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Abstract

This paper addresses trajectory planning for a robot
subject to dynamic constraints and moving in a dynamic
workspace. A car-like robot A with bounded velocity
and acceleration, moving in a dynamic two-dimensional
workspace is considered. The solution proposed is an
extension of the path-velocity decomposition which is a
practical way to address trajectory planning in dynamic
workspaces. However it presents a serious drawback: it
cannot find a solution if a moving obstacle stops right on
the computed path. Previous answers to this problem were
to consider sets of candidate paths. The answer proposed
in this paper makes use of the novel concept of adjacent
paths (like adjacent lanes of the roadway). A set of adjacent
paths, one of which leads A to its goal, is computed. Then,
assuming that A is able to shift from one path to an adja-
cent one freely, the motion of A along and between these
paths is determined so as to avoid the moving obstacles.
The fact that it is possible to switch several times between
two adjacent paths makes this approach more flexible and
more powerful than one considering candidate paths.

Keywords: mobile robots, motion planning, non-holo-
nomic constraints, dynamic constraints, moving obstacles.

1 Introduction

1.1 Trajectory Planning in Dynamic
Workspaces

Ever since Nilsson’s work in 1969 [17], motion plan-
ning has been extensively studied (the reader is referred
to [15] for a recent survey of this topic). Previous works
can be classified according to the type of motions which
are planned. Thus it is possible to differentiate between
path planning which is characterized by the search of a
continuous sequence of configurations; and trajectory plan-

I The configuration of a robot is a set of independent parame-
tres that uniquely defines the position and orientation of every
point of the robot.

ning which is concerned with the time history of such a
sequence.

Path planning is restricted to the geometric aspects
of motion planning. The only constraints that can be
taken into account are time-independent constraints such
as stationary obstacles and kinematic constraints, i.e. con-
straints involving the configuration parameters of the robot
and their derivatives. Depending on whether it is inte-
grable, a kinematic constraint either reduces the set of
allowed configurations (like an obstacle) or restricts the
geometric shape of feasible paths. On the other hand, tra-
jectory planning with its time dimension permits to take
into account time-dependent constraints such as moving
obstacles and the dynamic constraints of the robot, i.e.
the constraints imposed by the dynamics of the robot and
the capabilities of its actuators.

Path planning has been extensively studied in the past
twenty years. Whereas less attention has been paid to
trajectory planning. And yet, when planning the motion
of an actual robot, it is important to take into account
the various constraints that restrict its motion capabilities
and especially dynamic constraints. It is also important
to deal with moving obstacles since an actual workspace
will often be dynamic, i.e. with moving obstacles. These
two points, i.e. moving obstacles and dynamic constraints,
have been addressed in the past, but seldom simultane-
ously (cf. §2), and it is the purpose of this paper to do
so. Accordingly, this paper addresses trajectory planning
in dynamic workspaces, i.e. motion planning for a robot
subject to dynamic constraints and moving in a dynamic
workspace.

1.2 Contribution of the Paper

The problem of planning the two-dimensional motion of
a car-like robot A with bounded velocity and acceleration,
and moving in a dynamic workspace W, is considered in
this paper.

The solution proposed is derived from the ‘path-velocity
decomposition’ introduced in [14], which addresses motion
planning in two complementary stages: (a) planning a
geometric path that avoids the stationary obstacles and
(b) planning the velocity along this path so as to avoid the



moving obstacles. This approach is of a practical interest
because it decomposes the original problem into two more
simple sub-problems (cf. §2 for the complexity issues). As
a matter of fact, this type of approach has been largely
used before (cf. §2). However path-velocity decomposition
presents a serious drawback: it cannot find a solution if
a moving obstacle stops right on the computed path. A
possible answer to this problem is to consider a set of can-
didate paths [19]. The answer proposed in this paper is
the novel concept of adjacent paths. Adjacent paths are
formally defined in §4.1.2. Meanwhile, an informal illus-
tration of what adjacent paths are can be found in the
roadway: roads are usually divided into several adjacent
lanes and every driver knows what passing from one lane
to an adjacent one means. The fact that it is possible
to switch several times between two adjacent paths makes
this approach more flexible and more powerful than one
considering candidate paths.

