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The Alignment Between 3-D Data and
Articulated Shapes with Bending Surfaces

Guillaume Dewaele, Frédéric Devernay, Radu Horaud, and Florence Forbes

INRIA Rhône-Alpes, 655, avenue de l’Europe,
38330 Montbonnot Saint-Martin, France

Abstract. In this paper we address the problem of aligning 3-D data
with articulated shapes. This problem resides at the core of many mo-
tion tracking methods with applications in human motion capture, ac-
tion recognition, medical-image analysis, etc. We describe an articulated
and bending surface representation well suited for this task as well as a
method which aligns (or registers) such a surface to 3-D data. Articu-
lated objects, e.g., humans and animals, are covered with clothes and skin
which may be seen as textured surfaces. These surfaces are both articu-
lated and deformable and one realistic way to model them is to assume
that they bend in the neighborhood of the shape’s joints. We will intro-
duce a surface-bending model as a function of the articulated-motion pa-
rameters. This combined articulated-motion and surface-bending model
better predicts the observed phenomena in the data and therefore is well
suited for surface registration. Given a set of sparse 3-D data (gathered
with a stereo camera pair) and a textured, articulated, and bending sur-
face, we describe a register-and-fit method that proceeds as follows. First,
the data-to-surface registration problem is formalized as a classifier and
is carried out using an EM algorithm. Second, the data-to-surface fitting
problem is carried out by minimizing the distance from the registered
data points to the surface over the joint variables. In order to illustrate
the method we applied it to the problem of hand tracking. A hand model
with 27 degrees of freedom is successfully registered and fitted to a se-
quence of 3-D data points gathered with a stereo camera pair.

1 Introduction

In this paper we address the problem of aligning 3-D data to articulated shapes.
This problem resides at the core of a variety of methods, including object local-
ization, tracking, e.g., human-body motion capture, model-to-data registration,
etc. The problem is difficult for a number of reasons. First of all, there is a
lack of a general framework for representing large varieties of objects, such as
humans and their body parts, animals, etc. Second it is difficult to predict the
appearance of such objects such that the tasks of identifying them in images
and of locating them become tractable. Third, since they have a large number
of degrees of freedom, the problem of estimating their pose is confronted with a
difficult optimization problem that can be trapped in local minima.
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A first class of methods addresses the problem of articulated object tracking
[1]. A human motion tracker, for example, uses a previously estimated pose as
a prior to predict the current pose and to update the model’s parameters [2],
[3], [4], [5], [6]. Objects may have large motion amplitudes between two video
frames and their aspect may drastically change as one body part is occluded by
another one or when it turns away from the camera’s field of view [7], [8]. Image
data are often ambiguous and it is not easy to separate the tracked object from
the background or from other moving objects.

A second class of methods addresses the problem of aligning (or registering)
a point data set to a rigid or a deformable object. The data may lie at some
distance from the object and the shape of the object may change over time.
There are two classes of techniques available for solving this problem. The first
class describes the object as a point data set and estimates the motion para-
meters using point-to-point assignments [9]. This type of methods works well
provided that point-assignments (that may well be viewed as hidden variables)
are properly established. The second class of techniques describes the object as
a parameterized surface (or a curve) and fits the latter to the data [10], [2], [3].
This type of methods works well provided that the data are not too far from
the object, that the data are evenly distributed around the object and that they
are not corrupted by large-amplitude noise or outliers. Indeed, the distance from
a datum to a surface (whether algebraic or Euclidean) is a non-linear function
of the model’s parameters and the associated non-linear optimization problem
does not have a trivial solution.

In this paper we address both object tracking and object registration. One
one side we consider a 3-D point data set, e.g., data gathered with a stereo
camera pair. On the other side we consider articulated objects with their asso-
ciated surface and we assume that this surface is textured. The surface itself is
parameterized by the joint parameters associated with an underlying kinematic
chain. The texture points are loosely attached to the kinematic chain such that
when the surface bends, the texture points slightly slide along the surface. The
amount of sliding is controlled by a set of bending parameters such that the
texture sliding is proportional to the amount of surface bending.

