previous examples:
s1 = aba, so = aabb and s3 = aab.
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Fig. 4. csa({aba, aabb,aab}), where qo := [0,0,0], ¢1 := [1,1,1], g2 := [2,3,3]
and g3 := [3,2,2].

3 The Constrained Subsequence Automaton

In this section, we present the definition of the CSA, on the basis of the
previously defined structure. We first introduce the quorum constraint notion
and then, we show that a partial ordered relationship exists between the states of
the csA,. We end this section by giving an algorithm for building this structure.

3.1 Defining the csaA, for a Set of Strings

Informally, the quorum constraint ¢ is satisfy for a string ¢ if it is a subse-
quence of at least ¢ texts of a set of texts S. That means that given an automaton
accepting all and only the subsequences of a set S satisfying a quorum constraint
q, each path from the initial state to any state of the automaton spells out a
subsequence of at least ¢ strings from S. Thus, according to the definition [T
there is at least ¢ positions in the position point that are not oc.

Definition 13. Given a set of k strings S and an integer q such that 1 <
q < k, we says that a position point [p1,...,pr] € Pos'(S) satisfies the quorum
constraint q if and only if

’{mIpi < OO}’ > q,

and then, we say that [p1,...,px| i a g-satisfying position point. We denote the
subset of all states from Pos'(S) that are q-satisfying by Pos,(S).

In the following, since the states of the automata previously described are
directly associated to the position points, we say that a state is g-satisfying if its
corresponding position point is in Pos;(S). Finally, by considering the sa of a
set of strings S, we now establish an important property from which we deduce
the definition of the csa,(S).

Proposition 1. Given a set of k strings S, its SA and an integer q such that
1 < g < k, each path from the initial state of SA(S) to a g-satisfying state
only goes through q-satisfying states. This is due to the fact that from a state
which doesn’t satisfy the constraint quorum q, there is no path that leads to a
q-satisfying state.



Proof. Let [p1,...,px] a position point which doesn’t satisfy the constraint quo-
rum. That means that the text ¢ spelled out by the path from the state ¢f to the
state [p1,...,px] is not a subsequence of any strings from S. Now, suppose that
there is a path from [p1,...,ps] that leads to a g¢-satisfying state [pf,...,pL],
which labeled the text #’. That would mean the text ¢’ is a subsequence of a
string from S. Since if a text u is a subsequence of a string v, all the subsequences
of u are also subsequences of v, that implies that each subsequence of tt' is a
subsequence of a string from S. By definition, ¢ is a subsequence of tt', so the
state [p],...,p'k] couldn’t exist. O

This property directly allows to conclude that if a path reaches a state which
is not g-satisfying, then all paths from this state necessary leads to the sink state
g, without going through a g-satisfying state.

Definition 14. Given a set of strings S = {s1,...,sk} from X*, we define the
Constrained Subsequence Automaton for the strings si, ..., S and quorum q as
the 5-tuple Csay(S) = (Q, X, 6,7, F), where:

Q=Pos'(S), ZI={qf}, 6=sRPPs and F = Pos,(S)

Finally, one can easily observe that for a set of k strings S, setting the
quorum constraint to ¢ = 1 makes CSA1(S) being SA(S) and setting the quorum
constraint ¢ = k makes CSA(S) being CSA(S).

3.2 Building the csa, for a Set of Strings

Since we provide the definition of the csA, for a set of strings. We give in here
a quasi left-to-right algorithm (see introduction) which, given a set of strings and
a quorum constraint ¢, build the corresponding Csa,.

First of all, since the csa, only differs from the sA with the set of the final
states, one can think about using the SA construction algorithm [5] and only
modify the set of final states during the construction. We quickly discuss this
method in the conclusion. It is obvious that property/1 allows to consider only the
final states of the csa,. Thus we only have to build them. We base our approach
on the DASG (extended version) construction’. We first need to describe the
BuiLp EXTENDED PoOSITION POINT method in order to return an extended
position point from Pos; (S) and not only from Pos(S) (see algorithm|1.1). If the
algorithm returns the special point qg, that means the point given by function
sRPP is not g-satisfying.

Well, we slightly modify the BUILD DASG algorithm in the following way:

— we only create the reachable states which are g-satisfying;
— we process each state in order to re-label them (more efficiency than setting
the position point as label) as soon as possible.

! We do not provide the original algorithms, but we use dark red color —or grey inB&w
mode — to illustrates the differences from these. They are given in [4].
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Algorithm 1.1. BuiLb  EXTENDED PoOSITION POINT

(Inputs: S={s1,...,s} % Set of strings. %
q € [1;k] % Quorum constraint. %
pp = [p1,...,pr] € Pos'(S) % Extended position point. %
a€ X % Current processed symbol. %
Output: pp’ = [p!,...,pr] € Posy(S) % Extended position point. %
Variables: ¢ % Sequence number. %
found % Boolean. %
ept % Constraint satisfaction counter. %
Begin
cpt «— 0
For i«—1 To k Do
pi < min ({j |j > pi A si[j] = a}U{oo})
If p) # oo Then
cpt «+— cpt + 1
End If
End For
If cpt < quorum Then
o' — a5
End If
End
2

The first item requires only to count the number of non-co values in potential
position points and to directly remove it if it is not g-satisfying. The second item
is subtler and we use a partial order relationship between the states of the csa,
to integrate it. The following property establishes this partial order relationship.
It is an extension of the relationship induced by the transition function § and is
true for either the DASG or the SA or the CsA.

