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Appearance Preserving Octree-Textures

Julien Lacoste Tamy Boubekeut Bruno Jobard Christophe Schlick
LIUPPA TU Berlin LIUPPA INRIA
University of Pau University of Pau University of Bordeaux

Figure 1: Left: simpli ed mesh of 15K triangles. Middle: an octree is built around thism& adaptively sample and store the normal
eld of the high resolution version of the mesh. Right: the simpli ed meshiisabmapped via a special GPU traversal of the octree cells
encoded in a 2D texture. The operation does not requires 2D pararatdrizof the mesh.

Abstract mappingtechnigues with recent real-time 3D engines. The nor-

mal mapping techniques permits to strongly reduce the complexity
Because of their geometric complexity, high resolution 3D models, of a mesh, by converting the local geometry variation into a map of
either designed in high-end modeling packages or acquired with normal vectors, that will be used at the rendering stage by adapted
range scanning devices, cannot be directly used in applications thatfragment shaders. However, with existing techniques, the use of
require rendering at interactive framerates. One clever method tonormal maps suffers from two strong drawbacks:

overcome this limitation is to perform amppearance preserving As normal maps are stored as 2D textures, they require ei-
geometry simpli cationby replacing the original model with a low ther a global or a piecewise parameterization of the 3D model,
resolution mesh equipped with high resolution normal maps. This which may involve complex computation and generally can't
process visually preserves small scale features from the initial ge- be performed automatically for non trivial topologies.

ometry, while only requiring a reduced set of polygons. However,

this conversion usually relies on some kind of global or piecewise To compensate for the geometric distortion involved by the

parameterization, combined with the generation of a texture atlas, a projection operator, over-sampling has to be used in order to
process that is computationally expensive and requires precise user ~ avoid loss of details.
supervision. In this paper, we propose an alternative method in Both drawbacks are directly linked to the 2D nature of the normal
which the normal eld of a high resolution model is adaptively sam- map, so seeking for an alternative representation may be worth try-
pled and encoded in an octree-based data structure, that vepeall  ing. While raw 3D textures would clearly be too expensive even for
pearance preserving octree-textygPO). Our main contributions moderately complex modelgctree-texturesecently introduced
are: anormal-driven octree generation acompact encodingand for painting-on-surface applications, offer many interesting proper-
an ef cient look-up algorithm . Our method is ef cient, totally ties: they do not require any surface parameterization, and provide
automatic, and avoids the expensive creation of a parameterizationeasy ef cient adaptive sampling, as well as compact storage, as no
with its corresponding texture atlas. values are stored in the empty space surrounding the object. In this
paper, we propose a general framework to extract and encode the
CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional normal map of an arbitrarily complex object using octree-textures.

Graphics and Realism—; Our algorithm takes two versions of the same object as an input: a
full resolution versiorM providing all the features that we would

Keywords: Appearance Preserving simpli cation, Octree- like to reproduce, and a simpli ed versian, onto which we apply

Textures, GPU, Normal mapping the generated normal map for real-time rendering. Four main steps

are involved: rstan octree data structure is adaptively built around
. m, driving its re nement with the normal eld oM . Second, a

1 Introduction ray casting procedure is employed to accurately sample the normal
eld at each cell of the octree. The resulting normal octree-texture
is then encoded as a regular 2D texture for optimized storage and
manipulation by the GPU. Finally, at rendering time, an ef cient
adaptative octree traversal algorithm is performed on the fragment
shader stage to achieve interactive framerates.

