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Abstract

It is a well-known fact that, under mild sampling conditions, the restricted Delaunay trian-
gulation provides good topological approximations of 1- and 2-manifolds. We show that this is
not the case for higher-dimensional manifolds, even under stronger sampling conditions. Specif-
ically, it is not true that, for any compact closed submanifold S of Rn, and any sufficiently dense
uniform sampling L of S, the Delaunay triangulation of L restricted to S is homeomorphic to
S, or even homotopy equivalent to S. Besides, it is not true either that, for any sufficiently
dense set W of witnesses, the witness complex of L relative to W coincides with the restricted
Delaunay triangulation of L.

1 Background and definitions

All manifolds considered in this paper are compact closed submanifolds of Euclidean spaces. The
reach of a manifold S, or rch(S) for short, is the minimum distance of a point on S to the medial
axis of S. All our manifolds have a positive reach. This is equivalent to saying that they are
C1-continuous, and that their normal vector field satisfies a Lipschitz condition.

Given a (finite or infinite) subset L of a manifold S, and a positive parameter ε, L is an ε-sample

of S if every point of S is at Euclidean distance at most ε to L, and L is ε-sparse if the pairwise
Euclidean distances between the points of L are at least ε. Note that an ε-sparse sample of a
compact set is always finite. Parameter ε is sometimes made adaptative in the literature [1], its
value depending on the distance to the medial axis of the manifold. In this context, our ε-samples
are called uniform ε-samples.

For any finite set of points L ⊂ Rn, D(L) denotes its n-dimensional Delaunay triangulation, and
DX(L) its Delaunay triangulation restricted to a given subset X of Rn. By definition, DX(L) is the
nerve of the restriction of the Voronoi diagram of L to X. For any simplex σ of D(L), V(σ) stands
for the face of the Voronoi diagram of L that is dual to σ. The following result comes from [1, 2]:

Theorem 1.1 If S is a smooth curve in the plane or a smooth surface in 3-space, and if L is a

finite ε-sample of S, with ε < 0.1 rch(S), then DS(L) is homeomorphic to S.

Let L, W be two subsets of Rn, such that L is finite. Given a point w ∈ W and a simplex
σ = [p0, · · · , pk] with vertices in L, w is a ω-witness of σ (or simply w ω-witnesses σ) if p0, · · · , pk

are among the k + 1 nearest neighbors of w in the weighted metric, that is, ∀i ∈ {0, · · · , k},
∀q ∈ L \ {p0, · · · , pk}, ‖w − pi‖

2 − ω(pi)
2 ≤ ‖w − q‖2 − ω(q)2. The ω-witness complex of L relative

to W , or CW (L) for short, is the maximum abstract simplicial complex with vertices in L, whose
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faces are ω-witnessed by points of W . From now on, W will be referred to as the set of witnesses,
and L as the set of landmarks. As remarked in [6, 7], when W samples a manifold S, the witness
complex CW (L) can be viewed as a discrete version of the restricted Delaunay DS(L), and as such
it should be closely related. It is indeed the case for curves and surfaces, as stated in the following
result, which comes from [3, 8]:

Theorem 1.2 There exists a positive constant c such that, if S is a smooth curve in the plane or a

smooth surface in 3-space, and if L is an ε-sample of S, with ε ≤ c rch(S), then CW (L) is included

in DS(L) for any set of witnesses W ⊆ S, and it coincides with DS(L) for W = S.

2 Negative results

In this section, we prove that Theorems 1.1 and 1.2 do not hold the same for higher-dimensional
manifolds. We first show that DS(L) is not always homeomorphic to S, even though L is an Ω(ε)-
sparse O(ε)-sample of S, for arbitrarily small ε (Theorem 2.1). Our proof builds on an example
of [5, §11], which deals with hypersurfaces in R4. The intuitive idea is that, when DS(L) contains
badly-shaped tetrahedra, called slivers, it is possible to make its normals turn by a large angle
(say π/2) by perturbating the points of L infinitesimally. It follows that the combinatorial structure
of DS(L) can be modified by small perturbations of S. We then extend our counter-example to
show that DS(L) may even not be homotopy equivalent to S (Theorem 2.2). Finally, we show that
CW (L) may not be included in DS(L), even for arbitrarily dense sets W ⊆ S (Theorem 2.3). The
fact that CW (L) may not contain DS

ω(L) if W ( S has already been proved in [8].

