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Abstract
In this paper, we develop algorithmic datalog-
based foundations for the incremental processing
of tree-pattern queries over active documents, i.e.
document with incoming streams of data. We de-
�ne query satis�ability for such documents based
on a logic with 3-values: �true�, �false forever�,
and �false for now�. Also, given an active docu-
ment and a query, part of the document (and in
particular, some incoming streams) may become
irrelevant for the query of interest. We introduce
an incremental algorithm for detecting such use-
less data and streams, essential for implementing
garbage collection. We also provide complexity
analysis for the problems we study.

Keywords XML, active XML, active docu-
ment, incremental evaluation, view maintenance,
tree-pattern query, datalog, monitoring, stream
processing

1 Introduction
One of the essential components of Internet data
management is the processing of (possibly very
intensive) streams of data exchanged by data
sources. In the spirit of ActiveXML [3], such
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processing is modeled here by a query posed to
an active document, i.e., to a document that
evolves by receiving incoming �ows of XML data.
The content of the document keeps changing
monotonously because of the incoming data. The
query (a tree-pattern query) keeps producing an
XML �ow as output. In this paper, we develop
algorithmic datalog-based foundations for such
an incremental query processing.
Our motivations come in particular from two

very important settings:

Distributed monitoring When monitoring
distributed applications, the monitored
systems generate streams of alerts and
the main role of the monitoring system
is to process queries over these streams.
The streams of alerts can be collected
into an (active) document. The moni-
toring problem becomes an instance of
the view maintenance problem over active
documents. The role of the system is to
incrementally maintain the view query.

Distributed query processing As stressed
for instance in [5], in distributed query
processing, the core local computation
typically consists in receiving �ows of data
and evaluating a query over them.

To see an example of monitoring, suppose that
we are interested in detecting the electronic or-
ders such that delivery is performed more that t
seconds after receiving payment. The monitor-
ing system receives alerts for the payment (from



the banking system) and the delivery (from the
warehouse system), which will be collected into
an (active) document. A join based on order
Id followed by a selection detects the slow de-
liveries. To see an example of distributed query
processing, suppose that the query processor is
performing a Holistic Twig join between posting
lists distributed in a DHT. It receives streams of
postings from di�erent peers and performs a join
over these streams.

Contribution We �rst consider Boolean tree-
pattern queries over active documents including
input streams. It is known that the evalua-
tion of such queries can be expressed in monadic
recursion-free datalog, so that it can be per-
formed in linear time. A di�erence in our set-
ting is that although the answer to the query (or
to a subquery) is false, it may be the case that
the query may become true in the future. So,
we use 3-valued logic. In a temporal logic style,
a fact is either true, false for now but with a
chance to become true (if some appropriate data
is received), or false forever. We show how to
perform in linear-time this evaluation using a 3-
valued datalog program and how to maintain it
incrementally.
We extend the technique to non-Boolean tree-

pattern queries, and to queries with join and dis-
junction. The algorithm runs in ptime and can
also use all the incremental datalog technology.
We should observe that with very little more the
problem becomes hard. This is the case, for in-
stance, if some queries are allowed to be non-
stream (i.e. classical functions that return a re-
sult and terminate) or if we introduce typing for
the documents.
We also consider some form of (stream)

garbage collection. To illustrate, suppose that
the document consists of a collection of trees,
one for each manager of a company, and that we
want to output the name of managers such that
their corresponding trees verify a certain pattern
(e.g., managers that have already produced the
yearly reports for all the projects they manage).

As soon as the tree of a manager satis�es the
pattern, we can output her name and �garbage
collect� the corresponding tree that became use-
less. In particular, it is not necessary to continue
processing the streams that are coming in that
tree. Similarly, if the tree corresponding to a par-
ticular employee has no chance to ever meet the
conditions, it can also be garbage-collected. We
show that the problem is hard even in the sim-
plest setting of Boolean-queries. We propose a
technique that computes incrementally the nodes
(so the functions that can be garbage-collected).
This is also based on the 3-valued logic already
mentioned.
The paper is organized as follows. The model

is presented in Section 2. Boolean queries are
considered in Section 3 and more complex queries
in Section 4. The usefulness of functions is the
topic of Section 5. The last section is a conclu-
sion.

2 Model
In this section, we formalize the data structure,
i.e., active documents in the style of ActiveXML
[3], and the queries, namely tree-pattern queries
with joins, that are considered in the paper.
We assume the existence of some in�nite al-

phabets I of node identi�ers, L of labels, N of
document names and F of function names. We do
not distinguish here between data and labels, i.e.,
our notion of label is meant to capture the no-
tions of XML element label and XML PCDATA.
We use the symbols n,m, p for node identi�ers,
a, b, c for labels, !f, !g, !h, for function names, d
for document names, possibly with sub and su-
perscripts.

De�nition 1 (Active data and document)
An (active) tree is a pair (t, λ) where (1) t is a
binary relation that is a �nite tree1 with nodes
nodes(t) ⊂ I ; (2) a labeling function λ over
nodes(t) with values in L ∪ F; and (3) only

1The trees that we consider here are unordered and
unbounded.



leaves are labeled by values in F. An (active)
forest is a set of (active) trees. An (active)
document is an (active) tree whose root is in L.