Proposition 2. Given a set of k strings S, there is a partial order relation-
ship between the extended position points from Pos'(S) induced by the transi-
tion function sRPPs. Let two extended position points pp = [p1,...,pr] and
pp’ = [p},...,p'k]. We say that the state pp is lower or equal to the state pp’
if and only if for all [i € [1;k], p; < pi. We denote this relation by pp < pp’.
Moreover, if pp # pp' (i.e., 3i € [1; k] such that p; < p) , we say that the state
pp is lower than pp’ and we denote this relationship by pp < pp’. Finally, given a
set of extended position points PP € Pos'(S), we denote by min(PP) the subset
of PP such that:

min(PP) = {pp|#pp’ € PP,pp’ < pp}.
We say that min(PP) is the set of all the minimal states of PP.

It is obvious that if we consider two states ¢ and ¢’ such that there exists a
path from ¢ that reaches ¢/, we necessary observe that ¢ < ¢/, and if q is not

[Pocs -+ Pools ¢ < ¢
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Algorithm 1.2. BUILD _ Csa,

(Inputs: S % Set of k strings {si,...,sx}. %
q € [1;k] % Quorum constraint. %
Output: csa.(S) % Acyclic and deterministic automaton %
% accepting exactly all subsequences of at %
% least q strings from S. %
Variables: ac€ X % Symbol of the alphabet. %
Queue % Set of extended position points to process. %
pp,pp’ % Extended position points. %
id % State id (for space optimization). %
Begin
Queue — {q}
id 0
While Queue # ) Do
Let pp be a minimal extended position point from Queue.
Add state pp, rename it as id and mark it as final.
For Each o € X Do
pp’ < BuiLb _EXTENDED _PosiTioN PoINT(S, ¢, pp, «)
If pp' # ¢ Then
Queue «— Queue U {pp'}
Add a transition labeled by a from id to pp .
End If
End For
id «—id+1
Queue — Queue \ {pp}
End While
End

We illustrate in Fig.[5 an complete example of CSA, construction for the same
strings than the previous examples: s; = aba, so = aabb, s3 = aab and with a
quorum constraint ¢ = 2.

If we consider the space complexity results provided in [8], since the Ccsa,
has at least as many states than the CsA, it is obvious that the number of states

of the csa, is T' = 2 ((k+n17;’“k'> The time complexity is trivially the same as

the DASG construction algorithm: O (T |X| k¢) where ¢ is the cost charged for
finding the position p} from s;[p;..n;]. This cost is O(1) by using a | 2| x n matrix
for each sequence (filled in a preprocessing step).

4 Some Applications

Recall that the Lcs, problem can be state as following: given a set of texts
S ={s1,...,s:} and an integer ¢ such that 1 < ¢ < k, the problem is to find
the longest common subsequence of at least ¢ strings from S. This issue can
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Fig. 5. csas({aba, aabb, aab}), where qo := [0,0,0], ¢1 := [1,1,1], g2 := [2,3, 3],
qs ‘= [37272] and q4 = [007373}

easily be solved by constructing the ¢sa,(S) and by looking at the longest path
starting from the initial state that leads to a final state.

The SDS, problem can be state as following: given two sets of texts S =
{s1,...,8} and T = {t1,...,t;} and an integer ¢ such that 1 < ¢ < k, the
problem is to find the shortest common subsequence of at least ¢ strings from
S, which is not a subsequence of any text from 7. This problem can be achieved
using on the first hand the csa,(S) and on the second hand the DASG(T). Ac-
tually, the shortest distinguishing subsequence is the shortest sequence accepted
by CSA4(S), which is rejected by DASG(T).

This last issue is a direct extension of the previous one. It can be state as
following: given two sets of texts & = {s1,...,sx} and 7 = {t1,...,t¢} and two
integers ¢ and ¢o such that 1 < ¢; < k and 1 < ¢ < ¥, the problem is to find
the shortest common subsequence of at least ¢ strings from S, which is not a
subsequence of at least g texts from 7. The SDS, problem is a special case of
the SDSg, 4., Where ¢; = g and g2 = . For solve this problem, we need to build
the ¢say, (S) and the ¢SAy, (7). Thus, a sequence w is a solution of SDSy, 4,
if it is the shortest sequence accepted by CSA,, (S) and rejected by Csag, (7).
Effectively, in the special case where g = 1, the ¢SA1(7) is the SA(7), which
accepts exactly the same language than the DASG(7).



5 Conclusion

Our first motivation was to carry out an overview of the various structures
that accepts subsequences of a set of strings and to illustrate their similarities
and their differences. Our second motivation, by introducing the csa,, is justified
by our need to look for subsequences, which occurs or doesn’t in a subset of
input texts. HOSHINO & al. [5] provide a left-to-right algorithm for the sA(S)
construction. This algorithm could be used in order to build the ¢sa,(S), but
since the sequences from S are processed one by one, pruning the non g-satisfying
states can’t be operated before k — ¢+ 1 strings have been done. Actually, a left-
to-right solution based on the SA construction can be considered to build an
approximated CSA, on the basis of a heuristic pruning strategy. Unfortunately,
efficient heuristics are closely correlated to the distribution lows of the symbols
in the texts. We aim to investigate the formal properties of the cSA, in order to
develop an approximated structure, as (for example) a probabilistic automaton.
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