Among the various lessons that high quality off-line rendering has
taught us, the most important one involves the fundamental role
played by normal vectors: the nal appearance of a surface is more
in uenced when locally editing the surface gradient rather than the
surface geometry. This explains the growing intereshammal

e-mail: julien.lacoste @univ-pau.fr 2 Related Work
Ye-mail: boubek@cs.tu-berlin.de
Ze-mail: bruno.jobard@univ-pau.fr Appearance-Preserving Simpli cation: Replacing a detailed

*e-mail: schlick@labri.fr mesh with a coarse one together with several textures storing the



normal eld has been independently introduced by Cignoni et al. simpli cation technique. Our goal is then to build appearance
[Cignoni et al. 1998; Cignoni et al. 1999] and Cohen et al.[Cohen preserving octree-texturAPO) for m, by sampling the normal
et al. 1998]. eld de ned by M. In order to capture all the ne scale variation
of this normal eld, we apply the following adaptive process to

In the work of Cignoni et al. [Cignoni et al. 1998; Cignoni et al. generate the APO.

1999], textures are built for a coarse meshby sampling details
on the full resolution mesM . The user de nes a xed sampling Ina rst step, an initial coarse octree with a restricted depth is built
rate, used for all triangles ah, then for each sample, the clos- aroundm. At each leaf cellC of this coarse octree, a list called
est point onM is found. All the normal maps of each triangle are t€ (resp. T®) is created to store the triangles of (resp. M)
packed in a texture atlas, eventually sheared to match the best ttingthat belong to cellC. An error criterion is then used to check if
shape in the texture. As the sampling rate is the same for each trianfurther subdivision is required for this leaf cell. The use of an initial
gle, the texture quickly becomes large when this rate is increased,octree with a restricted depth avoids subdivision tests on coarser
while low detailed areas are over-sampled. To avoid the storagelevels, since the details will be in leaves at ner levels. Our error
of high resolution textures, an over-sampling technique is used. It criterion is based on thie® metric introduced in [Cohen-Steiner
increases the quality of low resolution textures, by computing an et al. 2004]:

average value for each texel. X

21 - . 2
In the work by Cohen et al. [Cohen et al. 1998], a simpli cation L=(C) JN7, Nrel
algorithm is applied o to producem as well as a set of textures Ti2Te

encoding either normals or surface colors. To generate the texturewhereNTC is the average normal vector of all the triangles that

map, each polygon of the initial mesh is projected on a 2D plane. belong to the lisfT€. ThelL?' metric measures the normal eld
Then an edge collapse simpli cation is performed to createand variation in the cell. Using this metric allows to catch all small-

the texture coordinates of are computed during this simpli ca- scale high frequency features that must be reproduced in the APO.

tr':.nés-rthee ?l#éhg.gsté?tt.g)ﬁgcf.r? t(teﬁéusr.emdei.v(l:a;tl%r:‘ mggfﬁ V;?é%htcr’nt'ﬁg If the error criterion is above a user-provided threshold, the leaf cell
12 xture i : uring Impli cation. P is subdivided into 8 sub-cells, but only the children which actually

previous ()tng, ﬂl.e malfntgrayvlzla?k Ofsm's ti(.:hr:u.que Its tzat ': rgqtuwes contain some triangles o are kept. Indeed, as the octree-texture
a parameterization or the iniial mesih which 1S not adapted to will be used on the mesin, all cells that do not intersech are

highly detailed objects. useless for the rendering step. After the subdivision, both triangle

Normal mapping has been employed to obtain smooth transition lists T andt® must be updated, simply by moving each triangle
when streaming progressive meshes [Sander et al. 2001]. The usén any sub-cell it belongs to. As we do not necessarily keep all the
of ray-casting to sample a normal eld has also been studied in Sub-cells, some triangles fromc.may not be entirely enclosed in
[Rogers 2003] and [Sander et al. 2000]. A classi cation and a com- the sub-cells; in that case, we simply keep the corresponding trian-
parison of these methods is proposed in [Tarini et al. 2003]. gles inT®, as they will be needed during the eld sampling step.