The trees I, t, J in Figure 1 are examples of
active trees. A subtlety is the distinction be-
tween an active tree and an active document. A
tree may yield a forest (since a function call may
return a stream of trees) whereas a document al-
ways remains a single tree.
Two active trees (t, λ), (t′, λ′) are isomorphic

if they di�er in their node identi�ers only. The
two trees are interchangeable.
If λ(n) is in L, the node is called a data node

whereas if it is in F, it is called a function node
(service call in ActiveXML terminology). Such
nodes represent subscriptions to Web services
and are meant to receive some data. Note that
(3) is a restriction from ActiveXML, where trees
underneath function calls denote the arguments
of the call. We assume here that the calls have
been performed and a symbol !f is just meant as
the place holder for receiving the result of this
call.
A tree without any function call is called an

XML tree (by opposition to an ActiveXML tree).
A function returning only such trees is called an
XML function. To simplify, we will mostly focus
on XML functions here.

De�nition 2 (Schema and instance) A
schema (S, F, τ,Σ) (or S when the other com-
ponents are understood) consists of a �nite
set S of document names, a �nite set F of
function names, a typing τ (for the documents
and functions) and a set Σ of constraints. Let
(S, F ) be a schema. An instance I of (S, F ) is
a function that maps each d in S to a document
I(d), such that each function name occurring in
I(d) is in F .

In this paper, we will (mostly) ignore the types
and the constraints. When S consists of a single
document name d, we talk about the schema d.
A function in such an active document brings

in updates to the document. In the present pa-

per, we consider that the incoming �ow of up-
dates consists only of insertions. So, the con-
tent of the document is monotonously increasing.
Clearly, it would be also interesting to consider
non monotone changes. This is left for future
research.
An update for (S, F ) is an expression add(!f, α)

where !f ∈ F and α is a data tree with functions
only in F . Let I be an instance over (S, F ) and
add(!f, α) an update of (S, F ). When the result
α does not contain any function node, the update
is called an XML update. The result of applying
add(!f, α) to I, denoted add(!f, α)(I) is the in-
stance obtained from I by adding, for each node
n labeled !f , a fresh copy2 hn(α) of α, as a sibling
of n. The instance obtained from I by applying
a sequence w of updates is denoted w(I).
For instance, for I, t, J as in Figure 1, J =

add(!f, t)(I).
We consider monotone queries over a single

document, more precisely, tree-pattern queries.
A generalization to multi-document queries may
be found in [2].

De�nition 3 (Tree-pattern queries) A tree-
pattern query q is an expression (E/, E//, λ, π)
where:

• E/, E// are �nite, disjoint subsets of I × I,
and (E/ ∪ E//) is a tree; and

• the labeling function λ maps each node in
nodes(q) to L ∪ {∗};

• the projection π is a set of nodes in
nodes(q).

where nodes(q) is the set of nodes occurring in
E/ or E// and ∗ is a wild card that matches any
label.

If the arity of π is 0, the query is said to
be Boolean. Its result is then either the empty
set (false) or the set containing the empty tu-
ple (true). Examples of tree-pattern queries are

2Each copy of α that is inserted is an active tree iso-
morphic to α with pairwise disjoint nodes and nodes dis-
joint from the nodes of I.
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Figure 1: Example for active trees and updates

given in Figure 2. The nodes whose labels are
requested in the result are marked with a �+�
and the edges in E// are indicated by || on top of
the target node. Query q1 and q2 are examples
of Boolean queries whereas the result of q3 is a
binary relation.
The semantics of queries is de�ned as follows.

De�nition 4 (Valuation and result) Let
q = (E/, E//, λ, π) be a tree-pattern query and
(t′, λ′) a document. A valuation ν (from q to
(t′, λ′)) is a mapping from nodes(q) to nodes(t)
satisfying the following properties:

• Root-preserving: ν(root(q)) = root(t).

• Label-preserving: For each p ∈ nodes(q),
λ(p) = ∗ or λ(p) = λ′(ν(p)).

• Parent-preserving. For each (p, p′) ∈ E/,
ν(p) is a parent of ν(p′) in t.

• Descendant-preserving. For each (p, p′) ∈
E//, ν(p) is an ancestor of ν(p′) in t.

The result q(t, λ) is the relation {λ′(ν(π)) |
ν a valuation}.

We say that an instance I(d) of a document
veri�es a Boolean tree-pattern query q, denoted
by I(d) |= q, if there exists a valuation from q
to I(d). Using standard logic notation, we will
denote the fact that a tuple u is in the answer by
I(d) |= q(u).

Two queries are equivalent if they yield the
same result for each document.
We will also consider disjunctions of tree-

pattern queries (denoted with ∨) with the stan-
dard obvious semantics.
In the remaining of the paper, we will use the

following notation that can be ignored for a �rst
reading of the paper.

Notation Let q be a query and p a node in q.
Then

• •p is the parent of p.

• p• is the set of the children of p.

• ⌊p⌋q is the query rooted at p.

• ⌈p⌉q is the query corresponding to the path
from the root of q to p and no other node.

And similarly for ⌊n⌋, ⌈n⌉ for a data tree t and a
node n in t.
Also //q is the query such that (i) its root is

labeled ∗ and has a single outgoing //-edge; and
(ii) the subtree rooted at the child of the root is
q.
Finally, [p]q is the query de�ned as follows:

• if the edge leading to p is in E/, then [p]q =
⌊p⌋q.