Thanks to this concept, a novel motion planning scheme
that also operates in two complementary stages was de-
signed. The first stage, paths-planning, takes into ac-
count all the time-independent features of the problem at
hand (stationary obstacles and A’s kinematic constraints)
whereas the second stage, trajectory-planning, deals with
the time-dependent ones (moving obstacles and A’s dy-
namic constraints). In the paths-planning stage, a set of
adjacent paths, one of which leading A to its goal, are
computed. These paths are collision-free with the station-
ary obstacles and respect A’s kinematic constraints. In the
trajectory-planning stage, given that A is able to shift from
one path to an adjacent one freely, the motion of A along
and between these paths is determined so as to avoid any
collision with the moving obstacles while respecting A’s
dynamic constraints.

1.3 Outline of the Paper

§2 reviews the complexity issues and the works related
to trajectory planning in dynamic workspaces. Then §3
formally states the problem at hand. Afterwards §4 de-
scribes an algorithm that solves this problem by using the
path-velocity decomposition.

2 Complexity Issues and Re-
lated Works

There are results suggesting that trajectory planning
in dynamic workspaces is generally intractable [30]. Even
the two-dimensional case is computationally involved (cf.
the NP-hard result established in [3] and the P-Space al-
gorithm presented in [5]). On the other hand, the one-
dimensional case seems less intricate (cf. the two polyno-
mial algorithms presented in [18] and [21]) hence the inter-
est of the path-velocity decomposition.

A general approach that deals with moving obstacles
is the configuration-time space approach which consists

in adding the time dimension to the robot’s configuration
space [7]. The robot maps in this configuration-time space
to a point moving among stationary obstacles. Accord-
ingly the different approaches developed in order to solve
the path planning problem in the configuration space can
be adapted in order to deal with the specificity of the
time dimension and used (cf. [15]). Among the existing
works are those based upon extensions of the visibility
graph [7, 14, 21] and those based upon cell decomposi-
tion [12, 24].

There are several results for time-optimal trajectory
planning for Cartesian robots subject to bounds on their
velocity and acceleration [5, 18]. Besides optimal control
theory provides some exact results in the case of robots
with full dynamics and moving along a given path [2, 28].
Using these results, some authors have described meth-
ods that computes a local time-optimal trajectory [27, 25].
The key idea of these works is to formulate the problem
as a two-stage optimization process: optimal motion time
along a given path is used as a cost function for a local
path optimization (hence local time-optimality). However
the difficulty of the general problem and the need for prac-
tical algorithms led some authors to develop approximate
methods. Their basic principle is to define a grid which
is searched in order to find a near-time-optimal solution.
Such grids are defined either in the workspace [26], the
configuration space [22], or the state space of the robot [4].

Few research works take into account moving obsta-
cles and dynamic constraints simultaneously, and they usu-
ally do so with far too simplifying assumptions, e.g. [12]
and [18]. Ref. [10] introduced the concept of state-time
space as a tool to deal with trajectory planning with mov-
ing obstacles and dynamic constraints. It was used to plan
the one-dimensional motion of a mobile robot subject to
velocity and acceleration bounds and moving amidst mov-
ing obstacles. Later, it was applied to the case of a car-like
robot subject to dynamic constraints and moving along a
given path [9], and on a planar surface [11]. More recently,
[8] has presented a two-stage algorithm that computes a
local time-optimal trajectory for a manipulator arm with
full dynamics and moving in a dynamic workspace: the so-
lution is computed by first generating a collision-free path
using the concept of velocity obstacle, and then by opti-
mizing it thanks to dynamic optimization.

3 Statement of the Problem

3.1 The Robot A

Let A be a car-like robot with two rear wheels and two
directional front wheels. It is modelled as a polygon mov-
ing on the plane IR?. A configuration of A is completely
defined by the 3-tuple (z,y,8)€IR?x[0, 27| where (z,y) are
the coordinates of the rear axle midpoint R and 6 is the
orientation of A (Fig.1).



Figure 1: a car-like robot.