Theorem 2.1 For any positive constant µ < 1/3, there exists a compact closed hypersurface S in

R4, and an Ω(ε)-sparse O(ε)-sample L of S, with ε = µ rch(S), such that DS(L) is not home-

omorphic to S. The constants hidden in the Ω and O notations are absolute and do not depend

on µ.

Proof. Let ∆ = 2/µ. In R4, endowed with an orthonormal frame (x, y, z, t), we construct a
hypersurface S of reach ∆/2 = 1/µ. Consider the Minkowski sum of hypercube [−∆/2, ∆/2]4 with
the ball of radius ∆/2 centered at the origin. The result is a smoothed-out version of hypercube
[−∆, ∆]4, as illustrated in Figure 1 (left). Let S be its boundary. The reach of S is ∆/2, as shown
in Figure 1 (right).

Let ε = µ rch(S) = 1, and let δ > 0 be an arbitrarily small parameter. Consider points
u = (1, 0, 0, ∆), v = (1, 1, 0, ∆), w = (0, 1, 0, ∆), and p0 = (0, 0, δ, ∆). Let c0 = (1/2, 1/2, δ/2, ∆). It is
easily seen that c0 is the circumcenter of [u, v, w, p0]. Moreover, all these points belong to S, which
coincides with hyperplane t = ∆ in their vicinity. Let r0 = ‖c0−u‖ = ‖c0−v‖ = ‖c0−w‖ = ‖c0−p0‖.
We generate an ε-sparse 2ε-sample L0 of S by an iterative process, starting with L0 = {u, v, w, p0},
and inserting at each iteration the point of S lying furthest away from the current point set L0, until
the farthest point of S is no farther than 2ε from L0. Since S is compact, the process terminates,
and the outcome is a 2ε-sample of S. Moreover, since u, v, w, p0 lie at least ε away from one another,
and since every point inserted in L0 lies at least 2ε away from L0 at the time of its insertion, L0 is
ε-sparse. Finally, no point of B(c0, r0) lies farther from {u, v, w, p0} than 2r0 = 2

√

1/2 + δ2/4, which
is less that 2ε since δ is arbitrarily small. It follows that the interior of B(c0, r0) contains no point
of L0, which implies that [u, v, w, p0] belongs to DS(L0), its dual Voronoi edge intersecting S at c0.
Observe also that, since u, v, w, p0 belong to hyperplane t = ∆, the normal of [u, v, w, p0] is aligned
with vector (0, 0, 0, 1), as shown in Figure 2 (left).
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Figure 1: Left: 2d version of hypersurface S (bold), defined as the boundary of the Minkowski sum
of hypercube [−∆/2, ∆/2]2 (solid) with the ball of radius ∆/2 centered at the origin (copies of this
ball are dashed). Hypercube [−∆, ∆]2 is marked by dotted lines. Right: S and its medial axis.

We now deform S slightly and create a small bump at c0, such that the top of the bump is
moved by δ/2 into the t-dimension, outward the hypercube, while u, v, w, p0 remain fixed. This
bump changes the local feature size of S. However, since δ is arbitrarily small, the radius of
curvature of the bump can be forced to be at least ∆/2, which implies that the reach of S remains
equal to ∆/2 = 1/µ. Let c = (1/2, 1/2, δ/2, ∆ + δ/2) be at the top of the bump. Since the points of L0

remained fixed and are located in hyperplane t = ∆ in the vicinity of [u, v, w, p0], c is equidistant to
u, v, w, p0, and closer to these points than to any other point of L0. This implies that the open ball
Bc = B(c, ‖c− u‖) contains no point of L0 and has u, v, w, p0 on its bounding sphere. Hence, Bc is
a Delaunay ball circumscribing [u, v, w, p0], and c belongs to the Voronoi edge dual to [u, v, w, p0].
Moreover, since u, v, w and (0, 0, 0, ∆) are cocircular, ∂Bc passes also through (0, 0, 0, ∆).

We deform S further by creating another small bump, at point (0, 0, 0, ∆) this time, so as to
move this point by δ into the t-dimension, outward the hypercube. Let p = (0, 0, 0, ∆ + δ) be the
top of the bump – see Figure 2 (right). A quick computation shows that ‖c − p‖ = ‖c − u‖, which
implies that p ∈ ∂Bc. Here again, by choosing δ sufficiently small, we can make sure that the radius
of curvature of the bump is at least ∆/2, which means that the local feature size of the deformed
hypersurface is still ∆/2 = 1/µ. We can also make sure that the bump of p is disjoint from the bump
of c, since ‖c − p‖ > 1/

√
2, and that the points of L0 \ {p0} remain fixed1. It follows that Bc is

empty of points of L, where L is defined by L = L0 ∪ {p} \ {p0}. Since ∂Bc contains u, v, w, p, Bc

is a Delaunay ball circumscribing [u, v, w, p]. Equivalently, c belongs to the Voronoi edge e dual to
[u, v, w, p]. Note also that L is an (ε − δ)-sparse (2ε + δ)-sample of S.