We introduce an align-and-fit method that proceeds as follows. Alignment:
The data points are associated with texture points. This point-to-point assign-
ment is modelled as a classification problem. The texture points are viewed as
classes and each data point is assigned to one of these classes. Data classifica-
tion is carried out by an EM algorithm that performs three tasks: it classifies the
points, it rejects outliers, and it estimates the joint parameters. Fit: The surface
is fitted to the registered data points by minimizing a distance function over the
joint parameters. An example is shown on Figure 1.

The methodology described in this paper has several contributions. We intro-
duce an object representation framework that is well suited for describing articu-
lated shapes with bending surfaces. We cast the data-to-model association
problem into a classification problem. We show that it is more judicious, both from
theoretical and practical points of view, to allow for one-to-many data-to-model
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Fig. 1. This figure illustrates the alignment method described in this paper. Left: The
articulated model (texture and surface) shown in its previously estimated pose, Middle:
a set of 3-D data points obtained by stereo, and Right: the result of aligning the data
(middle) with the model (left).

assignments, rather than pair-wise assignments, as is usually the case with most
existing methods. We combine the advantages of point registration and of pa-
rameterized surface fitting. We emphasize that the point-to-surface alignment
problem has primarily been addressed in the case of rigid and deformable ob-
jects, and has barely been considered in the case of articulated objects.

The idea of approximatively matching sets of points stems from [11]. [12].
These same authors propose a point matching algorithm able to deal with outliers
[13]. However, they constrain the points to be assigned pair-wise which leads to
some difficulties, as explained in section 4. The idea of using the EM algorithm
[14] for solving the point matching problem was used by others [15], [16], [17].
However, previous work did not attempt to with articulated shapes. Moreover,
the prolem of outlier rejection is not handled by their EM algorithms.

The remainder of this paper is organized as follows. Section 2 describes the
articulated and bending surface model. Section 3 is a detailed account of the
point-to-surface alignment method. In section 4, we compare our method with
other similar methods and section 5 describes experiments performed with a 3-D
hand tracker.

2 Articulated Shapes with Bending Surfaces

The object model that will be used throughout the paper has three main
components:
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– It has one or several kinematic chains linked to a common part, i.e., a base
part. The kinematic joints are the model’s parameters;

– A volumetric representation that describes the shape of each part of the
kinematic chain as well as a surface embedding the whole object, and

– a texture that is described by a set of points loosely attached to the under-
lying surface, i.e., the texture is allowed to slide in the neighbourhood of the
kinematic joints where the surface bends.

The kinematic model. A kinematic chain consists in P elementary parts which
are referred by Q1...QP in this paper. These parts are linked by rotational joints.
The motion of this chain can be described by a set of K parameters, one for each
degree of freedom, Θ = {θ1, ..., θK}. The first six parameters will correspond to
the 3-D position and orientation of the chain’s base-part, and the remaining
parameters correspond to the joints angles. The position and orientation of each
part Qp is therefore determined by by Θ. The kinematically-constrained motion
of such a multi-chain articulated structure is conveniently described by the rigid
motions, Tp(Θ), of its parts.

A hand, for example, can be described with 5 such kinematic chains, and a
total of 16 parts and 27 degrees of freedom. The base-part (the palm) has six
degrees of freedom which correspond to the free motion of the hand. There are
five degrees of freedom for the thumb and four degrees of freedom for the other
fingers. The thumb has two joints with two rotational degrees of freedom and
one joint with one degree of freedom, while the other fingers have one joint with
two degrees of freedom and two joints with one degree of freedom.

The 3-D shape model. We will associate a rigid shape to each elementary part
Qp of the kinematic chain. In principle, it is possible to use a large variety of
shapes, such as truncated cylinders or cones, quadrics, superquadrics, and so
forth. One needs to have in mind that it is important to efficiently compute the
distance d(X, Qp) from a point X to such a part.