• if the edge leading to p is in E//, then [p]q =
⌊p⌋q ∨ //(⌊p⌋q). ¤
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When Query q is understood, they are respec-
tively denoted ⌈p⌉, ⌊p⌋, [p].
For q2 as in Figure 2, ⌈c⌉q2

, ⌊c⌋q2
, //⌊c⌋q2

and
[c]q2

are shown in Figure 2.

Possibly Satis�able We will use a 3-valued
logic that permits distinguishing between what
is false forever and what is false but still has a
chance to become true in the future. In this con-
text, we want to re�ne the notion of satis�abil-
ity. An instance I(d) possibly satis�es a Boolean
query q if there exists a sequence w of updates
such that w(I) |= q. We denote it by I(d) |=⋄ q.
Because we consider only monotone queries and
add-only updates, for a Boolean query q, one of
the following three cases occurs:

true (1) I satis�es q and no matter what update
happens, it will always do. (I |= q)

maybe (1
2) I does not satisfy q but it possibly

will in the future. (I 6|= q ∧ I |=⋄ q)

false (0) I does not satisfy q and it will never
do. (I 6|= q ∧ I 6|=⋄ q)

In this 3-valued logic, a fact A is either true,
false for now and possibly true in the future
or false forever, i.e., respectively have value 1,
1
2 , 0. The semantics of logical operators in this
setting correspond to the following truth val-
ues: for X, Y in {1, 1

2 , 0}, X ∧ Y = min(X,Y ),
X ∨ Y = max(X, Y ) and ¬X = 1 − X.

We can also extend the notion of result to a
query. A tuple u is surely in the result if u ∈ q(I).
It is possibly eventually in the result if for some
ω, u ∈ q(ω(I)). As standard in logic, we will also
use the notation I(d) |=⋄ q(u), to formally state
that u is possibly eventually in the result of q.
We also extend the notion of (possible) satis�a-

bility to forests in the obvious way. In particular,
a forest (possibly) satis�es a query q if some tree
in it (possibly) satis�es q.
In Figure 3, I1 |= q, I2 6|=⋄ q and I3 |=⋄ q. For

the last one, some c value returned by f1 may
turn satis�ability of q to true.

3 Boolean query evaluation
In this section, we consider the evaluation of
Boolean tree-pattern queries as introduced in
[18]. Such queries can be evaluated in a stan-
dard manner, e.g., with a regular tree language
(see [12]) or a monadic datalog program (see [4]).
The relation between Regular Tree Languages
and Monadic Datalog is shown in [14]. Since
we are concerned here with incremental mainte-
nance, we use datalog so that we can bene�t from
the incremental datalog technology overviewed in
[4]. We will mention in conclusion how this can
be indeed implemented using an XQuery proces-
sor.
To simplify, we assume that all streams return

�static� data, i.e., data not containing function
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calls. In other words, we consider that all func-
tions are XML functions (and not ActiveXML).
We will brie�y remove this extension further.
Following the formalism described in [14],

we will assume the availability of the follow-
ing relations: base relations par(x, y) (for par-
ent), anc(x, y) (for ancestor), root(x) (for root),
laba(x) (for each label a), lab∗(x) (the union of
all laba relations). We also use a relation fun(n)
that indicates that n is a function node.
Several optimization techniques have been pro-

posed for the incremental evaluation of the Dat-
alog programs. The most important are Query-
Subquery (QSQ) presented in [22] and Magic Set
described in [10]. These techniques have been
adapted to our context. Consider a query q con-
sisting of a root and two sub-branches the left
one rooted at p1 and the right one rooted at p2.
If the left branch of the query does not match
some data, the Magic Set rewriting blocks the
evaluation of the right branch of the query. This
blocking occurs even if there is some hope that
this left branch will be matched later, when new
data will arrive. The 3-valued logic helps us over-
come this di�culty. Indeed, our technique may
be seen as an extension of Magic Set evaluation
to this 3-valued setting.
For a given query q, we construct a 3-valued

non-recursive datalog program δq that computes,
in an e�cient manner, whether the query is sat-
is�ed by the input document. For instance, for
the query q of Figure 3, the datalog program,
is given in Algorithm 1. We evaluate the query
in 3-valued logic, i.e., we evaluate the true sub-
formulas but also the 1

2 ones. For instance, δq(I1)
is 1, δq(I2) is 0; and δq(I3) is 1

2 .

As in deductive database, our algorithm as-
sumes some ordering of the query predicates,
that we did not have thus far. So let ¹ be a total
ordering of the nodes of q. A node is the benjamin
of some node p if it is the least child of p for¹.
The set of benjamins is denoted Benjamin¹(q).
When p is a child and not a benjamin, the cadet
of p is the greatest sibling of p that is less than
p. The cadet of p is denoted cadet¹(p).
Given q, Algorithm 2 (PossibleSat) constructs

a program δq. One can prove:

Theorem 1 For each query q and each instance
I,

• δq(I) = 1 i� I |= q;

• δq(I) = 1
2 i� I 6|= q and I |=⋄ q;

• δq(I) = 0 i� I 6|=⋄ q.

It is shown in [14] that the evaluation of
Boolean tree-pattern queries is in ptime in the
size of the data and the query. We can prove
a similar result for the computation of possible
satisfaction.

Theorem 2 Possible satisfaction of Boolean
tree-pattern queries is in O(|I| |q|), so in ptime
in the data and the query.