Kinematic Constraints. A body moving on the
plane has only one centre of rotation. Let G be the center
of rotation of A. Assuming pure rolling condition, a wheel
can only move in a direction which is normal to its axle.
Therefore, when A is moving, the axles of its wheels inter-
sect at G. The orientation of the rear wheels being fixed,
G is located on the rear wheels axle (possibly at an infinite
distance) and R moves in a direction which is normal to
this axle. In other words, the following constraint holds:

tanf = /i (1)

Besides, due to the fact that the front wheels orientation
is mechanically limited, the distance p between R and G,
i.e. the curvature radius at point R, is lower bounded:

P 2 Pmin (2)

Relations (1) and (2) are non-holonomic [1], they re-
strict the geometric shape of feasible paths for .A.

Dynamic Constraints. Let v be the velocity of A
measured along its main axis and let atan and a,,q be re-
spectively the tangential and radial components of the ac-
celeration applied to A. The following dynamic constraints
should be satisfied:

0 S v S Vmax (3)
—amax < Gtan < Gmax (4)
—gmax < Grad < gmax (5)

The meaning of these constraints is quite straightfor-
ward. Inequality (3) is a speed limit and (4) is an upper
bound on the rate of change of speed. The purpose of (5) is
to ensure that the radial acceleration does not exceed the
counteracting centrifugal acceleration which is supplied by
friction between the wheels and the ground. Note that (3)
implies that A is not allowed to back-up. It must always
move forward which is the case in normal road-driving sit-
uations.

Although simple, these dynamics constraints are rich
enough to demonstrate the interest of our approach. More
accurate dynamics constraints could easily be dealt with

(cf. [9, 11]).

3.2 The Workspace W

The workspace W is a subset of IR? it is cluttered up
with stationary obstacles B5,4 € {1, ..., s}, and with mov-
ing obstacles Bf/[,j € {1,...,m}. Both types of obstacles
are modelled as convex polygonal regions of W.

3.3 The Problem

In this framework, a trajectory between an initial con-
figuration g; and a final configuration ¢, is defined by
a mapping I' taking a time ¢ € [0,%¢] to a configura-
tion I'(t) = (x(t),y(t),6(t)) and such that I'(0)=¢s; and
I'(tf)=qy. The duration of the trajectory I' is t;. I' must
be collision-free, i.e. it must respect:

vVt € [0,t5], Vi€ {1,...,s}, Vi €{1,...,m},

A(t) N BY =0 and A(t) N B} (t) =0

where X (t) designates the region of W occupied by the
object X at time t. Besides I must be feasible, i.e. it must
respect the constraints (1)-(5) presented earlier. Finally
we are interested in finding a time-optimal trajectory, i.e.
a solution I' such that t; should be minimal.

4 The Motion Planning Scheme

As mentioned earlier, our approach addresses the prob-
lem at hand in two complementary stages. The first stage
— paths-planning — computes a set of adjacent paths, one
of which leads A to its goal. These paths are collision-free
with the stationary obstacles and respect the kinematic
constraints of A. Given that A is able to shift from one
path to an adjacent one, the second stage — trajectory-
planning — determines the motion of A along and between
these paths so as to avoid the moving obstacles while re-
specting the dynamic constraints of A.

4.1 |Paths-Planning

Paths-planning is performed in three steps. To begin
with, a nominal path is computed (§4.1.1). Afterwards a
set of adjacent paths is automatically derived from this
nominal path (§4.1.2). As we will see further down, these
adjacent paths are not necessarily collision-free with the
stationary obstacles and do not necessarily respect the
kinematic constraint (2). In order to solve these two prob-
lems, parts of the adjacent paths have to be invalidated
(84.1.3).

4.1.1 Planning a Nominal Path

A feasible path for A is a continuous sequence of config-
urations, 7.e. a curve in the (zyf)-space that must respect
the non-holonomic constraints (1) and (2). However (1)



implies that the (zy)-curve followed by R, say II, com-
pletely defines a path for A.

As a consequence of (1) and (3), IT must be of class
C* (a curve is of class C™ if it is differentiable n times
and if its n'" derivative is continuous). Besides (2) implies
that the curvature of II (wherever it is defined) must be
upper-bounded by 1/pmin.

