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Abstract: In Scott (2002) and Congdon (2006), a new method is advanced to compute posterior probabilities
of models under consideration. It is based solely on MCMC outputs restricted to single models, i.e., it is
bypassing reversible jump and other model exploration techniques. While it is indeed possible to approximate
posterior probabilities based solely on MCMC outputs from single models, as demonstrated by Gelfand and
Dey (1994) and Bartolucci et al. (2006), we show that the proposals of Scott (2002) and Congdon (2006)
are biased and advance several arguments towards this thesis, the primary one being the confusion between
model-based posteriors and joint pseudo-posteriors.
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Sur les difficultés associées à une méthode d’approximation de

probabilités a posteriori de modèles

Résumé : Dans le paradigme bayésien, Scott (2002) et Congdon (2006) ont proposé une méthode permettant
d’approcher les probabilités a posteriori de modèles. Cette technique s’appuie sur des simulations a posteriori
suivant les paramètres de chacun des modèles, ce qui est en pratique très appréciable. Bien qu’il soit possible
d’approcher les probabilités a posteriori de modèles à partir de simulations suivant les paramètres de chaque
modèle (Gelfand and Dey (1994) et Bartolucci et al. (2006)), nous montrons que la méthode de Scott (2002)
et Congdon (2006) est biaisée et basée sur un argument fallacieux.

Mots-clés : Choix bayésien de modèles, algorithmes à sauts reversibles, méthodes de Monte-Carlo par
Châınes de Markov (MCMC), lois impropres
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1 Introduction

Model selection is a fundamental statistical issue and a clear asset of the Bayesian methodology but it faces
severe computational difficulties because of the requirement to explore simultaneously the parameter spaces of
all models under comparison with enough of an accuracy to provide sufficient approximations to the posterior
probabilities of all models. When Green (1995) introduced reversible jump techniques, it was perceived by
the community as the second MCMC revolution in that it allowed for a valid and efficient exploration of
the collection of models and the subsequent literature on the topic exploiting reversible jump MCMC is a
testimony to the appeal of this method. Nonetheless, the implementation of reversible jump techniques in
complex situations may face difficulties or at least inefficiencies of its own and, despite some recent advances
in the devising of the jumps underlying reversible jump MCMC (Brooks et al., 2003), the care required in the
construction of those jumps often acts as a deterrent from its applications.

There are practical alternatives to reversible jump MCMC when the number of models under consideration
is small enough to allow for a complete exploration of those models. Integral approximations using importance
sampling techniques like those found in Gelfand and Dey (1994), based on an harmonic mean representation of
the marginal densities, and in Gelman and Meng (1998), focussing on the optimised selection of the importance
function, are advocated as potential solutions, see Chen et al. (2000) for a detailed entry. The reassessment
of those methods by Bartolucci et al. (2006) showed the connection between a virtual reversible jump MCMC
and importance sampling (see also Chopin and Robert, 2007). In particular, those papers demonstrated that
the output of MCMC samplers on each single model could be used to produce approximations of posterior
probabilities of those models, via some importance sampling methodologies also related to Newton and Raftery
(1994).

In Scott (2002) and Congdon (2006), a new and straightforward method is advanced to compute posterior
probabilities of models under scrutinity based solely on MCMC outputs restricted to single models. While this
simplicity is quite appealing for the approximation of those probabilities, we believe that both proposals of
Scott (2002) and Congdon (2006) are inherently biased and we advance in this note several arguments towards
this thesis. In addition, we notice that, to overcome the bias we thus exhibited, a valid solution would call for
the joint simulation of parameters under all models (using priors or pseudo-priors), and this step would thus
loose the primary appeal of the methods against the one proposed by Carlin and Chib (1995), from which both
Scott (2002) and Congdon (2006) are inspired.