It is important to note that the technique pre-
sented here also provides incremental mainte-
nance. The proof is by translating the 3 value-
logic programs in Datalog programs with only
two Boolean values: true and false. The reader
interested in more details on the incremental
maintenance of Datalog is kindly invited to con-
sult [22].

4 More general queries
In this section, we consider more general queries
than the ones presented in Section 3.
Some extensions can be obtained easily:



begin
q() ← a1(n)
â(n) ← root(n), laba(n)
b̂(n′) ← â(n), par(n, n′), labb(n

′)
b̂(n′) ← â(n), par(n, n′), fun(n′), 1

2
ĉ(n′) ← â(n), par(n, n′), labc(n

′), (b(n′′) ≥ 1
2), par(n′, n′′)

ĉ(n′) ← â(n), par(n, n′), fun(n′), (b(n′′) ≥ 1
2), par(n′, n′′), 1

2

b(n) ← b̂(n)
b(n) ← b̂(n), fun(n)
c(n) ← ĉ(n)
c(n) ← ĉ(n), fun(n)
a(n) ← b(n′), c(n′′), â(n), par(n, n′), par(n, n′′)

end

Algorithm 1: δ|q for the example query q

Disjunction One can consider queries with dis-
junction. More precisely, one could intro-
duce some particular nodes that specify that
�one of the subtree-patterns has to match�.
The algorithm from the previous section can
be easily modi�ed to carry such tests since
datalog does capture disjunction. Observe
that the algorithm still runs in linear time.
Since this is straightforward, this extension
will not be considered in more detail.

Terminating functions Suppose some func-
tions terminate, e.g., by sending and end-
of-stream. The algorithm from the previ-
ous section can also be used after �rst elim-
inating the functions that already termi-
nated. So Boolean query evaluation remains
in ptime. Note that the incremental eval-
uation becomes a bit tricky because some
facts that have already been inferred are in-
validated. This aspect will not be pursued
here.

Active result We have assumed so far that the
streams return �static� data (i.e., XML doc-
uments). We could also consider that some
data returned by a stream is itself an active
document. It is straightforward to extend
the algorithms for such setting.

We next consider non-Boolean queries, then
queries with joins that rely on such non-Boolean
queries.

Non-Boolean queries The algorithm from
the previous section can be modi�ed to work with
non-Boolean queries, i.e., queries returning tu-
ples of values. The main di�erence is that re-
lation p in the algorithm should keep the data
that have to be returned, i.e., the labels in our
formalism. As we will see, this data may still
be unknown when the fact is only possible with
missing parts expected from function calls. We
use a particular symbol �?�, for such unknown
data entry. Tuples including such unknown data
will always be only possible (i.e., the truth value
of such tuples will always be ≤ 1

2). In Figure
4, the answer of q for d1 is (b, c) with the truth
value 1, that for d2 is (b, ?) with truth value 1

2
and that for d3 is (b, c) with truth value 1

2 .
We next extend the notion of satis�ability and

possible-satis�ability to tuples possibly with un-
knowns. To do that we use the following nota-
tion. Recall that a result is a tuple over a set
of (query) nodes. Let u and u′ be two tuples
over the same set N of attributes with values
in L ∪ {?}. Then u ≤ u′ i� for each n ∈ N ,
u(n) = u′(n) or u(n) = ?.



Data: a tree-pattern query q
Result: the datalog program δ = PossibleSat(q)
begin

for p = root(q) of label a do
Top-down evaluation;
δ +:= q() ← p(n);
δ +:= p̂ ← root(n), laba(n);
Bottom-up evaluation;
δ +:= p(n) ← p̂(n), pi1(n1), . . . , pj1(n

′
1), . . . , anc(n, n′

1), . . . ;
where (p, pix) ∈ E/, (p, pjy

) ∈ E//;
foreach p′ ∈ nodes(q) and child p of p′ and of label b do

Top-down evaluation;
if p ∈ Benjamin¹ then

if the arc between them is direct child then E/

δ +:= p̂(n) ← p̂′(n′), par(n′, n), labb(n);
δ +:= p̂(n) ← p̂′(n′), par(n′, n), fun(n), 1

2 ;
else E//

δ +:= p̂(n) ← p̂′(n′), anc(n′, n), labb(n);
δ +:= p̂(n) ← p̂′(n′), anc(n′, n), fun(n), 1

2 ;

else
if the arc between them is direct child then E/

if the arc between p′ and p′′= cadet≺(p) is direct child then
δ +:= p̂(n) ← p̂′(n′), par(n′, n), labb(n), (p′′(n′′) ≥ 1

2), par(n′, n′′)

δ +:= p̂(n) ← p̂′(n′), par(n′, n), fun(n), (p′′(n′′) ≥ 1
2), par(n′, n′′), 1

2 ;
else

δ +:= p̂(n) ← p̂′(n′), par(n′, n), labb(n), (p′′(n′′) ≥ 1
2), anc(n′, n′′)

δ +:= p̂(n) ← p̂′(n′), par(n′, n), fun(n), (p′′(n′′) ≥ 1
2), anc(n′, n′′), 1

2 ;

else E//

if the arc between p′ and p′′=cadet≺(p), is direct child then
δ +:= p̂(n) ← p̂′(n′), anc(n′, n), labb(n), (p′′(n′′) ≥ 1

2), par(n′, n′′);
δ +:= p̂(n) ← p̂′(n′), anc(n′, n), fun(n), (p′′(n′′) ≥ 1

2), par(n′, n′′);
else

δ +:= p̂(n) ← p̂′(n′), anc(n′, n), labb(n), (p′′(n′′) ≥ 1
2), anc(n′, n′′);