S . _ _ _ This subdivision scheme is recursively performed and is stopped
Another application of appearance preserving techniques is the Vi- either when the error criterion is ful lled, or when a user-provided
sualization of very large point clouds, acquired by laser range scan-maximum depth is reached (see Figure 10).

ners, for instance. Boubekeur et al. [Boubekeur et al. 2005] pro-
posed a direct point cloud to normal map conversion which works
in streaming and generates a coarse mesh combined with a set o
normal maps tting a given memory budget, by using out-of-core Once the octree has been built, each cell must be lled with a rep-
simpli cation, local triangulation and hierarchical diffusion. resentative sample of the normal eld M. To get an accurate
sampling, we use a ray casting procedure. More precisely, for a
given leaf cellC, a rayR; is cast for each trianglg 2 t€. The
OIorigin of R; is obtained by projecting the center of the c&llon

ti, and as in [Sander et al. 2000], the directionRofis the inter-
polated normal or; obtained at the ray origin, to avoid sampling
discontinuities that may appear between neighboring triangles (see
Figure 2). To speedup the ray casting procedure, the octree is used

?.2 Normal Field Sampling

Octree-Textures: The idea of octree-textures has been simultane-
ously introduced by DeBry et al. [(grue) DeBry et al. 2002] and

Benson and Davis [Benson and Davis 2002]. Both papers propose
to encode color map in an octree [Samet 1989], which avoids the
complex construction of 2D parameterization on the input mesh.
Such methods are particularly well suited for interactive painting

on 3D objects, where the intrinsic adaptive sampling of the octree
structure reduces the waste of memory exhibited by xed-resolution
2D maps. More recently, Lefebvre et al. [Lefebvre et al. 2005] and M M
Lefohn et al. [Lefohn et al. 2006] have proposed GPU implementa- T T T

tion of octree-textures, encoding them in simple 2D or 3D textures, m

adapted to ef cient access by the fragment shader.

L. m

In the next sections we describe an original approach that achieve

precise appearance-preserving simpli cations with adaptative nor-

mal eld sampling, compact storage and fast GPU rendering by tak-

ing advantage of the hierarchical nature of the octree-texture dataFigure 2: Throwing rays with interpolated normal (right) rather

structure. than the triangle normal as directions avoids sampling discontinu-
ities.

3 Appearance Preserving Octree-Texture .
as a space partitioning structure. For that, we rst nd all the cells

3.1 Octree Construction of the octree intersected I®; within a chosen maximum distance.
The intersected cells can be either leaf cells or internal cells whose

In the framework we propose, the user rst provides two versions T list is non-empty. These cells are then sorted according to dis-

of a given object:M , the original full resolution mesh, ana, tance from the ray origin to the intersection of the bounding sphere

the simpli ed version which may be obtained by any existing mesh surrounding the cell. The algorithm loops over these cells to nd



Internal Node: Leaf Node:

the intersection. When a cell can't own a closer intersection than

the one previously found, the algorithm stops. If the ray fails at Pixel 1 Pixel 2 Pixel 1
intersecting any triangle d¥l , we use a similar alternative as pro- R | G | B | A | R | G | B | A R | G , B | A
posed in [Sander et al. 2000] by searching the closest point of the[— . Child Kind chila
ray origin onM . The normal found at the intersection &h is First Child Offset /] Nx - Ny Nz | Nx o Ny Nz

accumulated in the corresponding leaf €2llAt the end, the accu-
mulated vector is normalized to obtain the representative ndvmal

of C. Once a representative normal has been computed for all leaf
cells, the normals at the internal nodes are computed in a bottom-
up process, by averaging the normals of their children. The octree
levels equiped with average normals will provide at render time a
built-in mipmapping mechanism (see section 5.2).

Figure 4: Encoding of the APO elements. A leaf node requires 3
bytes for the normal and 1 for the child mask (which equals 0). A
node requires 3 bytes for the normal, 3 for the rst child offset, 1

for the child mask (telling which children exist) and 1 for the kind

mask (telling whether the children are leaves or nodes).

4 2D Encoding of APO

Once the APO has been constructed, as detailed above, it is rst

converted into a 1D array, by enumerating nodes in a breadth- rst

order. As all siblings of a node are thus contiguous in this 1D array,

forming a brood, we only need to store a pointer to the rst child

of each node [Hunter and Willis 1991] (see Figure 3). Moreover, Figure 5: Left: Alow resolution 256x221 2D encoded ARRght:
Same APO mapped over a simpli ed mesh.