2 The methods

In a Bayesian framework of model comparison (see, e.g., Robert, 2001), given D models in competition, Mk,
with densities fk(y|θk), and prior probabilities ̺k = P (M = k) (k = 1, . . . , D), the posterior probabilities of
the models Mk conditional on the data y are given by

P (M = k|y) ∝ ̺k

∫

fk(y|θk)πk(θk) dθk ,

the proportionality term being given by the sum of the above and M denoting the unknown model index.
In the specific setup of hidden Markov models, the solution of Scott (2002, Section 4.1) is to generate

simultaneously and independently D MCMC chains

(θ
(t)
k )t , 1 ≤ k ≤ D ,

with stationary distributions πk(θk|y) and to approximate P (M = k|y) by

˜̺k(y) ∝ ̺k

T
∑

t=1

fk(y|θ
(t)
k )

/ D
∑

j=1

̺j fj(y|θ
(t)
j ) ,

as reported in formula (21) of Scott (2002), with the mention that “(21) averages the D likelihoods corresponding
to each θj over the life of the Gibbs sampler” (p.347), the later being understood as “independently sampled
D parallel Gibbs samplers” (p.347).

From a more general perspective, the proposal of Congdon (2006) for an approximation of the P (M = k|y)’s
follows both from Scott’s (2002) approximation and from the pseudo-prior construction of Carlin and Chib
(1995) that predated reversible jump MCMC by saturating the parameter space with an artificial simulation
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4 Robert & Marin

of all parameters at each iteration. However, due to a very special (and, we believe, mistaken) choice of
pseudo-priors discussed below, Congdon’s (2006, p.349) approximation of P (M = k|y) eventually reduces to
the estimator

ˆ̺k(y) ∝ ̺k

T
∑

t=1

fk(y|θ
(t)
k )πk(θ

(t)
k )

/ D
∑

j=1

̺j fj(y|θ
(t)
j )πj(θ

(t)
j ) ,

where the θ
(t)
k ’s are samples from πk(θk|y) (or approximate samples obtained by an MCMC algorithm). (A

very similar proposal is found in Congdon (2007) and, while some issues like the use of improper pseudo-priors
discussed in Section 3.3 are corrected, the fundamental difficulty of simulating from the wrong target remains.
We thus chose to address primarily the initial paper by Congdon (2006), especially since it generated follow-up
papers like Chen et al. (2008) and since its inherent simplicity is likely to appeal to unwary readers.)

Although both approximations ˜̺k(y) and ˆ̺k(y) differ in their expressions, they fundamentally relate to the
same notion that parameters from other models can be ignored when conditioning on the model index M .
This approach is therefore bypassing the simultaneous exploration of several parameters spaces and restricts
the simulation to marginal samplers on each separate model. This feature is very appealing since it cuts most
of the complexity from the schemes both of Carlin and Chib (1995) and of Green (1995). We however question
the foundations of those approximations as presented in both Scott (2002) and Congdon (2006) and advance
below arguments that both authors are using incompatible versions of joint distributions on the collection of
parameters that jeopardise the validity of the approximations.

3 Difficulties

The sections below expose the difficulties found with both methods, following the points made in Scott (2002)
and Congdon (2006), respectively. The fundamental difficulty with their approaches appears to us to be related
to a confusion between the model dependent simulations and the joint simulations based on a pseudo-prior
scheme as in Carlin and Chib (1995). Once this difficulty is resolved, it appears that the approximation of
P (M = k|y) by P̂ (M = k|y) does require a joint simulation of all parameters and thus that the solutions
proposed in Scott (2002) and Congdon (2006) are of the same complexity as the proposal of Carlin and Chib
(1995).

3.1 Incorrect marginals

We denote by θ = (θ1, . . . , θD) the collection of parameters for all models under consideration. Both Scott
(2002) and Congdon (2006) start from the representation

P (M = k|y) =

∫

P (M = k|y, θ)π(θ|y) dθ

to justify the approximation

P̂ (M = k|y) =
T

∑

t=1

P (M = k|y, θ(t))/T .