δ +:= p̂(n) ← p̂′(n′), anc(n′, n), fun(n), 1
2 , (p′′(n′′) ≥ 1

2), anc(n′, n′′);

Bottom-up evaluation;
δ +:= p(n) ← p̂(n), pi1(n1), . . . , pj1(n

′
1), . . . , par(n, n1), . . . , anc(n, n′

1), . . . ;
where (p, pix) ∈ E/, (p, pjy

) ∈ E//;
δ +:= p(n) ← p̂(n), fun(n) ;

end

Algorithm 2: PossibleSat for Boolean queries
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Now, the notions of satis�ability and possible-
satis�ability are extended for tuples with un-
knowns as follows:
• I |= q(u) i� u ∈ q(d).

• I |=⋄ q(u) i� ∀u′, u ≤ u′, I |=⋄ q(u′).
To evaluate a query q, we use again a non-

recursive datalog program δq. The result of the
evaluation of δq on input I is denoted by δq(I) =

(δ1
q (I), δ

1

2

q (I)) where δi
q(I) is the set of facts with

truth value i. (Note that a fact is false i� it is
in neither.) The construction of δq is omitted as
well as the analog of Theorem 1 that states its
correctness.
Because of datalog, we now know that we can

evaluate satisfaction and possible-satisfaction in
ptime in the size of the document. Observe how-
ever that the program is not monadic anymore,
so it does not have to run in linear time. Also
observe that again incremental evaluation is fea-
sible.

Joins We now extend the query language with
joins. Joins are essential in such settings be-
cause they allow matching information coming
from di�erent streams. Also, they allow express-
ing temporal properties such as an electronic de-
livery arrives less than 4 seconds after payment.
To simplify we consider here only equality joins,
but other kinds of joins can be processed simi-
larly.

a

c

e

$2 ∗

b

$1 ∗

a

c

e

+ ∗

b

+ ∗

Pj = {Eq($1, $2)} Pj = ∅
q1 q2

Figure 5: Example of tpj queries

Formally, joins are de�ned as follows.

De�nition 5 (Tree-pattern-with-join query)
A tree-pattern-with-join (tpj in short) query is
a pair (q, Pj) where q is a tree-pattern query
and Pj (the join constraints) is a �nite set of
expressions of the form Eq(p, p′′), where p, p′

are nodes in q. The notion of valuation is
extended by requiring that, for each Eq(p, p′) in
Pj, λ(ν(p)) = λ(ν(p′)).

Query q1 in Figure 5 is an example tpj query.
Intuitively, a node that has to be joined has to

be carried along until it is joined, just like a node
that has to be returned. So unsurprisingly, this
will use the non-Boolean queries as a basis. Let q
be a tpj query. Let Pj be its join constraint and



Pj∗ the re�exive, symmetric, transitive closure of
Pj . (The need for this will become clear further.)
Consider q′ obtained from q by ignoring the join
conditions but keeping in the result, the values
of the join nodes. (For instance, for q = q1 as in
Figure 5, q′ = q2 is as in the same �gure.) Then
one can verify that

q = πV (σ∧Pj∗(q
′))

where πV is the projection on the result nodes.
To be precise, we also have to specify the mean-
ing of selection conditions in presence of �?�. For
this, we state that the truth value of =(?, a) is 1

2
for each label a.
We next explain why ∧Pj does not su�ce and

we have to consider ∧Pj∗. To see that, consider
the example in Figure 6 and the tuple (a, ?, ?, b).
It does satisfy Pj with truth value 1

2 . This is
incorrect since it has no chance whatsoever to
eventually succeed. The Pj∗ test rules it out.
By the construction for non-Boolean queries,

we obtain a non-recursive datalog program for q′.
It now becomes straightforward to obtain one for
q, so the evaluation is in ptime.
Remark: Observe that the computation that
is obtained is rather ine�cient. We carry the join
values more than needed. This may be improved
as follows. Consider P̃j , the re�exive, transitive,
symmetric closure of Pj . For each p, let [p] be the
equivalence class of the P̃j relation containing p.
Let rep([p]) be some arbitrary representative for
each class. For each query node p, we need only
to keep in the schema of relation p:

rep([p′]) for some p′ if (i) some result
node in the subtree rooted at p is in [p′]
or (ii) some node in [p′] and in the sub-
tree rooted at p joins with some node
outside this subtree.

¤

Non-stream functions The non-stream func-
tions are classical service calls that return a result
and terminate. In contrast with Theorem 2 for

stream functions, possible-satisfaction is hard in
this setting.

Theorem 3 In presence of non-stream func-
tions, possible-satisfaction of a Boolean tree-
pattern query is NP-complete in the size of the
query.

Proof:
NP: To show that d possibly satis�es q, it suf-

�ces to exhibit an update sequence ω such that
ω(d) |= q. The test can be performed in ptime.
It remains to see that it su�ces to consider a se-
quence of polynomial size. Suppose such an ω
exists. We can take a minimum subsequence of
ω so that ω(d) |= q. By de�nition of q, there is
one, say ω′, that has no more updates than q it-
self. Now it could be the case that the size of one
update in ω′ is huge. But the interesting part in
it has to be small (again by de�nition of q).
Hard: The proof is by reduction of 3SAT [13].

