Robust numerical algorithms based on analytic approximation for the solution of inverse problems in annular domains

Abstract : We consider the Cauchy problem of recovering both Neumann and Dirichlet data on the inner part of the boundary of an annular domain, from measurements of a harmonic function on some part of the outer boundary. The ultimate goal is to compute the impedance or Robin coefficient, which is the quotient of these extended data, on the inner boundary. This impedance gives information on the location and extent of a possible corroded area in the internal wall of the domain. Using tools from complex analysis and best approximation in Hardy classes, we present constructive and robust identification schemes validated by a thorough numerical study.
Type de document :
Rapport
[Research Report] RR-6456, INRIA. 2008
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00258512
Contributeur : Rapport de Recherche Inria <>
Soumis le : jeudi 28 février 2008 - 11:57:44
Dernière modification le : vendredi 12 janvier 2018 - 01:51:45
Document(s) archivé(s) le : mardi 21 septembre 2010 - 15:54:15

Fichiers

RR-6456.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00258512, version 2

Citation

Mohamed Jaoua, Juliette Leblond, Moncef Mahjoub, Jonathan Partington. Robust numerical algorithms based on analytic approximation for the solution of inverse problems in annular domains. [Research Report] RR-6456, INRIA. 2008. 〈inria-00258512v2〉

Partager

Métriques

Consultations de la notice

559

Téléchargements de fichiers

292