A path II which is of class C! and whose curvature is
upper-bounded by 1/pmin, is feasible but, it is important to
note that A has to stop whenever a curvature discontinuity
occurs (so as to change its front wheels’ orientation). Our
main concern being in planning ‘high’ speed and forward
motions only, IT is furthermore defined as a planar curve
of class C?. The C? property insures that the path is
manceuvre-free and that A can follow it without having to
stop (no curvature discontinuity).

Path planning for car-like robots such as A is an issue
that has been largely addressed in the past ten years and
several path planners have been proposed, e.g. [1, 13, 16,
29]. However all these path planners generate paths made
up of straight segments connected with tangential circular
arcs of minimum radius (such paths are the shortest ones
for car-like robots [6, 20]). Unfortunately this type of path
is not C%. Accordingly we developed the first C? path
planner for car-like robots. This planner has already been
presented in [23] so we will not detail it here. Suffice it to
say that it generates a nominal path IIx that is feasible
and collision-free.

4.1.2 Computing Adjacent Paths

Recall that a path for A is a (xy)-curve II of class C?
whose curvature is upper-bounded by 1/pmin. Assuming
that II does not intersect itself, a point P’ located at a
distance from II smaller than ppi, has a unique normal
projection P on II. Let dpj(P') be the signed distance”
between P’ and its projection P on II. The path adjacent
to I on its left at a distance §L is defined as: II; = {P' €
W | dp(P') = 6L} (Fig.2). Similarly, the path adjacent to
II on its right at a distance 8L is defined as: II, = {P' €
W |dp(P') = —-6L}.

Figure 2: II;, a path adjacent to II on its left.

2If P' is on the left (resp. right) side of II, then dj(P') is
positive (resp. negative).

Thanks to this definition, it is possible to recursively
compute a set of paths adjacent to the nominal path IIn
on its left and on its right. Let P = {Ilx, k € {1,...,n}}
be the whole set of adjacent paths, IIxy included. Let us
denote by R(II) the set of points whose distance to II
is smaller than §L/2. The distance §L between any two
adjacent paths is chosen so as to ensure that, VIIEP:

1. The region swept by A when it follows a path II is
included in R(II).

2. The region swept by A on its left (resp. right) side
when it leaves a path II by making a right (resp. left)
turn of radius pmin, is included in R(II) (Fig.3a).

3. The region swept by A on its left (resp. right) side
when it reaches a path II by making a right (resp. left)
turn of radius pmip is included, in R(II) (Fig.3b).

As we will see further down, these three properties per-
mits to simplify collision checking both along (§4.1.3) and
between the paths (§4.2).

@)\ ar

Figure 3: regions swept by A on its left when leav-
ing/reaching a path IT by making a right turn.

4.1.3 Checking Adjacent Paths

The nominal path is collision-free with the stationary
obstacles and it respects the kinematic constraints (1)
and (2). Unfortunately these two properties do not neces-
sarily hold for an adjacent path. It may happen that such
a path is no longer collision-free with the stationary obsta-
cles or does no longer respect the curvature constraint (2).
Let II€ P: II is a mapping [0, 1]—IR?. Collision and cur-
vature checking lead us to compute a set of ‘forbidden’
intervals in the range [0, 1] corresponding to parts of II
which violate either of these constraints. Let us denote by
p(s) the curvature radius of the path at the point II(s).
The set of forbidden intervals for II is formally defined as:

FI) = {[a,b] C[0,1] | (Vs € [a,b], p(s) < pmin)
or (3B7 | Proj(B7 1) = [a,b])}
where Proj(B7 1) is the ‘projection’ of the stationary ob-

stacle Bf on the path II, 4.e. the part of II which entails a
collision between A and By :

Proj(Bf 1) = [a,b] C[0,1]|Vs € [a+1s,b—1],
AP € B{nR(I) | P' =Ti(s)

where P’ is the normal projection of P on IT and where If
(resp. l,) denotes the distance between A’s rear axle and



it front-most (resp. rear-most) point. Figure 4 depicts an
example of forbidden intervals for a path II. The inter-
val [a1, b1] corresponds to Proj(B IT) while [a2,bs] corre-
sponds to a part of II which does not respect the curvature
constraint (2).