Let ϕ = ∧i∈[1..n]Ci be a 3SAT formula.
From ϕ, we construct an instance of the

possible-satisfaction problem, i.e., a document Iϕ

and a query qϕ, as follows. For each variable x,
let x be a distinct label. For each Ci, let ci be
also a distinct new label. The document uses
some functions !hx and !hx̄ for each variable x.
The active document Iϕ is as follows: the root,
labeled r, has one subtree tx for each variable
x. The subtree tx has a root labeled x and two
subtrees, τx, τx̄ de�ned as follows:

• The tree τx has a root labeled x, one of its
children is the function !hx and its other chil-
dren are labeled by ci where the literal x
appears in Ci.

• The tree τx̄ has a root labeled x̄, one of its
children is the function !hx̄ and its other chil-
dren are labeled by ci where the literal x̄
appears in Ci.

The query qϕ has its root labeled r and has one
subtree for each variable denoted by qx and one
subtree for each clause Ci denoted by qCi

built
as follows:
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Figure 6: Example of tpj query and a document d

• qx is x[∗[0]][∗[1]]

• qCi
is ∗[∗[ci][1]]

One can show that Iϕ possibly-satis�es qϕ i�
ϕ is satis�able. ¤

Queries over typed documents When a
typing may be imposed on the document, the
problem is also hard.

Theorem 4 Possible-satisfaction of a Boolean
tree-pattern query for a typed document is NP-
hard in the size of the query when the type of the
document is speci�ed by a tree automata.

Proof: The proof is by reduction of 3SAT and
is a variation of the proof of Theorem 3. The
function hx, hx̄ now are stream functions, but
the type of the document prevents each of them
from returning both a 0 and a 1. ¤

Note that typing may be introduced in a dif-
ferent manner by typing the return value of func-
tions. Suppose to illustrate that we have a query
q of root r with for unique subtree, a query q1.
Suppose also that the document d consists of a
root r with as a single child a function !f . In gen-
eral, we have to assume that !f can bring some

data so that q is possibly satis�able. Now if we
assume that the result of !f obeys some type con-
straint, say q0, the situation is di�erent. Query
q is then possibly satis�able if q0 ∧ q1 is satis�-
able. Observe that depending on the type lan-
guage this may be expensive to check.

5 Useless functions
In this section, we present a technique for decid-
ing whether parts of a document (in particular
function nodes) are useful for the maintenance
of a particular view. In practice, knowing that
a subtree is useless is an important information.
If this is the case, a subtree can be garbage col-
lected. Also, a stream that brings data in such a
useless part of a document is useless and it can
be closed.
The main novel concept considered in the

present section is that of useful function. Since
we are in a monotonous context, note that if a
Boolean query q is already satis�ed, then no func-
tion is useful. This is also true if I(d) 6|=⋄ q. An
interesting example is the one of document d and
query q in Figure 7. Note that !h2 is useless be-
cause its d parent can neither match b nor c. On
the other hand, !f is useless because some cousin
already matches all it can match and !g is use-
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Figure 8: Example of hard usefulness

less because some node on the same level in the
tree already matches all it can match. Now !h
is clearly useful since it can bring c child of the
query's root.
The example in Figure 8 will illustrate the dif-

�culty of the problem. Consider the sequence
ω = (!f, e[c]), (!g, c) that yields to a document
satisfying the query. A hasty analysis would lead
someone to believe that !f is useful because it
could bring data that match a part of the query
pattern. However, observe that the update (!g, c)
alone is enough to yield a document satisfying
the query. So the update (!f, e[c]) is not really
needed in that particular sequence. Indeed, one
can show more generally that !f is useless for the
document and the query in Figure 8.
More formally, for a sequence ω and a function

!f , let ωno-f denote the sequence obtained from
ω by removing all !f -insertions. Now, we have:

De�nition 6 Let q be a query, I(d) an instance,
I(d) |=⋄ q and I(d) 6|= q. A function !f is said to
be useless for q and I(d) i� ∀ ω update sequence,
ω(I(d)) |= q i� ωno-f (I(d)) |= q.

Intuitively, a function is useless if we can ignore
its output and this does not change the satis�a-
bility of the query. Note that in particular, this
implies that, in a useful sequence ω of updates
(i.e., a sequence that transforms a non-satisfying
instance d into an instance satisfying q), we can
erase messages brought by !f and still obtain a
useful sequence.
Unfortunately, deciding whether a function is

useful is a hard problem as shown by the follow-
ing theorem.

Theorem 5 The problem of deciding, given an
instance and a query, whether a function is use-
ful, is NP-complete in the size of the query.

Proof: (sketch)
NP: Assuming q is not satis�ed, to show that

!f is a useful function, it su�ces to exhibit an
update sequence ω such that ω(d) |= q and that
ωno-f (d) 6|= q. The test can be performed in
ptime. It remains to see if it su�ces to consider
a sequence of polynomial size. Suppose such an
ω exists. We can take a minimum subsequence
of ω so that ω(d) |= q. By de�nition of q, there is
one, say ω′, that has no more updates than the
size of q. Now it could be the case that the size



of one update in ω′ is huge. But the interesting
part in it has to be small - about the size of q.
Hard: The proof is again by reduction of

3SAT. Let ϕ = ∧i∈[1..n]Ci be such a formula. The
corresponding instance is constructed as follows.
For each Ci, let ci be a distinct new label. The
instance also uses functions h0

j and h1
j for each

xj . The root, labeled r, has one subtree tj for
each variable xj and one other subtree tc. The
subtree tj has a root labeled a and two subtrees,
t0j , t

1
j de�ned as follows:

• t0j has root labeled a, one children labeled ci

for each Ci where x̄j occurs, and two other
subtrees: one consisting of a single node la-
beled 0; and one subtree a[h0

j ].