In order to obtain a single and continuous surface describing the whole object,
we will fuse these parts into a single one using isosurfaces. Isosurfaces are a
very useful tool to create complex shapes, such as human-body parts, and have
already been used in computer vision [10, 2]. To build this isosurface we will first
associate a field function φp to each part Qp of the model:

φp(X) = e−
d(X,Qp)

ν (1)

The surface associated to the part Qp can be described by the implicit equation
φp(X) = 1. The fusion of the parts Qp is obtained simply by summing up the
field functions in one single field function φ(X) =

∑
p φp(X), and by considering

the surface S defined by φ(X) = 1. The coefficient ν allows some amount of
control of the fusion. In practice the summation will not be carried out over all
the elements Qp. Indeed, a blind summation over all the elementary parts will
have the tendency to fuse them whenever they are close to each other, even if
they are not adjacent within the kinematic chain. For example, one doesn’t want
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two touching fingers to be glued together. To prevent this effect, whenever we
determine the field at a surface point X, e.g., φ(X), we look for the part Qp that
corresponds to the most important contribution φp(X), and we only consider
the contribution of this part and the adjacent parts in the kinematic chain.

The distance between a point X and a part Qp is evaluated through the
formula d(X, Qp) = −ν log(φp(X)) Similarly, the distance from a point X to
the isosurface S will be evaluated through the formula:

d(X,Θ) = −ν log(φ(X)) (2)

This distance depends on the position of the point X and on the parameters
Θ = {θk}1≤k≤K . For points close to the surface one may take the first order
Taylor expansion of the above expression, so that the quantity −ν(φp(X) − 1)
is a good approximation of d(X,Θ).

The hand model uses ellipsoids as basic volumes to describe each part. Ellip-
soids are relatively simple objects and correspond quite precisely to the shape of
the fingers’ phalanxes. To estimate the distance from a point to an ellipsoid, one
may use the algebraic distance, i.e., the quadratic form X�QpX. Estimation of
the Euclidean distance from a point to an ellipsoid requires to solve for a six
degree polynomial. In practice we will use a pseudo-Euclidean distance which
is more efficiently computed than the Euclidean distance, [7]. Finally, by fusing
these ellipsoids together, we are able to build a realistic model of the hand.

Modelling bending surfaces. The description detailed so far yields a surface
model that is parameterized by the kinematic-joint parameters. Nevertheless,
this model contains no information about how to control the non-rigid behav-
iour of the texture lying onto the object’s surface, when the joint parameters
vary. Consider again the case of the hand. In between two phalanxes the skin
will stretch on one side of the finger and will be compressed on the opposite
side. In other terms, the skin will slide along the underlying bones whenever the
finger is bent. This is a non-rigid motion and therefore this phenomenon will not
be properly modelled if surface points are rigidly attached to a part Qp. We will
use an approach similar to skinning techniques in graphics.

The motion of a point X, that lies nearby the surface of the object, is modelled
as a linear combination of the rigid motions Tp and Tr of two adjacent parts Qp

and Qr; We will use the field function φp(Xi) for weighting the contributions of
these two motions:

T (X,Θ) =
(φp(X,Θ))aTp(Θ)X + (φr(X,Θ))aTr(Θ)X

(φp(X,Θ))a + (φr(X,Θ))a
(3)

The parameter a allows to adjust the sliding when the distances to both Qp

and Qr are of comparable value. A small value for a yields a nicely interpolated
motion while the points remain attached to either Qp or to Qr for a large a. A
few examples of how the sliding is controlled in this way are shown on figure 2.
For the hand, we use a = 2.



The Alignment Between 3-D Data and Articulated Shapes 583

Fig. 2. The sliding of the texture onto a bending surface is controlled by the parameter
a. For a = 2 (top) the texture nicely compresses and streches when the surface bends.
For a = 10 (bottom) the texture is rigidly attached to the nearest rigid part.

