
HAL Id: inria-00259059
https://inria.hal.science/inria-00259059

Submitted on 26 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Monitoring of Peer-to-Peer Systems (demo)
Serge Abiteboul, Bogdan Marinoiu, Pierre Bourhis

To cite this version:
Serge Abiteboul, Bogdan Marinoiu, Pierre Bourhis. Distributed Monitoring of Peer-to-Peer Systems
(demo). International Conference on Data Engineering, IEEE, Apr 2008, Cancun, Mexico. �inria-
00259059�

https://inria.hal.science/inria-00259059
https://hal.archives-ouvertes.fr

Distributed Monitoring of Peer-to-Peer Systems
Serge Abiteboul #, Bogdan Marinoiu #, Pierre Bourhis #∗

#INRIA Orsay and University Paris Sud
4, rue Jacques Monod
Orsay 91893, France

∗ENS Cachan
61, avenue du President Wilson

Cachan 94235, France

firstname.lastname@inria.fr

Abstract— Observing highly dynamic Peer-to-Peer systems is
essential for many applications such as fault management or
business processing. We demonstrate P2PMonitor, a P2P system
for monitoring such systems. Alerters deployed on the monitored
peers are designed to detect particular kinds of local events.
They generate streams of XML data that form the primary
sources of information for P2PMonitor. The core of the system is
composed of processing components implementing the operators
of an algebra over data streams.

From a user viewpoint, monitoring a P2P system can be as
simple as querying an XML document. The document is an
ActiveXML document that aggregates a (possibly very large)
number of streams generated by alerters on the monitored peers.
Behind the scene, P2PMonitor compiles the monitoring query
into a distributed monitoring plan, deploys alerters and stream
algebra processors and issues notifications that are sent to users.

The system functionalities are demonstrated by simulating the
supply chain of a large company.

I. INTRODUCTION

Peer-to-peer systems gained popularity over the last decade
by providing support for community content sharing and for
loosely coupled distributed applications. A P2P system is a
highly dynamic environment with participants acting indepen-
dently by exchanging information and updating their data. In
practice, it is difficult to observe this type of systems and to
gather information about their functioning. Observation turns
out to be essential in many contexts, e.g., error management,
statistics gathering, workflow control, Web surveillance.

In this demonstration, we present a distributed system whose
purpose is to monitor P2P systems. Our system, called P2P
Monitor (P2PM for short), is itself a P2P system. So, two
P2P systems coexist: the monitored one (possibly several
monitored systems) and the monitor (namely P2PM). Clearly,
the same machine may participate in both kinds of P2P
networks.

We assume here that the monitored systems are willing to
cooperate by accepting to run locally software modules, called
alerters. Alerters are dedicated to the different kinds of events
one wants to detect. They produce some information that is
represented as XML data streams. The processing of these
streams is performed by operators of an algebra over XML

streams derived from the one presented in [4]. The operators
of the algebra, called stream processors, are distributed over
the peers of the monitoring system. Their results are also
XML streams. Each stream is physically implemented as a
continuous service that produces a sequence of asynchronous
messages from a sender to a set of receivers. A stream at one
peer is available to other peers as a channel to which they can
subscribe.

The core of monitoring in P2PM is performed by processing
queries over active documents. An (ActiveXML [6]) active
document is a tree document with some special nodes repre-
senting functions. Such a function, once activated, causes the
document to subscribe to an XML stream, so to receive a flow
of XML data. Each time a new element appears on a stream,
one copy of it is received by the active document, which
integrates it as a sibling of the function node. An example of an
active document is provided in Section III, Figure 6. (Function
nodes are marked with ”!”). Now consider a query over an
active document. For now, the system supports monotone
queries, i.e. appending data to the document possibly impli-
cates new data in the output of the query, without dropping
old data. So, each new piece of information on an input stream
possibly generates a new result for the query. Thus a query also
produces an XML stream. Using an incremental algorithm,
these queries are processed very efficiently. In particular, a
sophisticate form of garbage collection allows removing no
more relevant data from active documents and unsubscribing
to streams whose data could not impact the query output in
the future.

By using active documents, a user is able to specify in
a simple way, e.g. with an XQuery query, some complex
monitoring, since an active document possibly aggregates
dozens or hundreds of streams coming from many different
peers. Moreover, these streams may be specified intentionally
(e.g., as the result of some query evaluated on a different
peer, whose result evolves over time). The system compiles
a query into a monitoring plan using subscriptions (in the
P2PML language). These P2PML subscriptions trigger the
deployment of alerters and stream processors across different

WS Alerter Update Alerter Web Page Alerter RSS Alerter

Web crawler RSS Reader

RSS

DB
XML or
HTML

 DB

(Active)XML data streams

Stream

Processor
 Filter

Group

Duplicates

Removal

 Join
 Union

Reporter

(Active)XML data stream

E-mail RSS

Channel Web Page

Publisher

Subscription

Manager

Subscription

Databases

Scheduler
Read commands

(Active)XML data streams

from peers

RSS, Webpage

E-mails

Channels

(AXML streams)

Stream

history

Subscriptions

received from peers

Subscriptions

sent to peers

Fig. 1. Stream Processing Subsystem

peers. Resulting streams are published by a publisher based on
the user’s demands as continuous services (channels to which
other peers may subscribe), RSS feeds, emails, Web pages
or stored in XML databases maintained by the monitoring
system. Of course, it is also possible for a user to specify a
subscription directly in P2PML.

