On variational data assimilation for 1D and 2D fluvial hydraulics

Igor Gejadze 1, 2 Marc Honnorat 1, 2 François-Xavier Le Dimet 1, 2 Jerome Monnier 1, 2
1 MOISE - Modelling, Observations, Identification for Environmental Sciences
Inria Grenoble - Rhône-Alpes, UJF - Université Joseph Fourier - Grenoble 1, INPG - Institut National Polytechnique de Grenoble , CNRS - Centre National de la Recherche Scientifique : UMR5227
2 MOISE - Modelling, Observations, Identification for Environmental Sciences
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : We address two problems related to variational data assimilation (VDA) as applied to river hydraulics (1D and 2D shallow water models). First, we seek to estimate accurately some parameters such as the inflow discharge, manning coefficients, the topography and/or the initial state. We develop a method which allow to assimilate lagrangian data (trajectory particles at the surface e.g. extracted from video images). Second, we develop a joint data assimilation - coupling method. We seek to couple accurately a 1D global net-model (rivers net) and a local 2D shallow water model (zoom into a flooded area), while we assimilate data. Numerical twin experiments are presented.
Complete list of metadatas

Cited literature [5 references]  Display  Hide  Download

https://hal.inria.fr/inria-00259096
Contributor : Jerome Monnier <>
Submitted on : Tuesday, February 26, 2008 - 4:23:04 PM
Last modification on : Wednesday, June 6, 2018 - 1:10:51 AM
Long-term archiving on: Thursday, May 20, 2010 - 6:45:29 PM

File

MonnierEtAl.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Igor Gejadze, Marc Honnorat, François-Xavier Le Dimet, Jerome Monnier. On variational data assimilation for 1D and 2D fluvial hydraulics. European Conference on Mathematics for Industry (14th ECMI), Edts Bonilla-Moscovo-Platero-Vega, Jul 2006, Madrid, Spain. pp.361-365, ⟨10.1007/978-3-540-71992-2_53⟩. ⟨inria-00259096⟩

Share

Metrics

Record views

755

Files downloads

309