5 GPU Rendering

~ 7y O\ The last step of our framework involves the rendering step, per-
s ¢ o BN formed on the GPU by a single-pasagment shader After hav-
ONONONONO, N \_/ ing transmitted the texture width, the fragment shader loops over

the provided positioP of each fragment and computes its shad-
ing with the associated normal de ned in the APO. This section
focuses on this last rendering step. Note that all listings provided in

Figure 3: Encoding an octree in a 1D array by breadth- rst order-  this section are written in GLSL.

ing. Arrows show the pointer between parent nodes and their rst

child. 5.1 Octree Traversal

Starting at the root, the APO is traversed top-down, until encoun-

to avoid waste of space in the texture, we go back to the original t€ring the leaf node containirfg. At each internal node, we have
idea of Benson and Davis [Benson and Davis 2002] by only storing 0 determine which of its children contaiRsas well as the offset
non-empty nodes. At each node, a mask of eight ags, one for each used to access this child .fror_n the current position. The rst node
child, de nes whether a child is present (ag set to 1) or not (ag 0 be rea_d is the root, which is Iog:ated as index 0 in the array. As
set to 0). A leaf node can thus be easily identi ed, as all its ags We work in the unit cube, the root is centered aro(t@; 0:5; 0:5)

will be set to 0. For internal nodes, we add another mask of eight @nd its width is1:0. These two parameters will be useful for the
ags, to tell whether each child is a leaf (0) or a node (1). This traver_sal, and are updated at each iteration, as well as tlhe current
second mask will be necessary during the octree traversal, in ordernodeindex. We now describe more precisely all steps involved
to know how many texel jumps are required to access a particular N the octree traversal, performed after the following initialization
child in the children list. For internal nodes, we also need to store code:

the pointer to the rst child. This pointer could become large when in¢ index = o:

octrees have a maximum depth greater than 10. We decide to stor vec3 octEltCenter (0.5,0.5,0.5);

not a pointer, but a local offset to the brood, which can be safely float cellwidth = 1.0;

quantized to three bytes. So, by encoding each normal vector on

three bytes, we actually need four bytes for a leaf node, and eight(a) Finding the next node: At each level, a texture fetch is per-

bytes for an internal node. By using an RGBA texture, a leaf node formed to obtain the rst texel corresponding to the current node
is thus represented by one texel, while an internal node needs two(see Figure 4). If the child mask of this texel is null, the node is a
texels, as shown on Figure 4. As some GPU architectures haveleaf and the traversal stops. Otherwise, the number of the child to

a relatively low bound on the size of 1D textures, the 1D array is process is obtained by expressign the frame ofoctEltCenter
nally converted into a 2D texture, by cutting the array into slices of

2X texels, wher& is chosen according to the size of the 1D array,
to get 2D textures that are close to squares. Figure 5 presents a
example of the nal 2D encoding of an APO. As we only keep non-
empty nodes in the broods, our encoding scheme is more compac

int getChildindex (vec3 octEItCenter ,vec3 P) f

vec3 dep =
dep = sign(dep);
dep = step(0.0,

octEltCenter P;

dep);

return int (dep.x 4.0 + dep.y 2.0 + dep.z);

than the one presented in [Lefebvre et al. 2005]. Moreover, our ¢

data structure directly encodes intermediate levels, while [Lefebvre

et al. 2005] would require a second texture for that. Globally, our Thesignfunction replaces negative values by -1 and positive ones

encoding needs about 40% less storage size to store equivalent datdy 1, while thestepfunction replaces negative values by 0. Once
processed, thelep vector has either 1 or O at each component,



which can be used as a binary code. The last line thus directly 5.2 Volumetric Mip-Mapping

returns the number of the child to be accessed. This process avoids . o )
browsing and intersecting children bounding boxes. Until now, the only stopping condition during the octree traversal
occurs when a leaf is encountered. We can further improve render-

