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1 Introduction

We address two problems related to variational data assimilation (VDA) as
applied to river hydraulics (1D and 2D shallow water models). In real cases,
available observations are very sparse (especially during flood events). Gen-
erally, they are very few measures of elevation at gauging stations. The first
goal of the present study is to estimate accurately some parameters such as
the inflow discharge, manning coefficients, the topography and/or the initial
state. Since the elevations measures (eulerian observations) are very sparse,
we develop a method which allow to assimilate extra lagrangian data (trajec-
tory particles at the surface e.g. extracted from video images). The second
goal aims to develop a joint data assimilation - coupling method. We seek to
couple accurately a 1D global net-model (rivers net) and a local 2D shallow
water model (zoom into a flooded area), while we assimilate data. This ”weak”
coupling procedure is based on the optimal control process used for the VDA.
Numerical twin experiments demonstrate that the present two methods makes
it possible to improve on one hand the identification of river model parameters
(e.g. topography and inflow discharge), on the other hand an accurate 1D-2D
coupling combined with the identification of inflow boundary conditions.

The 2D forward model

The 2D forward model considered rely on the shallow water equations (SWE)
(h is the water elevation, q = hu the discharge, u the depth-averaged velocity):







∂t h + div(q) = 0 in Ω×] 0, T ]

∂t q + div( 1

hq ⊗ q) + 1

2
g∇h2 + gh∇zb + g n2‖q‖

h7/3 q = 0 in Ω×] 0, T ]

(1)
with initial conditions (h0,q0) given, g the magnitude of the gravity, zb the
bed elevation, n the Manning roughness coefficient. Boundary conditions are:
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at inflow, the discharge q̄ is prescribed; at outflow, either the water elevation z̄s

is prescribed or incoming characteristics are prescribed; and walls conditions.
Given the control vector c = (h0,q0, n, zb, q̄, z̄s), the state variable (h,q) is
determined by solving the forward model.

2 Assimilation of lagrangian data

Lagrangian DA consists in using observations described by lagrangian coor-
dinates in the DA process. Here, we consider observations of particles trans-
ported by the flow (e.g. extracted from video images). The link between the
lagrangian data made of N particle trajectories denoted by Xi(t) and the clas-
sical eulerian variables of the shallow water model is made by the following
equations, see [4]:

{

d
dtXi(t) = γ u

(

Xi(t), t
)

∀ t ∈ ]t0i , t
f
i [

Xi(t
0
i ) = x0

i ,
for i = 1, . . . , N (2)

where t0i and tfi are the time when the particle enter and leave the observation
domain, γ is a multiplicative constant. We consider two kinds of observations
(classical eulerian observations hobs(t) and trajectories of particles transported
by the flow Xobs

i (t)). Then, we build the following composite cost function:

j(c) =
1

2

∫ T

0

∥

∥ Ch(t) − hobs(t)
∥

∥

2
dt +

αt

2

N
∑

i=1

∫ tf
i

t0
i

∣

∣ Xi(t) − Xobs
i (t)

∣

∣

2
dt (3)

where αt is a scaling parameter, C the observation operator.

Numerical results.

Particle trajectories associated with local water depth measurements are used
for the joint identification of local bed elevation zb and initial conditions
(h0,u0). A constant discharge q̄ is prescribed at inflow, Fig. 1(a). A verti-
cal cut of the fluid domain in the longitudinal plane in Fig. 1 (b) shows the
bed and the free surface elevation for this configuration.

Twin DA experiments are carried out: observations are created by the
model from the reference steady flow described above. Water depth is recorded
continuously in time at the abscissae x1 = 15m and x2 = 70m, for the whole
width of the domain. These measurements are used as observations denoted by
hobs

i (y; t) for i = 1, 2. With regards to the creation of trajectories observations,
virtual particles are dropped in the reference steady flow and transported by
a turbulent surface velocity ut = γu + up , where γ = 1 and up is a Gauss-
Markov process. A total of Nobs = 640 particles is released in the flow.
We seek to identify jointly the reference topography and the reference initial
conditions (water depth h0 and velocity u

0) used to create the observations,
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from the a priori hypothesis that the bed is made of a longitudinal slope
of without bump and the initial conditions correspond to the steady state
obtained with the modified topography. To that purpose, we carry out DA
using cost function (3). As shown in Fig. 2 (a), the identified topography is
close to the reference, with a good recovery of the bump. As for the initial
conditions, we can see in Fig. 2 (c) and (d) that it reproduces the same main
features as the reference.