Since [u, v, w, p] is included in hyperplane z = 0, its dual Voronoi edge e is aligned with (0, 0, 1, 0),
as illustrated in Figure 2 (right). This edge is incident to four Voronoi 2-faces, which are dual to the
four facets of [u, v, w, p]. These 2-faces can be seen as extrusions, into the z-dimension (0, 0, 1, 0),

1They lie at least ε away from p0, and hence at least ε − δ away from (0, 0, 0, ∆).
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Figure 2: Left: tetrahedron [u, v, w, p0] and its dual Voronoi edge. Right: after perturbation of S.

of the edges of the Voronoi diagram of {u, v, w, p} inside hyperplane z = 0. Among these Voronoi
edges, two lie above hyperplane t = ∆ + δ/2, and two lie below. It follows that two Voronoi 2-faces
incident to e in R4 lie above hyperplane t = ∆ + δ/2. These two Voronoi 2-faces do not intersect
S, except at c and possibly at the bump of p. Now, the circumradii of the facets of [u, v, w, p] are

at most ‖c − u‖ =
√

1+δ2√
2

< µ rch(S), thus, inside hyperplane z = 0, Amenta and Bern’s normal

lemma [1, Lemma 7] states that the edges of the Voronoi diagram of {u, v, w, p} make angles of at

most arcsin µ
√

3
1−µ

< π/3 with vector (0, 0, 0, 1). As a consequence, any Voronoi 2-face f incident to

e in R4 makes an angle of at most π/3 with the plane passing through c, of directions (0, 0, 1, 0)
and (0, 0, 0, 1) (note that aff(f) intersects this plane along the line aff(e)). Since p lies 1/

√
2 away

from this plane and only δ/2 above c, for sufficiently small δ the Voronoi 2-faces incident to e lying
above hyperplane t = ∆ + δ/2 do not intersect the bump of p. As a consequence, they intersect S
only at c, and therefore, their dual Delaunay triangles are incident to exactly one tetrahedron of
DS(L), namely [u, v, w, p]. Hence, DS(L) is not a closed hypersurface, and for this reason it cannot
be homeomorphic to S. ¤

The example given in the proof corresponds to a degenerate case, since the Voronoi edge e dual
to tetrahedron [u, v, w, p] intersects S tangentially. This degeneracy can be removed by inflating the
bump of c infinitesimally, so that it intersects e twice and transversally, while still not intersecting
any other Voronoi edge.

Observe also that tetrahedron [u, v, w, p] is a sliver, since vertex p lies close to the affine hull
of u, v, w. The original counter-example of [5] was designed to highlight the fact that the normals
of slivers in the restricted Delaunay triangulation may differ significantly from the normals of
the underlying manifold. This is not true for non-sliver simplices, as shown in Lemma 15 of [5].
Therefore, the fact that [u, v, w, p] is a sliver is crucial for our counter-example.

Theorem 2.2 For any positive constant µ < 1/3, there exists a compact closed hypersurface S in

R4, and an Ω(ε)-sparse O(ε)-sample L of S, with ε = µ rch(S), such that DS(L) is not homotopy

equivalent to S. The constants hidden in the Ω and O notations are absolute and do not depend

on µ.
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Proof. Let ∆ = 2/µ, and let δ > 0 be an arbitrarily small parameter. We begin our analysis
with the example built in the proof of Theorem 2.1, and we modify S and L so that tetrahedron
[p, u, v, w] no longer belongs to DS(L) while its four facets still do. This prevents DS(L) from being
homotopy equivalent to S.

Consider point q = ((1+
√

2)/2, 1/2, δ2, ∆ + δ). The distance of q to hyperplane t = ∆ is δ, which
is arbitrarily small. Hence, as explained in the proof of Theorem 2.1, it is possible to deform S
slightly by creating a small bump of radius of curvature at least ∆/2 at point ((1+

√
2)/2, 1/2, δ2, ∆),

so that S now passes through q, while its local feature size remains ∆/2 = 1/µ. Moreover, since q
lies farther than 1/2 from {p, u, v, w}, we can assume without loss of generality that its bump does
not affect the positions of p, u, v, w.