3 3-D Point-to-Surface Alignment

The input data of our method consist in 3-D points extracted at time t and we
denote these points by {Yj}1≤j≤m. The input model consists in an articulated
surface. We want to estimate the articulated motion of this surface from its
pose at time t − dt to the its pose at time t. Moreover, the surface has a texture
associated with it and the latter is desribed as a set of 3-D points that we denote
by {Xi}1≤i≤n. These points correspond to data points that were correctly fitted
to the surface at t − dt, i.e., the distance from eachone of these points to the
surface falls below a threshold ε. The latter depends on the accuracy with which
one wants to estimate the motion parameters, the accuracy of the data, and the
accuracy of the model. For the hand-tracking experiments we use ε = 5mm.

3.1 3-D Point Matching Via Classification

Given a set of model points {Xi}1≤i≤n and a set of data points {Yj}1≤j≤m, the
goal is to estimate the transformation T . Therefore, one needs to find correspon-
dences between the priors and the candidates. This is known in statistics as a
missing data problem that can be formulated as a classification problem. Each
point Yj should be either associated to one (or several) of the points Xi, or be
rejected as an outlier. Therefore, the Xi’s can be seen as classes into which the
Yj’s have to be classified or thrown out.

To recast the problem in a statistical framework, the {Yj}1≤j≤m are the
observed values of a set of random variables {Yj}1≤j≤m. Each Yj is associated



584 G. Dewaele et al.

to another random variable Zj , whose specific value is unknown, which represents
the point associated to Yj when Yj = Yj. More specifically, Zj is equal to one of
the points Xi, or fall into a special additionnal “outlier” class when the observed
point Yj does not correspond to any point among the Xi’s.

Let us specify some additionnal entities that will be needed. The prior proba-
bilities {Πi}1≤i≤n+1 of each of the classes {X1, ...,Xn, outlier}, and probability
distribution fj(Yj|Zj = Xi) of a point Yj when its class Zj is known and equal
to Xi, or fj(Yj|Zj = outlier) when Yj cannot be associated to any of the Xi’s.

The prior probability, for a point in a working space of volume V , to be
associated to a given point Xi corresponds to the probability of finding it in a
volume v < V around the new position of the point, T (Xi). Therefore, we have

Πi =
v

V
. (4)

The prior probability for a point to be an outlier (meaning that the point is not
in any of the small volumes v) will then be:

Πoutlier =
V − nv

V
. (5)

The probability distribution for Yj can also be written quite easily. If this
point Yj corresponds to a point Xi, its position Yj should be close to the new
position of this point (after the motion), T (Xi). We will choose a Gaussian
distribution N , centered in T (Xi) with variance σ2:

fj(Yj|Zj = Xi) = N (Yj; T (Xi), σ2) (6)

If the point Yj is an outlier, this probability distribution should be uniform over
the working space. So, if V is the volume of the working space,

∀ Yj ∈ V , fj(Yj|Zj = outlier) =
1
V

(7)

Using Bayes’ formula, we can then write the distribution of the random vari-
able Yj , which is :

fj(Yj) =
n∑

i=1

Πi fj(Yj|Zj = Xi) + Πoutlier fj(Yj|Zj = outlier) (8)

or, by specifying the different terms,

fj(Yj) =
n∑

i=1

v

V
N (Yj; T (Xi), σ2) +

V − nv

V 2 (9)

For the volume v, we will use a sphere of radius σ, so that we have v = 4πσ3/3.
We can choose a working space large enough so that the quantity nv is negligeable
when compared to V . We will use this remark later for simplification.
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3.2 A Robust EM Algorithm

To simplify the notations, we will denote by Ψ the set of unknown parameters,
i.e., the joint variables Θ defining the transformation T and the variance σ. We
seek the parameters Ψ which maximize the likelihood P(Y|Ψ), where the Yj’s
are the measured positions of the points {Yj}1≤j≤m.