Related Work

As far as we know, the processing of continuous queries
over active documents (with streams) is a new topic. Previous
works over active documents mostly considered non-stream
functions: functions that, for each call, return an answer
and terminate [6]. Most notably, query processing on active
documents (with non-stream functions) is considered in [3].
To some extend, our work may be viewed as the incremen-
tal maintenance of the problem they study. The domain of
stream processing has recently been very active. For instance,
STREAM [12] executes continuous queries over multiple data
streams and uses an SQL-like subscription language. Aurora
[2], a centralized system and its distributed successor Borealis
[1] are also stream processing engines. The StreamGlobe [11]
P2P system is specialized in efficiently querying data streams
represented in XML using XQuery.

Demonstration

We demonstrate our system by monitoring a simulator of a
distributed business process described in [10] and summarized
in Section III of this paper. We show how to provide a
distributed supervisor capable of monitoring and regulating
the business process. We also show the simplicity of use of
such a system as well as inherent properties of our distributed
monitoring system: efficiency in terms of load balancing on
peers, transparency for the user (the system is the one deciding
where to place operators), savings on network bandwidth by

1. Compiler

Query (in XQuery)

adapted for active

documents

Active document

(in ActiveXML)

2. Evaluator

Algebraic

Representation

 Subscriptions to

P2PMonitor SP

 User Query

3. Subscriptions

 Generator

 P2PMonitor’s

 Stream Processing

 Subsystem

Stream of results

Fig. 2. Query Processing Subsystem

for $order in channel(gOs@localhost)
where $order//status ="NotAv"
return
<alert type="stock">

{$order//orderId}
</alert>

by
publish as channel "blockedOrders"

Fig. 3. A simple P2PML subscription

pushing filters closer to the sources, savings on storage and
on CPU due to incremental query evaluation.

II. THE MONITORING SYSTEM

Consider the P2PML subscription in Figure 3. Observe that
the language is similar to XQuery. Main syntactic differences
are the use of the keyword channel and of the publish clause.
The first one designates the data stream sources, whereas the
second specifies what to do with the resulting stream.

A simplified model of the stream processing architecture
of P2PM is presented in Figure 1. A peer may host one or
more alerters, stream processors and publishers. Besides such
components that produce and process streams, a peer may
host a subscription manager that is in charge of managing
subscriptions, and in particular of supporting a subscription
catalogue. Any peer may decide to reuse the stream of results
of an existing subscription or to issue a new one. In case
of a new subscription, the subscription manager is in charge
of detecting (in a “Bits-and-pieces” catalogue) which parts
of that subscription are already supported somewhere, and
based on that, generates a monitoring algebraic plan for the
new subscription and deploys it. In particular, the subscription

Fig. 4. Graphical user interface snapshot

manager is in charge of optimizing the algebraic plans, e.g.
by pushing processing close to the data sources.

P2PM already supports the surveillance of various systems
as described next. An WS Alerter intercepts inbound-outbound
Web service calls and produces alerts including the SOAP
envelopes expended with annotations such as timestamps
and caller/called entities’ identifiers (DNS/IP). An ActiveXML
Alerter detects updates to the ActiveXML peer repository.
A WebPage Alerter detects changes in XML or XHTML
pages by comparing their snapshots. The alert may provide
(if desired) the delta between the two pages. (This alerter uses
an auxiliary Web crawler for the surveillance of collections
of Web pages.) An RSS Alerter detects changes in an RSS
feed by comparing snapshots. With RSS, the alerts have more
semantics than with arbitrary XML pages: e.g., add entry,
remove entry and modify entry.

The streams generated by these alerters are processed by
algebraic stream processors that operate on one or more input
XML streams (local or not) and produce output XML streams.
Web services are used for communications between peers.
Some operators are memory-less, e.g., filter or fusion. Others
require information about (a window of) the stream history,
e.g., join, aggregation, duplicate elimination. This history
information is stored in an eXist [8] XML database. Operators
such as join may use some application dependent function, e.g.
a similarity function.

To be able to support heavy streams, an essential aspect
of the work is performance. In particular, we filter streams
by combining two kinds of filters. Some simple queries can
be performed on-line basically at the speed of receiving this
stream using some automata in the spirit of [7]. For more

 supplier

 revolver

 plant

 dispatch

 WWW customer bank

Fig. 5. Architecture of the example

complex queries or when the streams return active documents,
we can use the query processor over active documents already
described in introduction and illustrated in Figure 2.

