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Recovering a Code’s Length and Synchronisation
from a Noisy Intercepted Bitstream

Mathieu Cluzeau Matthieu Finiasz

Abstract—We focus on the problem of recovering the length
and synchronization of a linear block code from an intercepted
bitstream. We place ourselves in an operational context where the
intercepted bitstream contains a realistic noise level. We present
two algorithms, both useful in different contexts, able to verify
if a given length/synchronization is correct. Using them, we were
able to practically recover the synchronization of several codes.

I. I NTRODUCTION

Most digital communications are both coded and encrypted.
For this reason, in order to be able to perform a cryptanalysis,
it is usually necessary to decode intercepted data. However,
decoding first requires to split the intercepted bitstream into
codewords: this implies that the code length and synchro-
nization have to be recovered. In this article, we only focus
on communications encoded using linear block codes. Most
other articles dealing with code reconstruction [8], [4], [5],
[6] (that is recovering a parity check matrix) consider this
information known. They deal with the (easier) problem of
finding a parity check matrix from noisy codewords. In this
article, we focus on the preceding step which consists in
finding the block length and the synchronization leading to
words as close as possible to a vector space. It appears that
the most efficient techniques to solve this problem can also be
used to reconstruct the code.

This article is composed of two main sections. First, we
show that looking for words in the dual code is sufficient to
decide if a specific length/synchronization is correct. Then, in
the second part, we present two very different techniques for
searching words in the dual code. Eventually, we present some
experimental results and give estimates for the maximum noise
level allowing to recover a code’s length and synchronization.

Previous works. This article is not the first to deal with
the problem of finding the length/synchronization of a linear
block code bitstream. For instance, in [1] an interesting tech-
nique based on rank computation is presented. This technique
consists in computing for all length and synchronization the
rank of the matrix formed with the noisy codewords. If the
noise level is low enough and the length and synchronization
are correct, this matrix will not be of full rank. Finding the
correct length/synchronization then simply consists in finding
the minimum of these ranks. When the level of noise starts to
increase, it is necessary to compute the rank of sub-matrices
and hope to find “low noise zones”. Because of this, this
techniques is limited to relatively low noise levels. Moreover,
rank computation can be quite expensive on large matrices.

II. D ECIDING WHETHER A GIVEN LENGTH AND

SYNCHRONIZATION IS CORRECT

In this section, we consider that the received bit-
stream was transmitted through a binary symmetric channel
with cross-over probabilityτ . When trying to recover the
length/synchronization of a codeC, the first step is to be able
to decide whether a given length/synchronization is correct or
not. One must thus split the input bitstream into words of the
given length, starting at the given synchronization, and then
decide if the words obtained are indeed noisy codewords (that
is, elements of a vector space with a small amount of noise). Of
course, as the target vector space (the codeC we are looking
for) is unknown, this problem is hard. A simpler way to look
at it is to consider the dual problem: instead of looking for
a vector space, we can look for elements of its orthogonal
(these are, words of the dual ofC). Such orthogonal words
have a probability higher than12 to be orthogonal to a noisy
codeword (if the noise level is lower than12 of course). In
order to decide if a length/synchronization is correct, one can
thus look for dual words: as we will see, if such a word can
be found then the length is correct (with a probability close to
one) and the synchronization is probably not far from correct.

Suppose the correct length/synchronization is(n0, s0) and
the length/synchronization we are testing is(n, s). After
splitting the input bitstream into words of lengthn, we build
a matrix G such that each line ofG is a word. This matrix
is of sizeM × n whereM = ⌊ ℓ−s

n
⌋ if ℓ is the length of the

intercepted bitstream. Looking for a word of the dual consists
in finding a wordh of length n such thatG × h is of low
weight. We distinguish three different cases.

A. Correct length/synchronization:n = n0, s = s0

In this case, each line ofG is a noisy codeword. Thus, if
h is a word of the dual ofC of weight w the weight of the
productG × h strongly depends onτ and follows a binomial
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Figure 1. Distribution of the weight of the productG × h.



distribution, centered inM2
(

1 − (1 − 2τ)w
)

, with a variance
of σ2 = M

4

(

1 − (1 − 2τ)2w
)

. This distribution is depicted
in Figure 1 (dashed line). However, ifh′ is not a word of
the dual ofC, whatever its weight, the weight of the product
G ×h′ will follow a binomial distribution centered inM2 with
a varianceM

4 (plain line in Figure 1).
If these two distributions have a small enough intersection,

then it is possible to tell, with high probability, whether a word
h is in the dual ofC or not.