Due to the unknowns Zj , this is a missing data problem and the EM algorithm
will be used. In addition of providing estimates of Ψ , the algorithm will provide
values for the unknown Zj ’s. We will use the following notation:

αi,j = P(Zj = Xi|Y, Ψ) (10)

Therefore, αi,j denotes the probability that the class Zj of the observed point
Yj corresponds to the prior point Xi.

Starting with an initial guess Ψ0, the EM algorithm proceeds iteratively and
the iteration q consists in searching for the parameters Ψ that maximize the
following term:

Q(Ψ |Ψ q) = E [ log(P(Y, Z|Ψ)) | Y, Ψ q ] (11)

where Ψ q is the prior estimation of Ψ available at the current iteration q. The
expectation is taken over all the values of Z, thus taking into account all possible
values of the Zj ’s. This process will be iterated until convergence. We will first
develop Q(Ψ |Ψ q) for the distributions (6) and (7) that we defined in the previous
section. First, one can write that:

P(Y, Z|Ψ) =
m∏

j=1

(
n∏

i=1

(Πifj(Yj|Zj = Xi, T , σ))δ{Zj=Xi}

× (Πoutlierfj(Yj|Zj = outlier))δ{Zj=outlier}

) (12)

where δ{Zj=Xi} (resp. δ{Zj=outlier}) equals 1 when the class Zj of the point Yj

is Xi (resp. is an outlier), and 0 otherwise. Note that in the second product, all
terms but one are equal to 1. Therefore, we have:

log (P(Y, Z|Ψ)) =
m∑

j=1

(
n∑

i=1

(log Πi + log fj(Yj|Zj = Xi, T , σ)) δ{Zj=Xi}

+ (log Πoutlier + log fj(Yj|Zj = outlier, T , σ)) δ{Zj=outlier}

)
.

(13)

By reporting the expression (13) in (11), we obtain :

Q(Ψ |Ψ q) =
n∑

j=1

(
m∑

i=1

(log Πi + log fj(Yj|Zj = Xi, T , σ)) P(Zj = Xi|Y, Ψ q)

+ (log Πoutlier + log fj(Yj|Zj = outlier, T , σ))P(Zj = outlier|Y, Ψ q)

)
.

(14)
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This expression involves the probabilities αq
i,j = P(Zj = Xi|Y, Ψ q) which, using

the Bayes formula, can be written as:

αq
i,j =

Πifj(Yj|Zj = Xi, T q, σq)∑n
k=1 Πkfj(Yj|Zj = Xk, T q, σq) + Πoutlierfj(Yj|Zj = outlier)

(15)

where

fj(Yj|Zj = Xi, T q, σ2
q) =

1
(2πσ2

q )
3
2

e
−‖Yj−T q(Xi)‖

2

2σ2
q . (16)

The expression of αq
i,j , i.e., the probability that a point Yj is matched with the

point Xi, can be further developed using expressions (4), (5) and (7):

αq
i,j =

e
− ‖Yj−T q(Xi)‖

2

2σ2
q

∑m
k=1 e

− ‖Yj−T q(Xk)‖2

2σ2
q + c

(17)

where

c = 3
√

π

2

(
1 − nvq

V

)
� 3

√
π

2
since we assumed nvq � V. (18)

This expression for the αq
i,j is at the core of the robust method (outlier rejection):

– If the transformation T q does not take any point Xi, i.e., the action T q(Xi),
in a small volume of radius σq around Yj then all the terms in the denomi-
nator’s sum will be small compared to c. Therefore, all the coefficients αq

i,j

corresponding to the point Yj will lean towards zero. We will see in the
following section that it will mean that the point Yj will not be taken into
account for the estimation of the transformation T .