P2PM has been implemented in Java as a Web application
using support of Axis2 Web services engine [5]. It uses JavaCC
[9] for generating P2PML parsers. An applet-based GUI (see
a fragment of a snapshot in Figure 4) allows visualizing in
real-time the deployed subscriptions on a peer and the state of
the deployed stream processors at the level of a peer: how they
are interconnected, the received/generated data on streams etc.
The GUI also allows specifying new subscriptions in P2PML
and placing queries on ActiveXML documents.

III. DEMONSTRATION

We demonstrate the system with a distributed application
simulating the supply chain of a computer manufacturer,
namely Dell, as described in [10] and illustrated in Figure
5. The manufacturing system processes continuous flows of
orders and has to cope with issues such as distant suppliers.
The main modules are as follows. WWW interface is the Web
site, in charge of processing forms completed by customers
and of generating orders to the dispatcher. For a given order,
Dispatch selects a plant close to the customer to delegate
order processing. Each Plant processes an order upward, by
forwarding orders for different parts to the relevant revolvers.
It processes an order downward, by combining the parts
that are received into objects (e.g. computers) that are then
physically sent to the customers. Revolver (or warehouse) is a
platform acting as a buffer between suppliers and Dell’s plants,
performing flow desynchronization; it works in a predictive
mode based on statistical information maintained by the super-

Fig. 6. An active document with streams

visor (our monitoring system). Supplier corresponds to Dell’s
suppliers. They rarely ship components in large quantities to
revolvers, so there is an issue of stock management. Finally,
Bank is a third party in charge of checking the validity of
credit card payments.

The monitoring system is in charge of the surveillance of
the entire process. A large number of plants, revolvers as well
as banks are involved in the process. Each of these involved
participants publishes notifications, e.g., when they receive or
submit orders. Consider for instance the supervisor’s document
in Figure 6. A !gOs function (an abbreviation for getOrders)
is a function denoting the stream of orders issued by the
dispatcher, e.g. !gOs@d, a plant, e.g. !gOs@p2 or a revolver,
e.g. !gOs@rev3. Figure 6 shows the order 129 arriving at the
dispatcher, then forwarded to plant p2. The order’s object has
not yet been delivered (status NotDel) because rev3 blocks the
fabrication process since a component is not available (status
NotAv). The example has been simplified: there is only one
type of products to be ordered and one plant uses a single
revolver, e.g. plant p2 uses revolver rev3.

As a scenario, we show how different peers are kept up-
to-date of the progress of some Web orders. We also show
how a customer is informed of the processing of her on-going
orders. In another scenario, a plant is warned of revolvers low
stocks to avoid ordering some part to a revolver that is soon
going to be out of stock.

Let us suppose a supervisor wants to know details about
orders blocked at some revolver. The details about all the
orders are available on the dispatcher’s gOs channel. To see the
blocked orders, one can directly inspect the streams originating
at the revolvers.

A subscription (expressed in XQuery) is initially sent to
the user’s computer P2PM entity, called here the supervisor
peer, which could simply wait for data to accumulate in its
active document (Figure 6) and repeat the query evaluation

on each update. This is non-incremental and centralized query
evaluation.

In the demonstration, we will see how our system pushes
filters close to the sources, i.e. the revolvers that publish each
a stream of alerts for blocked orders as channel blockedOrders
(a subscription as in Figure 3 is sent to each revolver). The
supervisor simply subscribes to channels blockedOrders, as
well as to the dispatcher’s gOs channel for obtaining orders’
details. A join of these streams is finally done at the supervisor.

REFERENCES

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack,
J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul,
Y. Xing, and S. B. Zdonik. The design of the Borealis stream processing
engine. In CIDR, pages 277–289, 2005.

[2] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. B. Zdonik. Aurora: a new model
and architecture for data stream management. VLDB J., 12(2):120–139,
2003.

[3] Serge Abiteboul, Omar Benjelloun, Bogdan Cautis, Ioana Manolescu,
Tova Milo, and Nicoleta Preda. Lazy query evaluation for Active XML.
In SIGMOD Conference, pages 227–238, 2004.

[4] Serge Abiteboul, Ioana Manolescu, and Emanuel Taropa. A framework
for distributed XML data management. In EDBT, pages 1049–1058,
2006.

[5] http://ws.apache.org/axis2/.
[6] http://www.activexml.net.
[7] Y. Diao, P. M. Fischer, M. J. Franklin, and R. To. Yfilter: Efficient and

scalable filtering of XML documents. In ICDE, pages 341–, 2002.
[8] http://exist.sourceforge.net/.
[9] https://javacc.dev.java.net/.

[10] Roman Kapuscinski, Rachel Q. Zhang, Paul Carbonneau, Robert Moore,
and Bill Reeves. Inventory decisions in Dell’s supply chain. Interfaces,
34(3):191–205, 2004.

[11] R. Kuntschke, B. Stegmaier, A. Kemper, and A. Reiser. Streamglobe:
Processing and sharing Data Streams in Grid-Based P2P infrastructures.
In VLDB, pages 1259–1262, 2005.

[12] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar,
G. Singh Manku, C. Olston, J. Rosenstein, and R. Varma. Query
processing, approximation, and resource management in a data stream
management system. In CIDR, 2003.