B. Correct length, incorrect synchronization:n = n0, s 6= s0

In this case, each line ofG is composed of two different
codewords: the firsts0 − s mod n bits belong to one word,
the remaining bits to the next one (see Figure 2). We take a
word h in the dual ofC and cyclicly shift it (to the right) by
s0 − s positions to obtain a word̄h.

• If the support of h̄ is included in [s0 − s, n − 1] or
[0, s0 − s − 1] then the productG × h̄ will follow the
same distribution as dual words in the previous case (the
dotted line in Figure 1).

• If the support of̄h is split among the two intervals, then
each bit of the product will be zero with probability12 (if
we assume that the codewords are mutually independent).
The weight ofG×h̄ will thus follow the same distribution
as for random words.
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Figure 2. The matrixG when an incorrect synchronization was chosen.

Once again, if the two distributions are distant enough, it
will be possible to decide whether a (low weight) word is in the
dual ofC or not. However, this will only work for words such
that the support of̄h is not split. In practice, this will decrease
the probability of finding words in the dual ofC. The larger
s0 − s, the more this probability will decrease. If the chosen
synchronizations is close to the correct synchronizations0,
the behavior of dual word finding algorithms will be nearly
the same as in the first case.

C. Incorrect length:n 6= n0

In this third case, as it can be seen in Figure 3, each code-
word will have a different offset. There is a high probability
that G is not close to any vectorial subspace. In practice, for
any word h′, the productG × h′ will follow the binomial
distribution centered onM2 represented by the plain line in
Figure 1. The only case in which some words could follow a
different distribution, is ifn divides n0 and each offset of a
dual wordh by n positions is also in the dual ofC. If such
an unlikely event occurs, a divisor ofn0 has however been
found, which makes findingn0 a much easier problem.
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Figure 3. The matrixG when an incorrect length was chosen.

D. Analysis

What appears from the study of these three cases is that
words following the dashed line distribution of Figure 1 can
only be found when thecorrect lengthwas chosen. Ifτ is
known, for a given word weightw, the two distributions are
known and it is thus possible to compute a thresholdT . If we
can find a wordh such that the weight ofG×h is belowT , then
there is a high probability that the lengthn chosen is equal to
n0. This also means that the offsets is probably not too far
from s0. To find the exact value ofs0, it is necessary to look at
the supports of dual words found. As we have seen in II-B the
correct offset cannot split the support of any words. We can
thus proceed by some kind of dichotomy but this requires to
find several dual words for each tested offset. In the end, when
the correct synchronization has been found, we usually have
found enough dual words to reconstruct the complete codeC.

We will now see two different algorithms to search for
words in the dual ofC. For each of these algorithms it is
possible to estimate the number of tries needed to find one
word. It is thus possible to know that a length/synchronization
pair is incorrect after a certain number of unsuccessful tries.

III. F INDING WORDS IN THEDUAL OF C

A. Exhaustive Search of Words of a Given Weight

The first thing to note when looking for words in the dual
of a code is that words of (very) low weight are easier to find.
First, the two distributions of Figure 1 are more distant from
one another, secondly, it can be easy to exhaustively test all
words of weightw. This is exactly what our first algorithm
does, but in a more subtle way.

The straightforward exhaustive search technique consists in
going through all words of weightw and for each of them,
compute the weight of their product withG. If one of these
weights is below a thresholdT , then the corresponding word
likely belongs to the dual ofC. In order to improve this
technique, we use a birthday technique and build a list of all
productsG × hw

2
wherehw

2
is a word of weightw2 . Finding

a word in the dual then requires to find two wordshw

2
and

h′
w

2

such that the weight ofG × (hw

2
⊕ h′

w

2

) is below T . In
order to find such a pair efficiently, we select a window of size
32 which we require to fulfilG × (hw

2
⊕ h′

w

2

) = 0: this will
discard some valid(hw

2
, h′

w

2

) pairs but we can now sort the list
of G × hw

2
products and simply look for exact matches. Once

a match is found, we just have to check if the total weight of
the product is belowT .
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Figure 4. Selecting a submatrixG′ for exhaustive search.