– On the contrary, a point Xi taken by T q within the neighborhood of Yj will
yield a value for αq

i,j that is close to 1 (if only one point Xi is present in
this neighborhood), and the association between Xi and Yj will be used to
determine T .

3.3 Estimating the Transformation T q

It is now possible to derive a simpler expression of equation (14). Neither the
coefficients Πi, nor the second row of eq. (14) depend on the transformation T .
By substituting fi in (14) by its expression (16), we obtain a new expression for
Q(Ψ |Ψ q):

Q(Ψ |Ψ q) = − 1
2σ2

q

n∑
i=1

m∑
j=1

αq
i,j‖Yj − T (Xi,Θ)‖2 + Cst (19)

where the constant term does not depend on the transformation T . To maximize
Q, the EM algorithm iterates a two-step procedure:
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– Expectation: The probabilities αq
i,j are evaluated using equation (17).

– Maximization: We seek the parameters Θ that maximize the criterion Q,
given the αq

i,j ’s previously evaluated. As it will be explained below, σq will not
be evaluated through the maximization process. Its value will be evaluated
through an annealing schedule.

These two steps are carried out until changes between T q and T fall under a
given threshold.

After developing the sum over j in equation (19) and after a few algebraic
manipulation, one obtains that the maximization of (19) is equivalent to the
minimization of:

E(Θ) =
n∑

i=1

λq
i ‖T (Xi,Θ) − Gq

i ‖2 (20)

with:

λq
i =

m∑
j=1

αq
i,j and Gq

i =
1
λq

i

m∑
j=1

αq
i,jYj .

It is less complex and more efficient to minimize equation (20) rather than
to maximize eq. x(19). Indeed, the summation is restricted to the priors Xi.
Moreover, it is straightforward to evaluate the Jacobian matrix associated with
the transformation T given by equation (3). As the value of E(Θ) decreases, the
model points Xi which do not have a data-point assignment will rapidly disap-
pear from the summation since their associated coefficient λi rapidly converges
to 0 as the value of σq decreases. On the contrary, for those priors Xi which do
have one or several data-point assignments, their center of gravity, Gi, will get
closer to the data point Yj which is the closest to T (Xi).

Conventionally, EM algorithms also include the evaluation of σq during the
maximisation step. In fact, it has been observed by us and by other authors
that this does not lead to good alignment results. Very often, the values of σq

evaluated by the maximization step, decrease too quickly, and the algorithm
tends to get trapped in a local minimum. To prevent this, we will simply specify
an annealing schedule for σq , in the spirit of simulated annealing techniques.
The initial value, σ0, will be set at the threshold previously defined, σm, which
corresponds to the largest allowed motion of a point. At each step of the algo-
rithm, σq will decrease geometrically, according to σq+1 = κσq with κ < 1. The
value σ should not fall below the variance σr of the noise associatd with the 3-D
locations of the points (a few millimeters in our case), and the decrease of σq is
stopped when it reaches this threshold σr. The decrease rate κ is chosen so that
it takes about five steps to go from σm downto σr.

3.4 Surface Fitting

Now that outliers were rejected and that the articulated object moved such
that the inliers are in the neighbourhood of the object’s surface, it is worthile
to perform surface fitting. This introduces small corrections and it is useful to
prevent drift over time. We will simply refine the position of the model (through
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the parameters Θ) so that the 3-D points lie on the surface or as close as possible
to this surface. The minimization criterium can be written as, [2], [7]:

Es(Θ) =
m∑

j=1

βjd(Yj,Θ)2 (21)

where d is given by equation (2), and

βj = e−
d(Yj)

2

σ2 (22)

4 Comparison with Other Methods

The main and fundamental difference between our method and other methods
such as [11], [12], [13], [15], and [16] resides both in the expression of the prob-
abilities αi,j provided by equation (17) and in the fact that these probabilites
are subject to the constraint

∑
j αi,j = 1 i.e., a summation over the data points.