This is indeed an unbiased estimator of P (M = k|y) provided the θ(t)’s are generated from the correct
(marginal) posterior

π(θ|y) =

D
∑

k=1

P (θ,M = k|y) (1)

∝

D
∑

k=1

̺k fk(y|θk)
∏

j

πj(θj)

=

D
∑

k=1

̺k mk(y)πk(θk|y)
∏

j 6=k

πj(θj) . (2)

In both papers, the θ(t)’s are instead simulated as independent outputs from the componentwise posteriors
πk(θk|y) and this divergence jeopardises the validity of the approximation. The error in their interpretations

stems from the fact that, while the θ
(t)
k ’s are (correctly) independent given the model index M , this indepen-

dence does not hold once M is integrated out, which is the case in the above approximation P̂ (M = k|y).
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Model’s posterior probability approximation 5

3.2 MCMC versus marginal MCMC

When Congdon (2006) defines a Markov chain (θ(t)) at the top of page 349, he indicates that the components

of θ(t) are made of independent Markov chains (θ
(t)
k ) simulated with MCMC samplers related to the respective

marginal posteriors πk(θk|y), following the approach of Scott (2002). The aggregated chain (θ(t)) is thus
stationary against the product of those marginals,

D
∏

k=1

πk(θk|y) .

However, in the derivation of Carlin and Chib (1995), the model is defined in terms of (1) and the Markov
chain should thus be constructed against (1), not against the product of the model marginals. Obviously, in
the case of Congdon (2006), the fact that the pseudo-joint distribution does not exist because of the flat prior
assumption (see Section 3.3) prevents this construction but, in the event the flat prior is replaced with a proper
(pseudo-) prior (as in Congdon, 2007), the same statement holds: the probabilistic derivation of P (M = k|y)
relies on the pseudo-prior construction and, to be valid, it does require the completion step at the core of Carlin
and Chib (1995), where parameters need to be simulated from the pseudo-priors.

Similarly, in Scott (2002), the target of the Markov chain (θ(t), M (t)) should be the distribution

P (θ,M = k|y) ∝ πk(θk) ̺k fk(y|θk)
∏

j 6=k

πj(θj)

and the θ
(t)
j ’s should thus be generated from the prior πj(θj) when M (t) 6= j—or equivalently from the

corresponding marginal if one does not condition on M (t), but simulating a Markov chain with stationary
distribution (2) is certainly a challenge in many settings if the latent variable decomposing the sum is not to
be used.

Since, in both Scott (2002) and Congdon (2006), the (θ(t))’s are not simulated against the correct target, the
resulting averages of P (M = k|y, θ(t)), ˜̺k(y) and ˆ̺k(y), will both be biased, as demonstrated in the example
of Section 3.4.

3.3 Improperty of the posterior

When resorting to the construction of pseudo-posteriors adopted by Carlin and Chib (1995), Congdon (2006)
uses a flat prior as pseudo-prior on the parameters that are not in model Mk. More precisely, the joint prior
distribution on (θ,M) is given by Congdon’s (2006) formula (2),

P (θ,M = k) = πk(θk) ̺k

∏

j 6=k

π(θj |M = k)

= πk(θk) ̺k ,

which is indeed equivalent to assuming a flat prior as pseudo-prior on the parameters θj that are not in model
Mk.

Unfortunately, this simplifying assumption has a dramatic consequence in that the corresponding joint
posterior distribution of θ is never defined (as a probability distribution) since

π(θ|y) =

D
∑

k=1

πk(θk|y) P (M = k|y)

does not integrate to a finite value in any of the θk’s (unless their support is compact). When Congdon (2006)
points out “that it is not essential that the priors for P (θj 6=k|M = k) are improper” (p.348), the whole issue
is that they cannot be improper.

The fact that the posterior distribution on the saturated vector θ = (θ1, . . . , θD) does not exist obviously
has dire consequences on the subsequent derivations, since a positive recurrent Markov chain with stationary
distribution π(θ|y) cannot be constructed. Similarly, the fact that

P (M = k|y) =

∫

P (θ, M = k|Y ) dθ

RR n➦ 0123456789



6 Robert & Marin

does not hold any longer.
Note that Scott (2002) does not follow the same track: when defining the pseudo-priors in his formula (20),

he uses the product definition1

P (θ,M = k) = πk(θk) ̺k

∏

j 6=k

πj(θj) ,

which (seemingly) means that the true priors are also used as pseudo-priors across all models. However, we
stress that Scott (2002) does not refer to the construction of Carlin and Chib (1995) in his proposal.