This technique makes it possible to find all words of weight
w in the dual ofC which vanish on the selected window with
a complexity of orderO

(

n
w

2 log(n
w

2 )
)

and with a memory of
O

(

n
w

2

)

. As this amount of memory can be very large, it is
often necessary to choose a “vertical” window of sizelv and
restrict our search to words of the dual with a support included
in this window. In practice, we get the following algorithm:

• randomly pick a vertical window of sizelv,
• randomly pick an horizontal window of size 32 to obtain

a matrixG′ as described in Figure 4,
• compute all the xors ofw2 columns ofG′ and place them

in a table,
• sort the elements of the table,
• for each collision, check if the weight of the same xor of

w columns ofG is of weight smaller than a thresholdT .

Computing the thresholdT . We need to selectT in order
to avoid all false alarms (that is, words not in the dual ofC

with a product byG below the threshold) and at the same time
miss as few as possible dual words. This will be possible if
the threshold can be chosen at more than 3 standard deviations
from the center of each distribution. IfM is large enough, this
will be possible.

In order for the two “3 standard deviation” bounds to be in
the correct order we need:

M >

(

3
√

1 − (1 − 2τ)2w + 1

(1 − 2τ)w

)2

. (1)

If this inequality is verified, any thresholdT between the
two “3 standard deviations” bounds can be chosen and should
give satisfactory results. In practice we choose to selectT in
the exact middle of this interval which, as we will see in the
last section, gives very good results. This corresponds to:

T =
M

2

(

1 − (1 − 2τ)w

2

)

+ 3

√
M

4

(
√

1 − (1 − 2τ)2w − 1
)

.

Required number of tries.Suppose there areNw words of
weightw in the dual ofC. Each run of the previous algorithm
will output all words of the dual:

• of support included in the vertical window of sizelv,
• vanishing on the horizontal window of size 32.

Thus, each run will return an average number of words equal
to:

Nw ×
(

lv
w

)

(

n

w

) ×
(1 + (1 − 2τ)w

2

)32

.

If Nw > 0 (which can only be the case when the correct
length was chosen), aftert runs of the algorithm (each time
with a different window choice), the probability of not having
found any dual word is smaller than:

P =

(

1 −
(

lv
w

)

(

n

w

) ×
(1 + (1 − 2τ)w

2

)32
)t

.

In order to recover the length of a codeC we chooset such that
P is small enough and try all possible lengths incrementally
until a dual word is found. This technique will succeed as long
as there exists at least one dual word of weightw.

B. Using the Canteaut-Chabaud Algorithm

As we will see in the practical experiments section, the
previous algorithm can hardly be used for values ofw larger
than 8. However, for most codes, the minimal distance of their
dual will be larger than 8. In order to deal with these codes,
we propose to use another algorithm, based on the Canteaut-
Chabaud information set decoding algorithm [3]. Here is how
this algorithm works:

• select at random an “information set”, that is,n lines
among theM lines of G

• perform a Gaussian elimination on this information set,
swapping and xoringcolumnsof G to obtain a new matrix
G′ (see Figure 5) and store the transition matrixP such
that PG = G′

• choose a small window ofl lines among theM − n
remaining lines ofG

• use the same technique as in the previous algorithm to
find all combinations of2p columns vanishing on thel
lines of the window

• for each set of2p columns, verify that the xor on the
columns ofG′ is of weight lower than a thresholdT

• each wordh of weight 2p can be converted to a word of
the dualh′ = h × P .

This can be implemented very efficiently using the
Canteaut-Chabaud algorithm to select the information sets of
successive iterations. In practice, this consists in only changing
one position in the previous iteration information set so as to
make the Gaussian elimination step less costly. Also, in order
to optimize the probabilities, it is better to split the columns
in two separate sets and look for collisions among words of
weightp in each set. The optimal values for the two parameters
l andp are chosen in the same way as in [2].

As for the previous algorithm, it would be interesting
to know the probability of success of one iteration of this
technique. A given wordh of weight w in the dual ofC will
be found if the productG × h is of weight:

• 2p on the chosen information set (in 2 sets of weightp),
• 0 on the window of sizel,
• and less thanT − 2p on the remaining positions.

