A FastSLAM algorithm based on the Unscented Filtering with adaptive selective resampling

Abstract : A FastSLAM approach to the SLAM problem is considered in this paper. An improvement to the classical FastSLAM algorithm has been obtained by replacing the Extended Kalman Filters used in the prediction step and in the feature update with Unscented Kalman Filters and by introducing an adaptive selective resampling. The simulations confirm the effectiveness of the proposed modifications.
Type de document :
Communication dans un congrès
6th International Conference on Field and Service Robotics - FSR 2007, Jul 2007, Chamonix, France. Springer, 42, 2007, Springer Tracts in Advanced Robotics
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00258750
Contributeur : Fabio Martinelli <>
Soumis le : lundi 25 février 2008 - 11:12:31
Dernière modification le : lundi 25 février 2008 - 19:09:19
Document(s) archivé(s) le : vendredi 28 septembre 2012 - 10:10:17

Fichier

fsr_39.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00258750, version 1

Collections

Citation

Manuel Cugliari, Francesco Martinelli. A FastSLAM algorithm based on the Unscented Filtering with adaptive selective resampling. 6th International Conference on Field and Service Robotics - FSR 2007, Jul 2007, Chamonix, France. Springer, 42, 2007, Springer Tracts in Advanced Robotics. 〈inria-00258750〉

Partager

Métriques

Consultations de la notice

125

Téléchargements de fichiers

322