3.4 Illustration

We now proceed through a toy example where all posterior quantities can be computed in order to evaluate
the bias brought by both approximations.

Example 1. Consider the case when a model M1 : y|θ ∼ U(0, θ) with a prior θ ∼ Exp(1) is opposed to a
model M2 : y|θ ∼ Exp(θ) with a prior θ ∼ Exp(1). We also assume equal prior weights on both models:
̺1 = ̺2 = 0.5.

The marginals are then

m1(y) =

∫ ∞

y

θ−1e−θ dθ = E1(y) ,

where E1 denotes the exponential integral function tabulated both in Mathematica and in the GSL library, and

m2(y) =

∫ ∞

0

θe−θ(y+1) dθ =
1

(1 + y)2
.

For instance, when y = 0.2, the posterior probability of M1 is thus equal to

P (M = 1|y) = m1(y)/{m1(y) + m2(y)}

= E1(y)/{E1(y) + (1 + y)−2}

≈ 0.6378 ,

while, for y = 0.9, it is approximately 0.4843. This means that, in the former case, the Bayes factor of M1

against M2 is B12 ≈ 1.760, while for the later, it decreases to B12 ≈ 0.939.
The posterior on θ in model M2 is a gamma Ga(2, 1 + y) distribution and it can thus be simulated directly.

For model M1, the posterior is proportional to θ−1 exp(−θ) for θ larger than y and it can be simulated using
a standard accept-reject algorithm based on an exponential Exp(1) proposal translated by y.

Using simulations from the true (marginal) posteriors and the approximation of Congdon (2006), the
numerical value of ˆ̺1(y) based on 106 simulations is 0.7919 when y = 0.2 and 0.5633 when y = 0.9, which
translates into Bayes factors of 3.805 and of 1.288, respectively. For the approximation of Scott (2002), the
numerical value of ˜̺1(y) is 0.6554 (corresponding to a Bayes factor of 1.898) when y = 0.2 and 0.6789 when
y = 0.9 (corresponding to a Bayes factor of 2.11), based on the same simulations. Note that in the case y = 0.9,
a selection based on either approximation of the Bayes factor would select the wrong model.

If we use instead a correct simulation from the joint posterior (2), which can be achieved by using a Gibbs
scheme with target distribution P (θ,M = k|y), we then get a proper MCMC approximation to the posterior
probabilities by the P̂ (M = k|y)’s. For instance, based on 106 simulations, the numerical value of P̂ (M = 1|y)
when y = 0.2 is 0.6370, while, for y = 0.9, it is 0.4843. Note that, due to the impropriety difficulty exposed in
Section 3.3, the equivalent correction for Congdon’s (2006) scheme cannot be implemented.

In Figure 1, the three approximations are compared to the exact value of P (M = 1|y) for a range of values of
y. The correct simulation produces a graph that is indistinguishable from the true probability, while Congdon’s
(2006) approximation stays within a reasonable range of the true value and Scott’s (2002) surprisingly drifts
apart for most values of y. ◭

The correspondence of what is essentially Carlin and Chib’s (1995) scheme with the true numerical value
of the posterior probabilities is obviously unsurprising in this toy example but more advanced setups see the
approximation degenerate, since the simulations from the prior are most often inefficient, especially when the
number of models under comparison is large. This is the reason why Carlin and Chib (1995) introduced
pseudo-priors that were closer approximations to the true posteriors.

1The indices on the priors have been added to make notations coherent, since Scott (2002) denotes all priors with the same
letter p.
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Figure 1: Comparison of three approximations of P (M = 1|y) with the true value (in black): Scott’s (2002)
approximation (in blue), Congdon’s (2006) approximation (in green), and correction of Scott’s (2002) approx-
imation (in red), indistinguishable from the true value (based on N = 106 simulations).
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