Once this child index has been obtained, we have to ef ciently up- ing performances and quality considering that:
dateoctEltCenter We start by applying just theignfunction on the
vectordepwhich gives the direction toward the next child. Then,
we adjust the length of this vector, in order to obtain a quarter of
the current node width for each component. Adding this vector to
the current node center gives the next node center. The procedure
is illustrated in 2D in gure 6.

for far or dense objects, a fragment may correspond to a whole
subtree of our octree-texture, so stopping the recursion at this
internal node would make the rendering faster without quality
degradation, as it discards the (possibly large) part of sub-
pixel traversal operations.

full traversal may cause temporal and spatial aliasing, which
2 6 can be partially prevented by using the average normals stored
b on internal nodes.

7 - ; We propose to use the hierarchical nature of the APO to avoid this

sub-pixel precision. A new condition is added in the loop, to stop
4 f the traversal before a leaf is reached when the object-space size
v corresponding to the current fragment is larger than the diagonal
1 5 B of the current cell. This can easily be computed by estimating the
z number of pixels crossed by the image space projection of the cell
diagonal:

[=dm

Figure 6: According to the children's ordering (left), the relative P

coordinates ofP (blue dashed arrow) can be converted into the NbPixels =
corresponding child index. The full red arrow has been obtained

from the blue arrow by using the sign function and adjusted to reach whered is the depth of the current node af®DV is the angle

the center of cell. de ning the eld of view. WhenNbPixels is less than one, the
traversal stops and the average normal stored in the last traversed
internal node is used to compute the shading for the current frag-

(b) Computing the node offset:Finally, we must compute the off-  ment, This volumetric mip-mapping improves both quality (by |-
set to the desired child. Ihdexis the current node index, the index  tering the texture under mini cation) and ef ciency (by reducing

indexCof its child ¢ is obtained with following formula: the average traversal cost).

3 2d screenSize
cameraDist 2 tan(59%)

indexC= index+ offset(index)+ offsetToCthChild(index,c) 5.3 Texture Filtering
whereoffse(index)is the offset to the rst child, an®ffsetToC-  \yhjle the mip-mapping performs ef cient Itering under mini ca-

thChild(index,c)is the extra offset to add in order to access the o, additional Itering has to be used to smooth the APO under
c' child. The rst child offset is retrieved by converting the RGB 50 cation. Just as in [Lefebvre et al. 2005] a bilinear interpola-

channels of the rst texel node to an integer (see Figure 4). Then tjon can be performed at each cell, between the eight values stored
to adjust the offset, we access the second node texel (which is atat the cell vertices. However, our process is more ef cient, as we

index + 1 in the octree-texture) and get thind mask The func- 44 not need to ensure that all eight neighbors exist as in [Lefebvre
tion adjustOffseteturns a boolean, telling whether the desired child ot ;. 2005]. Indeed, when we try to access a neighboring cell that
exists or not, and stores the extra offset to ¢fechild in theex- does not exist, the traversal loop is simply stopped and the average
traOffsetparameter. normal stored at the last traversal node is used for the interpolation.

bool adjustOffset(float childrenMask, float kindMask,

int cth. out int extraOffset)f The use of texture ltering greatly improves the visual quality, as

int it, count = O shown on Figure 7, but at the cost of slower performance, as the
float modc, modk; octree has to be fully traversed eight times, to get the value of the
feoxrt(fiatOf_fsoe{ =it3:8 ;i) 7 eight neighboring cells. Several solutions may be envisaged to im-
i GO Gy CRIEIen BEiers dhe o0e we we prove the performance. For instance, one may store at each node,
it (it < cth) f the gradient of the normal vector in addition to the normal itself, to
modc = mod(cmask, 2.0); modk =mod(kmask, 2.0); geta rst order approximation (instead of a zeroth order) at the cen-
extraOffset +=int ((modk + 1.0) modc); ter of each cell, which may be suf cient for Itering without access

kmask = modk;kmask /= 2;cmask = modc;cmask /= 2;