The circumcenter of pentahedron [p, u, v, w, q] is c′ = (1/2, 1/2, δ2/2, ∆+ δ/2), and its circumradius
r′ is less than ε = 1 (for sufficiently small δ). It follows that every point of S lying in the ball
B(c′, r′) is at distance O(ε) of {p, u, v, w, q}. In addition, q is farther than ε/2 from {p, u, v, w}.
Therefore, if we modify L by inserting q and deleting all the points that lie in the interior of
B(c′, r′), L remains an Ω(ε)-sparse O(ε)-sample of S. Moreover, [p, u, v, w, q] is now a Delaunay
pentahedron, whose dual Voronoi vertex is c′.

Note that line (c, c′) is the affine hull of the Voronoi edge e dual to [p, u, v, w], and that c′ is an
endpoint of e – see Figure 3 (top). Recall that, among the four 2-faces incident to e, two lie above
hyperplane t = ∆ + δ/2. Let fpuv and fpvw denote these two 2-faces. They are dual to triangles
[p, u, v] and [p, v, w] respectively, since p lies above hyperplane t = ∆, which contains [u, v, w].
Moreover, fpuv and fpvw are convex polygons, whose boundaries are cycles of Voronoi edges that
intersect along e. In the cycle of ∂fpuv, one edge adjacent to e, say epuvq, is dual to tetrahedron
[p, u, v, q]. Similarly, in the cycle of ∂fpvw, one edge adjacent to e, say epvwq, is dual to [p, v, w, q].
Note that c′ is an endpoint of both epuvq and epvwq. Moreover, it can be easily verified that the

line aff(epuvq) passes also through point cpuvq =
(

1
2 + δ2(δ2+1)

1+
√

2
, 1

2 ,−1
2 , ∆ + δ

2 + δ(δ2+1)

1+
√

2

)

, while the

line aff(epvwq) passes through cpvwq =
(

1
2 , 1

2 + δ2(δ2 + 1),−1
2 , ∆ + δ

2 + δ(δ2 + 1)
)

. This implies that
epuvq and epvwq make angles of O(δ) with hyperplane t = ∆ + δ/2. So, we are in a situation where
tetrahedron [p, u, v, w] has a horizontal dual edge, while two of its adjacent tetrahedra, namely
[p, u, v, q] and [p, v, w, q], have almost horizontal dual edges, as illustrated at the top of Figure 3.

Since ‖cpuvq − p‖ = ‖cpuvq − u‖ = ‖cpuvq − v‖ = ‖cpuvq − q‖ < ‖cpuvq − w‖, which is less than
ε = 1 for sufficiently small δ, we can modify2 L so that the open ball B(cpuvq, ‖cpuvq − q‖) is empty
of points of L, while L remains an Ω(ε)-sparse O(ε)-sample of S. Similarly, we can assume without
loss of generality that B(cpvwq, ‖cpvwq − q‖) is a Delaunay ball. It follows that cpuvq ∈ epuvq and
cpvwq ∈ epvwq. Since cpuvq and cpvwq lie O(δ) away from each other, O(δ) above hyperplane t = ∆,
and Ω(ε) away from L, we can deform S by creating a bump passing through cpuvq and cpvwq, of
height O(δ) and radius of curvature at least ∆/2, while keeping the points of L fixed – see Figure 3
(bottom). Moreover, since cpuvq and cpvwq also lie Ω(ε) away from c, we can assume without loss
of generality that their bump does not touch the bump of c. It follows that tetrahedra [p, u, v, w],
[p, u, v, q], and [p, v, w, q], belong to DS(L), while S is still tangent at c to the Voronoi edge e
dual to tetrahedron [p, u, v, w]. We call S+ the current version of hypersurface S, and DS+

(L) the
Delaunay triangulation of L restricted to S+.