3
ait : .01

T

B

Figure 4: the ‘forbidden’ intervals of II.

Note that Proj(B5,IT) is defined by using R(IT) instead
of the exact region swept out by A when it moves along
II. This choice is sound because the region swept out by
A is included in R(II) (cf. property #1 of §4.1.2). Besides
it simplifies the computation of Proj(B{,II) because R(II)
has a more simple shape.

4.2 |Trajectory-Planning

The output of paths-planning is a set P of adjacent
paths and a set F of forbidden intervals associated with
each path. The purpose of trajectory-planning is to de-
termine A’s motion along and between these paths so as
to stay out of the forbidden intervals, avoid the moving
obstacles and respect the dynamic constraints (3), (4) and
(5).

Because of path-changing, i.e. the motion between adja-
cent paths, the problem at hand is two-dimensional. How-
ever it is possible to take advantage of the properties of
the adjacent paths in order to reduce the problem to a
one-dimensional trajectory planning problem. We have de-
signed a trajectory planner which implements this idea. To
begin with, we present a method which determines the tra-
jectory of A along a given path and then we extend this
method so as to incorporate path-changing.

4.2.1 Motion Along a Path

We designed a trajectory planner which is able to com-
pute the trajectory of a given robot .4 along a given path IT
so as to avoid moving obstacles and respect dynamic con-
straints such as (3), (4) and (5). This planner is described
in [9]. It reduces the original problem to a one-dimensional
problem by parameterizing II with a single variable p rep-
resenting the distance traveled along II. Afterwards the
dynamic constraints of A are transformed into constraints
on the velocity v and the acceleration a along II. The
constraints on v are expressed by a velocity limit curve in
the state space, i.e. the pxv plane. On the other hand,

the constraints imposed by the moving obstacles can be
represented by forbidden regions of the pxt space, where
t represents the time dimension[14]. In order to deal si-
multaneously with these two types of constraints, we in-
troduced the novel concept of state-time space, ¢.e. the
pxwvxt space [10]. Let S7 be this state-time space. A
curve of ST represents a trajectory along II. Therefore
it is possible to solve the problem at hand by searching a
curve in S7. The algorithm we designed in order to find
such a trajectory operates in the following way: it chooses
a time-step 7 and assumes that the acceleration applied to
A during a time-step 7 is either minimum, null or maxi-
mum. Accordingly a state-time has three neighbours and
all the state-times that A can reach from a given state-time
lie on a regular grid embedded in ST (Fig.5). This grid
is then searched in order to find a solution. Accordingly
trajectory planning is reduced to graph search.

D

Figure 5: the grid embedded in S7.

4.2.2 Motion Between the Paths

Let us consider a path-changing motion as depicted in
Fig.6a. At time t1, A shifts smoothly from its current
path II; to an adjacent path IIx41. A follows a nominal
trajectory €2 and reaches IT;11 at a certain time t5.

I 1

Q : k;—|—1 ....... é .......

(a) (b)

Figure 6: path-changing.

7

Properties #2 and #3 of §4.1.2 ensure that, when A
moves along €2, it always remains included in the domain
R(IIz)UR(IIx+1). Consequently, evaluating whether Q is
collision-free can be done very simply by checking out po-
tential collision in both paths II; and IIx4; during the time
interval [t1, t2]. Note that, in this case, the obstacles on Il



include both the forbidden intervals F(II;) and the pro-
jections of the moving obstacles Proj(B;’ (t),IIy) — such
projections being time-dependent.

Accordingly it is possible to model path-changing as a
simultaneous motion along ITy and IIj4q during [¢1,t2], or
equally, as a three-step process: (a) at time ¢1, A instan-
taneously shifts from II; to a fictitious intermediate path
Mg, (b) A moves along I, 1 during [t1,t2] (the obsta-
cles of both II; and IIx41 are assumed to be projected on
I, 1 and (c) at time t2, A instantaneously shifts from
M1 to My (Fig.6b). Accordingly this modelling re-
duces path-changing to a one-dimensional motion along a
fictitious path.