3 A joint assimilation-coupling procedure

Operational models used in hydrology are generally net-models based on the
1D Saint-Venant equations with storage areas. Here we shortly describe a
method which superpose locally the previous 2D SWE along the 1D channel,
see [3]. The first issue is to nest properly the local 2D model into the 1D global
model. To this end, we specify incoming characteristics at lateral boundary
conditions (BC), Fig. 3:

(x, y) ∈ Γ3 :
q + (c − u)h = w1(x, y, t)
p − vh = w3(x, y, t), ∀u > 0

(4)

(x, y) ∈ Γ4 :
q − (c + u)h = w2(x, y, t)
p − vh = w3(x, y, t), ∀u < 0

(5)

where the coefficients in (4)-(5) are: c = (gh|t−τ )1/2, u = (q/h)|t−τ , v =
(p/h)|t−τ and τ is a time shift, which is taken equal to the time integration
step in the numerical implementation; w1, w2 and w3 (depending on the sign
of u) are the incoming characteristic variables that must be specified based
on their counterparts W1,W2 from the global model defined as follows

Q + (c − u)H = W1(x, t), Q − (c + u)H = W2(x, t) (6)

where H,Q are variables of the ’dimensional’ 1D SWE problem (i.e. scaled
by the main channel width assuming the rectangular cross-section) and
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Fig. 1. Flow configuration
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Fig. 2. Joint identification of the topography and the initial conditions using water
depth measurements and particle trajectories with αt = 1× 10−4.

c = (gH|t−τ̃/b)1/2, u = (Q/H)|t−τ̃ .
The feedback from local to global model is achieved by computing a general-
ized defect correction term, which will be a source term to the global model
equations, see [3] for more details. Another issue is that we couple two differ-
ent models (1D and 2D). The problem is formulated as a DA problem, while
the local model boundary conditions are considered as unknown controls. The
coupling conditions in this formulation become penalty terms of the extended

objective function J = (γJ∗ + J1 + J2) with J∗ =
∑

i

∫ T

0
(Ui − Ûi)

2 dt and

Jk =
∫ T

0
(
∫

Γk+1wkdΓ − Wk|Γk+1
)2, while as constraints we consider the one-

way relaxed model described by the following steps: a) given current approx-
imation wk solve the 2D SWE local problem; b) compute ’defect correction’;
c) given current approximation (or known values) W1(0), W2(L) and the ’de-
fect correction’ computed at previous stage solve the 1D SWE problem; d)
compute extended objective function J . We refer to this method as to a ’joint
assimilation-coupling method’(JAC).
In the numerical examples given below we solve DA problem for the 1D section
(main channel) looking for the unknown inflow BC (characteristic W1(t, 0)),
while data is measured in the area covered by the 2D local model and is as-
similated into this model correspondingly. The control problem for J is solved
using the adjoint of the one-way relaxed model described by steps a)-c). Data
is collected in two points as shown in Fig.3(a). The reference value is chosen
to cause a ’flooding event’ i.e. massive overflowing of the main channel in the
area where the 2D local model is superposed. (Rem. Under these conditions
assimilation of measurements from sensor A into the 1D model alone may fail
to produce meaningful results because this model is not adequate. Data from
sensor B cannot be assimilated in principle).

In the following assimilation examples, Fig.3(b), we can see the reference
BC (in dashed line) and the retrieved value after k iterations of the JAC
algorithm (in sharp solid lines). A line that corresponds to k = 0 is the
initial guess. This example shows that the JAC method converges and allows
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retrieving the unknown BC of the 1D model, while data is assimilated into
the weakly connected local 2D model.
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