For a given information set, the probability that the errors in
G are well distributed for the previous conditions is:

Pcor =
(

n

2p

)

q2p(1−q)n−2p+l

T−2p
∑

i=0

(

M−n−l

i

)

qi(1−q)M−n−l−i
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Figure 5. Using the Canteaut-Chabaud algorithm on matrixG.

with q = 1−(1−2τ)w

2 . Thanks to this probability, it is possible
to compute an estimate (neglecting the dependencies between
successive iterations) of the average number of iterations
required to find a given wordh. However, there are many
words in the dual ofC and what interests us most is the
average number of iterations required to find any one of these
words. Unfortunately, this number is much harder to compute
as it will depend on the (unknown) distribution of the words
of the dual. For this reason, the thresholdT will be chosen
independently of this value.

We decide to choose the thresholdT so as to minimize the
probability of having a false alarm (that is, a word not in the
dual verifying the weight conditions cited above). There are2n

possible false candidates, and for each of them the probability
of verifying the weight conditions is approximately:

Pfalse =
1

2M

T
∑

i=0

(

M

i

)

.

If we want to avoid false alarms, we thus needPfalse < 2−n.
This is achieved by choosing:

T =
M

2
−

√

M
n log 2

2
.

This choice makes sure that we avoid false alarms but gives
us no hint about the probability of finding a word of the dual.
However, what is known is that if we increaseM (and thus
also T ), this probability of success will also increase. More
details about the choice ofM are given in the next section.

IV. PRACTICAL EXPERIMENTS

We have previously seen how to test a length and synchro-
nization and how to find words in the dual code ofC. Our
algorithms thus consist in testing all possible lengths and for
each length a number of different synchronizations. In practice,
for short codes, we test each lengthn from 1 to n0 andn/8
synchronizations each time (we test all synchronizations which
are a multiple of 8). For larger values ofn (especially for
LDPC codes), we test a fixed number of synchronizations

for each length (everyn8 bits for instance). We divide our
experiments in two groups which behave very differently in
practice for both algorithms presented here.

A. Random Linear Codes

We first consider codes defined by a random generator
matrix. For such codes, it appears that our first algorithm based
on exhaustive search gives very poor results. This algorithm
only works well for codes with very low weight words in
their dual (weight 6 or 8 at most), which will be the case
only for very short random codes (at mostn ≈ 40). Of
course, such codes are seldom used in practice. However,
the Canteaut-Chabaud-based algorithm makes it possible to
find the length/synchronization of longer codes. Table I gives
results of simulations on random codes of different lengths
with different noise levels. For these lengths, it is important to
note that the 10000 iterations are performed in approximately
1s. Thus, if the algorithm is able to find some words, it will
also be easy to find the length/synchronization of the code.
In practice, for all the length/noise combinations of Table I
not containing a zero, the exact length/synchronization can be
recovered in a few minutes.

Table I
NUMBER OF WORDS FOUND BY10000ITERATIONS OF THE

CANTEAUT-CHABAUD ALGORITHM ON RANDOM CODES OF RATE 1

2
.

HERE, M = 5n, AND ∞ MEANS THAT MANY WORDS WERE FOUND.

P
P

P
n

τ 0.001 0.002 0.005 0.01 0.02 0.05
32 14637 27081 42570 42913 19464 210
64 ∞ ∞ ∞ 1172189 6310 0
128 ∞ ∞ ∞ 2992 0 0
256 ∞ ∞ 0 0 0 0

For lengths longer than 256, this technique can still be
successful but only ifτ is very small or if particular codes with
dual words of very low weight are used. This is for example
the case with LDPC codes.

B. LDPC Codes

By nature, LDPC codes [7] have words of very low weight
in their dual. This makes it much easier to recover their
length/synchronization. Also, our first algorithm was specif-
ically designed for such codes.

Exhaustive search. All our simulations were done on a
computer with 2GB of memory for LDPC codes with parity
checks of weight 6. In this setting, the value oflv cannot be
greater than794 (with our implementation). Because of this,
we managed to recover the length/synchronization of codes of
length up to 1000. For longer codes, the probability of success
of one iteration of the algorithm becomes too low and the num-
ber of iteration required makes a full length/synchronization
recovery impractical. Table II gives the number of words of the
dual found in 250 iterations of the algorithm on LDPC codes
of length 1000 for different noise levels. Note that 250 such
iterations take approximately 3 hours to run. One can thus see
that for noise levels of 5-6% a complete length/synchronization



Table II
NUMBER OF WORDS FOUND BY250 ITERATIONS OF THE EXHAUSTIVE

SEARCH ALGORITHM ON LDPC CODES OF RATE1

2
, LENGTH 1000AND

WEIGHT 6. HERE, M = 512. THE LAST COLUMN CORRESPONDS TO THE

MINIMAL VALUE OF M GIVEN BY EQUATION (1).