. to neighboring cells. Another solution would be to preprocess the

octree, in order to add an additional offset for each internal node,

g

/l test if the wanted child exists that links to the closest parent node which contains all eight neigh-

return (mod(cmask, 2.0) == 1.0); bors involved in the bilinear ltering, so that the eight traversals do
9 not need to restart from the root. But all these techniques clearly

require additional storage in the data structure, and thus involve a
In this function, the surmodk + 1 gives for each child the number  traditional computation vs storage trade-off. In Section 6, we de-
of texels to jump (1 for leaf nodes and 2 for internal nodes). Multi- scribe an alternative optimization providing signi cant speed-up.
plying this sum bymodc allows us to only count existing children,
asmodc will be zero for an empty child. Successive division by 6 Results and Performances
2 generates a bit shift process, while the modulo 2 operation re-
turns the values of individual bit ags. Note that, while this method The system has been implemented under Linux 2.6 with OpenGL
works on all devices, direct bitwise operations can be used when and GLSL. Performances have been measured on an AMD Athlon
supported by the graphics hardware. 3500, with 2GB of memory and an nVidia GeForce 8800 GTX.



Original 874 414 triangles Original 7 218 906 triangles

Stanford Dragon Simpli ed 3000 triangles XYZRGB Dragon Simpli ed 15 000 triangles

Coarse depth: 5 Coarse depth: 5
Octree Max depth: 13 Octree Max depth: 13
Error Bound 0.3 [ 0.1 [ 0.05 Error Bound 0.3 [ 0.1 [ 0.05
Creation Time 36 s. 54 s. 1'19 min Creation Time 5'04 min 7'57 min 10'48 min
Texture res. 1024 389 | 1024 770 | 2048 611 | Textureres. 2048 1475 | 4096 1650 | 4096 2631
Texture size 1.1 MB 2.3MB 3.6 MB Texture size 9.2 MB 20 MB 30.6 MB
FPS-512 512 210 190 170 FPS-512 512 150 130 120
FPS-1024 1024 75 60 58 FPS-1024 1024 56 47 46

Table 1: Preprocess timing, memory consumption and (optimized) renderingfrates for various screen resolution.

We have performed a full evaluation of our approach on various Discussion: As already mentioned above, the main bene t of us-
models, ranging from 500k to 10M polygons, and exhibiting differ- ing a volumetric texture, is to avoid the expensive computation of
ent topological genus and different feature distributions. We use an surface parameterization, but also to avoid the storage ¢fithe
algorithm based on the Quadric Error Metric [Garland and Heck- texture coordinates. In order to control the construction of the APO,
bert 1997] for simplifying the original meshes to a prescribed res- we have chosen to expose only a reduced set of intuitive parameters
olution. This error metric is perfectly adapted to our application: to the user: the initial and nal maximum depths of the octree, and

it smoothes out all the small-scale high frequency features, that the error threshold used by the subdivision process. By construc-
will later be visually reproduced by the normal vectors stored in tion, an APO automatically provides an adaptative sampling of the
the APO, while preserving the global shape even under strong re-normal eld: areas with fewer details will be covered with bigger
duction rates. Table 1 presents a complete performance analysispctree cells, while regions exhibiting high frequency features will
when using different settings on the Stanford Dragon and the nine automatically generate an higher number of smaller cells, thanks
time bigger XYZRGB Dragon. Table 2 compares the performance to thelL 2 error metric. Compared to a classical 2D normal map,
obtained on various models, by using standard parameter settingshis adaptive sampling avoids a large number of useless texels. The
(error bound at 0.05 and screen resolutiod@24 1024). Note technique allows interactive rendering of highly detailed meshes
that the framerate is measured in the worst case for the APO shad-that may not t in-core memory without normal mapping.

ing, i.e. when the object nearly covers all the pixels of the screen.
Regarding the rendering performance reached, the larger the origi-
nal mesh, the more interesting our method. For instance, we failed