In this framework. a state-time of A is a 4-tuple (L, p,
v, t) where L is the index of the current path of A. Let
us choose a time-step 7 and assume that the acceleration
applied to A is either minimum, null or maximum. Given
a method which determines the path-changing trajectory
Q3. it is possible to determine the state-time reached by
A at the end of a path-changing. A given state-time has
now five neighbours: three on the same path and two on
each adjacent paths. All the state-times reachable from a
given state-time still lie on a regular grid embedded in ST
and it is still possible to search this grid in order to find a
solution (Fig.7).

1 4
t p
. Uz
(k + 1)T
I 4

Figure 7: the grid embedded in the extended S7. ar is
the time necessary to perform the path-changing.

5 Experimental Results

The algorithm presented above has been implemented
in C on a Sun Sparc I. We have tested the algorithm
with up to four adjacent paths. In these experiments, the
moving obstacles are generated at random without caring

3Such a method is described in [10] for a car-like robot.

whether they collide with each other. Two examples of tra-
jectory planning involving two paths are depicted in Figs 8
and 9. In each case, a path is associated with two windows:
a trace window showing the part of the grid which has been
explored and a result window displaying the final trajec-
tory. Such a window represents the ‘timexposition’ space
of the path (the position axis is horizontal while the time
axis is vertical; the frame origin is at the upper-left cor-
ner). The thick black segments represent the trails left by
the moving obstacles and the little dots are points of the
underlying grid. Note that the vertical spacing of the dots
corresponds to the time-step 7.

lane 0 (trace windowr) lane 1 (trace windowr)

- Part of thegrid explored .- - .-
——
lane 1

-Obstacles. ...l

lane O

oL

Pth—cangi ngs

Tty

Figure 8: an example of trajectory planning with two
paths: the solution has four path-changings.

In both examples, A starts from the first lane (lane
#0), at position 0 (upper-left corner) and with a null ve-
locity. It must reach the first path at position pmax (right
border) with a null velocity. A can overtake by using the
second path (lane #1). In order to simulate the behaviour
of a car on the roadway, we have chosen the following val-
ues for the various variables of the problem:

Pmax = 500m
6L = 4m
Umax = T712km/h
Gmax = 1m/ s?

It is the choice of 7 that determines the size of the grid
embedded in 87, and thus the average running time of the
algorithm. For a value of 7 set to 5s., we have obtained
running times ranging from less than a second to a few
seconds.



lane 0 (trace window) lane 1 (trace window)

lane 1

lane 0

Figure 9: an example of trajectory planning with two
paths: the solution trajectory has two path-changings.

6 Conclusion and Discussion

This paper addressed trajectory planning in dynamic
workspaces, i.e. motion planning for a robot subject to
dynamic constraints and moving in a dynamic workspace.
The case of a car-like robot A with bounded velocity and
acceleration, moving in a dynamic workspace W = IR?, was
considered. Path-velocity decomposition is a practical way
to address trajectory planning in dynamic workspaces since
it decomposes the original problem into two more simple
sub-problems. However it presents a serious drawback: it
cannot find a solution if a moving obstacle stops right on
the computed path. A possible answer to this problem
is to consider a set of candidate paths. The answer pro-
posed in this paper is the novel concept of adjacent paths:
this concept was introduced and used within a novel plan-
ning schema that operates in two complementary stages:
(a) paths planning and (b) trajectory planning. In the paths
planning stage, a set of adjacent paths (like adjacent lanes
of the roadway), one of which leads A to its goal, are com-
puted. These paths are collision-free with the stationary
obstacles and respect A’s kinematic constraints. In the tra-
jectory planning stage, given that A4 is able to shift from
one path to an adjacent one freely, the motion of A along
and between these paths is determined so as to avoid the
moving obstacles while respecting .A’s dynamic constraints.
The fact that it is possible to switch several times between
two adjacent paths makes this approach more flexible and
more powerful than one considering candidate paths. Al-
though the concept of adjacent paths is particularly well
suited for motion planning in two-dimensional workspaces,
it could be applied to three-dimensional workspaces too.

Acknowledgements: this work was partially supported
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