Our last operation consists in deflating slightly the bump of c, so that S no longer intersects e,
and hence [p, u, v, w] no longer belongs to DS(L), as illustrated at the bottom of Figure 3. Note

2For instance, we can simply delete the points of L that lie in B(cpuvq, ‖cpuvq − q‖).
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Figure 3: Top: pentahedron [p, u, v, w, q] and the duals of [p, u, v, w], [p, u, v, q], and [p, v, w, q].
Bottom: the bump of cpuvq and cpvwq (the bump of c has been slightly deflated).

however that [p, u, v, q] and [p, v, w, q] (and hence triangles [p, u, v] and [p, v, w]) are still in DS(L),
since the bump of cpuvq and cpvwq is disjoint from the bump of c. Moreover, recall that the Voronoi
2-faces dual to triangles [p, u, w] and [u, v, w] lie below hyperplane t = ∆ + δ/2, and that they make
angles of at most π/3 with vector (0, 0, 0, 1). Since the deflation of the bump of c is arbitrarily small,
the Voronoi 2-faces dual to triangles [p, u, w] and [u, v, w] still intersect S. As a consequence, the
two triangles remain in DS(L). We call S− the current version of hypersurface S, and DS−

(L) the
Delaunay triangulation of L restricted to S−.

The result of these operations is that, although L is an Ω(ε)-sparse O(ε)-sample of hypersurfaces
S+ and S−, whose homotopy type and reach are the same as for S, DS+

(L) and DS−

(L) are
different. Specifically, tetrahedron [p, u, v, w] is contained in DS+

(L) but not in DS−

(L), whereas
its facets belong to both complexes. It follows that the Euler characteristics of DS+

(L) and DS−

(L)
are different3, which implies that the complexes have different homotopy types. Therefore, at least
one of them is not homotopy equivalent to the 3-sphere S. ¤

Theorem 2.3 For any positive constants µ, ν < 1/3, there exists a compact closed hypersurface

S in R4, an Ω(ε)-sparse O(ε)-sample L of S, with ε = µ rch(S), and a δ-sample W of S, with

δ = ν rch(S), such that CW (L) is not included in DS(L). The constants hidden in the Ω and O

3Specifically, χ(DS+

(L)) = χ(DS−

(L)) − 1.
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notations are absolute and do not depend on µ, ν. Moreover, W can be made indifferently finite or

infinite.

Proof. Let S−, L, e, and c, be defined as in the proof of Theorem 2.2. Recall that tetrahedron
[p, u, v, w] does not belong to DS−

(L), whereas its facets do. We assume without loss of generality
that c is not an endpoint of the Voronoi edge e, which means that the bounding sphere of the Delau-
nay ball B(c, ‖c−p‖) contains no point of L, except for p, u, v and w. This condition can be ensured
by an infinitesimal perturbation of the points of L \ {p, u, v, w}. Let dc = minp′∈L\{p,u,v,w} ‖c− p′‖.
This quantity is greater than ‖c − p‖ since B(c, ‖c − p‖) contains no point of L \ {p, u, v, w}.

Consider any (finite or infinite) set of witnesses W ⊆ S− such that, for each facet σ of [p, u, v, w],
W contains at least one point of S− ∩ V(σ) (every such point witnesses σ and its subsimplices).
Assume further that W contains the top point of the bump of c (call this point c′′). In the last
stage of the perturbation of S described in the proof of Theorem 2.2, we slightly deflated the bump
of c, so that c′′ lies strictly below c. Note that the vertex of [p, u, v, w] lying furthest away from
c′′ is p. Since the deflation was arbitrarily small, we can assume without loss of generality that
‖c− c′′‖ < 1

2 (dc − ‖c − p‖). This implies that the ball B(c′′, ‖c′′− p‖) ⊆ B(c, ‖c− p‖+2‖c− c′′‖) is
included in the interior of B(c, dc). As a result, B(c′′, ‖c′′− p‖) contains no point of L \ {p, u, v, w}.
Since p, u, v, w belong to B(c′′, ‖c′′ − p‖), tetrahedron [p, u, v, w] is witnessed by c′′. And since the
facets of [p, u, v, w] and their subsimplices are witnessed by points of W , [p, u, v, w] belongs to the
witness complex CW (L). However, we saw in the proof of Theorem 2.2 that [p, u, v, w] does not
belong to DS−

(L). ¤

3 Conclusion

We have proved that the structural properties of the restricted Delaunay triangualtion and witness
complex on 1- and 2-manifolds do not hold for higher-dimensional manifolds. This implies in
particular that the Delaunay-based approach to meshing and reconstruction is unlikely to work as
is in higher dimensions. One possible way of getting rid of pathological cases is to use the sliver
exudation technique of [4], which assigns weights to the vertices of the triangulation in order to
remove slivers from the vicinity of the restrited Delaunay triangulation. This strategy has been
successfully applied in [5].
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