The main drawback of the technique is the cost of texture access. If

a fragment is rasterized for a leaf at degihihere will be(2d 1)

at obtaining interactive framerates for the larger meshes when ren-?‘ccesse;5 to rea%h the.ler?g. Even {fhth(te Ietaves addressed by adjacent

dered directly (indexed on-GPU vertex buffers), even at low screen F89MeNts may be neignoors In the texture, our process requires
each fragment to restart from the root, which induces accessing the

resolution, while our appearance preserving rendering is real-time - ; :
with the same setting. Figure 8 compares four versions of the sametexture at very different locations for a single traversal. Thus, when

object: the original full resolution mesh (1.7M triangles), the sim- € Object is viewed in a large close-up, the framerate decreases as
pli ed mesh (5K triangles), the simpli ed mesh with#024 544 th_ere are more traversa_ls to per_form by the fragment shader. Like-
APO, and the same with 4096 2467 APO. Basically the er- wise, using texture Itering and' its eight octree traversals does not
ror introduced by the APO has two main sources: the quality of 2/lOW a realtime framerate, as it falls around 20 FPS (resp. 7 FPS)
the initial mesh simpli cation, and the error criterion used during When the object is relatively close at 512x512 (resp. 1024x1024)
construction of the APO. The rst error is mostly visible on object SCT€€n resolution.

silhouette, while the second one impacts the visible details inside There are other limits to the construction of the APO. One is that the

the object. Finally, Figures 9 and 11 present additional examples geometry ofn must not introduce a too large error compareMto

of visual enrichment performed by the APO data structure. For all Actually, as we only keep leaf nodes aroung these nodes do not

examples that we tested, we always achieved a good visual qualityajways intersecM , and then they contain no data to compute the

compared to original objects. However, we plan to study the error | 21 metric. Ifm is not a “good” simpli cation ofM , this case can

in a more formal way, by using some of the techniques presented ineven happen at internal nodes and thus local featurés afight

[Tarini et al. 2003]. be lost in the octree-texture. By using the Quadratic Error Metric,
we have not explicitly encountered that case, but one preventive
solution would be to twist the QEM, to account for that potential
loss of data.

Another limitation is that thin two-sided surface could not be ren-
dered. Actually, if two sides of a surface end up after maximal

[ Model | size | Preproc. | Texture [ FPS |
Stan. Dragon| 874k / 3k tri. 1m19s 3:6MB 58
Grog 1:7M /5K tri. 3m42s 12:3MB 48
Neptune 4M [ 15K tri. 6m3s 10:3MB 68
XYZ Dragon | 7:2M /15K tri. 10m48s | 30:6MB 46
Statue 10M /20K tri. 18m18s 46MB 58

_ _ ) o Table 2: Comparison with different models, with original and sim-
Figure 7: Left: Octree normal mapping without IteringRight: pli ed size. The error bound is set to 0.05 and the screen resolution
With Itering. is1024 1024



subdivision in a same octree leaf, normals will be averaged and the References

averaged one could be near zero. In the actual structure, there is no
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(a) Original (1.7M tri.) and simpli ed (5k tri.) meshes

(b) Simpli ed mesh with APO normal mapping

Figure 8: Top: Geometry simpli cationBottom: Simpli ed mesh
with APO normal mapping, with two different resolutiohd24
544 (epsilon 0.8) andl096 2467 (epsilon 0.01).

(a) Stanford Dragon, original mesh has 874K triangles, thekied one
3K. Texture dimension: 2048x611

(b) Grog, original mesh has 1.5M triangles, the simpli ed ore Bexture
dimension: 4096x1046

Figure 9: Examples of APO normal mapping.

Figure 10: Left: close-up on an octree-textured mesh ; the frag-
ments have been colored depending on the cell they belong to in
order to reveal the adaptive sampling ratRight: the associated

normal mapping.

(a) Neptune, original mesh has 4M triangles, the simpli ed ©6K. Texture
dimension: 2048x1766

(b) XYZRGB Statue, original mesh has 10M triangles, the siradlione
20K. Texture dimension: 4096x3705

Figure 11: Additional examples of APO normal mapping.