τ
words
found

expected
words per iter.

expected total words
found (including doubles)

minimal
M

0.01 497 19.03 4760 56
0.02 365 3.15 787 70
0.03 117 0.57 142 88
0.04 24 0.11 28.1 110
0.05 3 0.024 6.1 140
0.06 3 0.006 1.5 180

recovery will take very long (probably a few month on a single
computer). Table II also shows some interesting results:

• for τ ≤ 0.02, a single iteration of the algorithm is enough
to verify if a length/synchronization is correct. Thus, with
such noise levels, recovering the length/synchronization
of the code takes less than a day. Moreover, this only
requires very few intercepted words.

• for noise levels close to the correction capacity of the
LDPC (τ = 0.06 for instance) it is still possible to verify
a length/synchronization pair. This was not obvious at
first sight for such noise levels.

Soft information. LDPC codes are particularly efficient when
it comes to soft information decoding. We have thus investi-
gated the possibilities for adapting our exhaustive search algo-
rithm to a soft information bitstream. The “vertical” window
of size lv must be chosen at random. Any bias will reduce
the probability of finding some words of the dual. However,
the “horizontal” window of size 32 can however be chosen so
as to contain as few as possible errors. The soft information
makes it possible to compute the probability that a given line
of G contains no error. We thus sort the lines according to
this probability and select lines with low probability of error.
In order to randomize our selection (it has to be different for
each iteration), we select each line with probability1

8 (this
value is empirical but seems to give the best results) starting
from the line with best probability and going down.

Experiments show that this technique is quite efficient: for
an LDPC code of weight 6 withn = 500, M = 1024,
τ = 0.01, one iteration of the soft information algorithm re-
turns 138 dual words in average whereas the hard information
version only returns 80.

Canteaut-Chabaud algorithm.For an LDPC codes of rate12 ,
the number of dual words of minimal weightw is n

2 . Knowing
this, it is possible to give an estimate of the maximum noise
level τmax for which the Canteaut-Chabaud algorithm will find
minimal weight dual words in a few seconds.

A dual word of weightw will be found if the chosen infor-
mation set only contains few errors. Thus, the probability of
finding one of then

2 dual words of weightw is approximately:

Pw =
n

2

(M

2
(1+(1−2τ)w)

n

)

(

M

n

) .

We thus defineτmax by fixing this probability to2−10 (meaning
that 210 iterations of the algorithm will be necessary):

n

2

(M

2
(1+(1−2τmax)

w)
n

)

(

M

n

) = 2−10.

This value is only an approximation of the maximum noise
level that the Canteaut-Chabaud algorithm can handle. We
experimented with an LDPC code of weight 6, rate1

2 and
length 1000, withM = 2048. For such a codeτmax = 0.0015.

• for τ = τmax, the Canteaut-Chabaud algorithm was able
to find 375 dual words in 1000 iterations (a few seconds).

• for τ = 0.0025 we were still able to find a few dual
words in 1000 iterations.

• for τ = 0.01 we were not able to find any dual word,
even in an hour of computation.

This algorithm thus only works for much lower noise levels
than the exhaustive search, however, it is faster and can handle
longer codes. We were able to successfully recover dual words
for LDPC codes of length up to 10000, but for such lengths the
maximum noise level is very low compared to the correction
capacity of the LDPC.

Concerning soft information decoding with this algorithm
we were not able to make any notable improvements.

V. CONCLUSION

We were able to recover the length/synchronization of
various linear block codes. For random codes, our algorithms
were successful only for short lengths (up to 256) with very
low noise level (well below the correction capacity of the
code). For LDPC codes, our experiments on codes with parity
checks of weight 6 show that for length up to 1000 we can
recover the length/synchronization of the code even for noise
levels close to the correction capacity of the LDPC, for larger
length, this will only be possible for very low noise levels.
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