• t1j has root labeled a, one children labeled ci

for each Ci where xj occurs, , and two other
subtrees: one consisting of a single node la-
beled 1; and one subtree a[h1

j ].

The subtree tc is: a[ a[1 a[1]] a[0 a[h]] ]; where
h is the function for which we question the use-
fulness.
The query q is constructed as follows. It has a

root r with one subtree qi for each clause Ci plus
a subtree qc, de�ned as follows. Query qi has a
root labeled a and a unique child

a[ ci a[1] ]

The other child of the root of q is

a[ a[1 a[1] ] a[ 0 a[1] ] ]

The instance I and the query q are shown in
Figure 9 for

ϕ = (x1∨x2∨ x̄3)∧ (x̄1∨ x̄2∨x3)∧ (x1∨ x̄2∨x3)

One can show that ϕ is satis�able i� h is useful.
¤

We next introduce an algorithm that allows
computing useful functions. As we will see, it
runs in ptime in the size of the data (and exp-
time in the size of the query).

Given a document d and a query q, the algo-
rithm works as follows. To decide the usefulness
of a function !f , it searches for update sequences
so that an !f -update is necessary in them for the
document to satisfy the query. For that, we intro-
duce the notion of scenario, that is a set of pairs
(function call,query node) such that if each of
function calls brings up messages satisfying the
corresponding tree-pattern query (queries), the
query q is satis�ed. More precisely, a scenario is
a tuple u over nodes(q) with values in the set of
function calls of d union {△}. The meaning of
u(a) =!g is that !g brings some data that matches
the subquery rooted at a. The meaning of the
u(a) = △ is that a is irrelevant (because this
subquery is already matched in this particular
context).
The datalog program, namely Useful(q), com-

putes ScenarioSet, a particular set of scenarios.
This can be done relatively easily: after comput-
ing possible satis�ability, we record what func-
tions could bring subqueries. The size of a rela-
tion corresponding to a node p in the query (re-
lation noted p̃) is the size of the subquery rooted
at p. The details are omitted. By construction,
each possible scenario will be in ScenarioSet,
i.e., this set provides a su�cient condition for
usefulness. However, some of these scenarios may
involve calls to functions that are not useful, so
the condition it provides is not necessary for use-
fulness. This will be for instance the case for
the example of Figure 8. The next theorem pro-
vides the procedure for building minimal scenar-
ios from the ones delivered by Algorithm 3. To
state it, we need to introduce some de�nition and
notation. First, in a standard manner, q is con-
tained in q′, denoted q ⊆ q′, i� each document
satisfying q also satis�es q′. Also given a scenario
u and a function !g, the forest of patterns brought
by !g in u, denoted broughtBy(g, u) is the set of
subqueries ⌊a⌋q such that for some query node a,
u(a) =!g.

Theorem 6 Let I be an instance and q a query.
A function !f is useful for I and q i� there exists
a scenario u ∈ ScenarioSet, !f occurs in u and
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Data: a tree-pattern query q, relations p of EvalSat(q)
Result: the datalog program δ = Useful(q)
begin

for p = root(q) of label a do
Top-down evaluation
δ +:= ScenarioSet(u) ← p̃(n, u)
δ +:= relevantp(n) ← root(n), p(n)
Bottom-up evaluation
δ +:= p̃(n,△, u1, · · · , u′

1, · · · ) ← relevantp(n), p̃i1(n1, u1), · · · , p̃j1(n
′
1, u

′
1), · · · ,

par(n, n1), · · · , anc(n, n′
1), · · ·

where (p, pix) ∈ E/, (p, pjy
) ∈ E//

foreach p′ ∈ nodes(q) and child p of p′ of label b do
Top-down evaluation
if the arc between them is direct child then E/

δ +:= relevantp(n) ← relevantp′(n
′), par(n′, n), (p(n) = 1

2),
∄n′′((p(n′′) = 1), par(n′, n′′))

else E//

δ +:= relevantp(n) ← relevantp′(n
′), anc(n′, n), (p(n) = 1

2),
∄n′′((p(n′′) = 1), anc(n′, n′′))

Bottom-up evaluation
δ +:= p̃(n,△, u1, · · · , u′

1, · · · ) ← relevantp(n), p̃i1(n1, u1), · · · , p̃j1(n
′
1, u

′
1), · · · ,

par(n, n1), · · · , anc(n, n′
1), · · ·

where (p, pix) ∈ E/, (p, pjy
) ∈ E//

δ +:=p̃(n, n,△, · · · ,△) ← relevantp(n), fun(n)
δ +:=p̃(n,△,△, · · · ,△) ← (p(n) = 1)

end

Algorithm 3: Useful for Boolean queries



q′ 6⊆ q where q′ is obtained from the instance I
by (i) removing each occurrence of !f and (ii)
replacing each occurrence of some function call
!g by3 broughtBy(g, u).

The complexity of Algorithm 3 is given by:

Theorem 7 The problem of deciding, given an
instance and a query, whether a function is use-
ful, is ptime in the size of I.

6 Conclusion
To conclude, we mention some on-going imple-
mentation and related works.
The present work is motivated by the develop-

ment of a P2P monitoring system based on �ows
of active documents in the style of ActiveXML
[6].
Datalog has been intensively studied in the

context of relational databases. Although e�-
cient query optimization and incremental evalu-
ation techniques for datalog have been proposed,
such implementations are not easily available and
would not be very suited to our XML context.
To validate our ideas, we have developed an

algorithm tailored to our speci�c problem. The
algorithm compiles a tree-pattern query q into
an XQuery that essentially simulates the data-
log programs of Sections 3 and 4. Let us for
instance consider the example in Figure 3. The
corresponding XQuery program is given in Fig-
ure 10.
Note that its output is one of the three val-

ues: 0, 1
2 or 1. Observe also that it de�nes the

variables $av, $bv, $cv (Lines 2, 10, 12, 28 and
30) that are the analogs of relations â, b̂, ĉ of the
datalog program. Variable $sat holds the value
of the possible satis�ability of the query rooted
at a. As one can observe, the possible satis�a-
bility of a tree-pattern query of root r is com-
puted based on the possible satis�ability of the

3Note that if !g does not occur in u, then
broughtBy(g, u) is empty and !g is simply removed like
!f .

subqueries rooted at the children of r. Variables
$sat1 and $sat2 hold the result of the computa-
tion for subqueries rooted at b (Lines 6-20) and c
(Lines 24-39). Note also that if the subquery
rooted at b has no chance to be satis�ed, i.e.
$sat1 has a 0 value, the possible satis�ability of
the subquery rooted at c is not computed (the
condition of if in line 22 would be true) and the
whole query evaluates to 0.
The XQuery that is obtained computes possi-

ble satis�ability, but not in an incremental man-
ner. We are currently working on incremental
evaluation techniques. Indeed, we are investi-
gating two directions: (i) an incremental algo-
rithm tailored to our particular problem, and (ii)
a generic incremental algorithm for tree-pattern
queries, somewhat the analog of incremental dat-
alog evaluation in an XML setting.

Related Work
Our work on the maintenance of tree-pattern
views over active XML documents relies pri-
marily on previous works around datalog, e.g.,
[4, 11, 17, 16]. We have used this particular
language to describe our algorithms so that we
could bene�t from both the optimization tech-
niques QSQ [22] and Magic Set [10], and the in-
cremental maintenance of datalog; see [4].
Connections between tree-pattern queries and

monadic datalog have been studied in [14]. Tree-
pattern queries over trees are closely related to
XPATH expressions but they are di�erences in
expressive power; see e.g., [18]. The problem
of the incremental view maintenance for graph-
shaped semistructured data is studied in [7].
Some recent works have considered the incre-

mental maintenance of XPATH views over trees
[20, 21]. The setting is di�erent than ours, since
data can be added and removed at any place in
the document.Our model is more expressive since
we can authorize the data to be appended at par-
ticular places in the document, i.e. the places
where the functions reside. Remark the fact that
we can simulate their setting by appending some
function as child for each data node in the docu-



1. let $sat :=
2. for $av in doc("test.xml")/a
3. return
4. let $initialSat := <value>1</value>
5. return
6. let $sat1 :=
7. (
8. let $valuesSon1 :=
9. (
10. ( for $bv in $av/b return <value>1</value> )
11. union
12. ( for $bv in $av/sc return <value>0.5</value> )
13. )
14. return
15. <value>
16. { if (count($valuesSon1) = 0) then 0
17. else min((<value>{max($valuesSon1/node())}</value> union $initialSat)/node())
18. }
19. </value>
20. )
21. return
22. if ($sat1 = 0) then <value>0</value>
23. else
24. let $sat2 :=
25. (
26. let $valuesSon2 :=
27. (
28. ( for $cv in $av/c return <value>1</value> )
29. union
30. ( for $cv in $av/sc return <value>0.5</value> )
31. )
32. return
33. <value>
34. {if (count($valuesSon2) = 0) then 0
35. else
36. min((<value>{max($valuesSon2/node())}</value> union <value>{$sat1}</value>)/node())
37. }
38. </value>
39. )
40. return $sat2
41. return
42. if (count($sat)=0) then 0
43. else $sat/node()

Figure 10: XQuery program for the tree-pattern query example in Figure 3



ment. We also compute the possible satis�ablity
of a query as well as the pertinent functions for
this query. This way, if data is appended to the
document by some useless functions, there is no
need to process this newly appended data for
maintaining the view.
Our complexity analysis for query evaluation

on active documents has been in�uenced by
works of [14, 15, 18]. In particular, the com-
plexity for datalog evaluation on trees is stud-
ied in [14] whereas [15] considers the complex-
ity of query evaluation for portions of XPATH;
and [18], the complexity of boolean tree-pattern
query evaluation on trees and tree-pattern query
containment.
Query evaluation for active documents is stud-

ied in [1]. The context is essentially di�erent
since their functions are non-stream and they do
not consider incremental maintenance, but only
query evaluation. A main aspect of their work is
the detection of functions that may contribute to
the answer so that should be activated. Although
the techniques are very di�erent because of the
di�erent context, our notion of useful function is
in the same spirit.
Some complexity issues about active docu-

ments are studied in [8, 19]. Other works about
active documents may be found at [9].
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