This constraint imposes that to each model point Xi corresponds a unique data
point Yj but a data point may correspond to several model points.

The SoftAssign method described in [11] treats the data- and the model-points
symmetrically, and hence it needs the additional constraint

∑
i αi,j = 1 i.e., a

summation over the model points. From a statistical point of view, it means that
one needs to consider two non-independent classifiers. A formal derivation for
the αi,j ’s is more delicate. In [11] [12] it is suggested to normalize the αi,j ’s,
alternating over i and over j, until convergence, the latter being insured by the
Sinkhorn theorem. However this is computationally expensive. In addition, since
the data and the model are treated symmetrically, it is crucial to reject outliers
both from the data and from the model. This is done by adding one row and
one column to the matrix αi,j . For example, a data point Yj which is an outlier
will have a “1” entry in the extra row and a model point Xi which is an outlier
will have a “1” entry in the extra column. The normalization along the rows
and along the columns should not affect, however, these extra row and column.
Indeed, there should be several outliers and therefore there should be several
1’s in each one of these extra row and column. We implemented this method
and noticed that when the normalization is not applied to these extra row and
column, the final solution depends a lot upon the initial entries of these row and
column. If the initial probabilities to have outliers are too high, all the points
will be classified as outliers. If these initial probabilities are too low, there will
be no outliers.

5 Experimental Results

The method described in this paper was applied to the problem of tracking a
hand model with 3-D data. We used a calibrated stereo camera pair together
with a stereo algorithm. This algorithm provides a dense disparity map. Texture
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Fig. 3. Three different stereo video sequences of a hand. When the hand turns, the
tracker has difficulties because the texture of the hidden side of the hand has not yet
been included in the model. When the fingers bend, the hand may be tracked from
both its sides.

points are extracted from both the left and right images using the Harris interest
point detector. Since a dense disparity map is available, the texture points are
easily matched and their 3-D positions estimated.

We gathered several stereoscopic video sequences at 20 frames per second.
Each sequence has approximatively 100 frames. There are in between 500 and
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1000 3-D data points associated with each stereo pair in the sequence. Notice
that while some background points may be easily thrown out, there still remain
many unrelevant points, such as those on the forearm (which is not modelled),
e.g., Figure 1.

The results of applying the alignment method are shown on three different
image sequences on Figure 3. In the first example, the hand rotates around an
axis parallel to the image plane. In the next two examples the fingers bend and
the hand is viewed from two different viewpoints.

The tracker maintains approximatively 250 inliers. Notice that the number of
data points varies a lot as a function of the position of the hand with respect
to the cameras. In particular, when the hand flips from one side to another,
the tracker has to start the alignment from scratch because there are no model
points with the side of the hand that has never been seen. Due to the fact
that the hand-model has 27 degrees of freedom, it cannot capture all the hand’s
deformations.

6 Conclusion

In this paper we described a new method for aligning a set of 3-D data points to
an articulated shape. We introduced a shape model that includes both an artic-
ulated kinematic representation and a surface-bending model. We described in
detail an alignment method that robustly classifies data points as model points,
i.e., points that lie onto the model’s surface. The alignment problem was formal-
ized as an EM algorithm that is able to reject outliers. The EM procedure that
we described finds data-point-to-model-point assignments (expectation) and es-
timates the best transformation that maps the model points onto the data points
(maximization). Our EM algorithm differs from previous attempts to solve for
the point-registration problem: it has a built-in outlier rejection mechanism and
it allows, one-to-many data classsifications (or data assignments). Relaxing the
pair-wise assignment constraint results in a more efficient and more reliable
alignment method. Also, we appear to be the first ones to apply EM-based point
registration to complex articulated shapes.

In the near future we plan to address the problem of articulated shape match-
ing, where there may be a large discrepancy between the pose parameters of the
model and the unknown pose parameters to be estimated from the data. We plan
to add a relational-graph representation of the model and to address the match-
ing problem as the problem of both matching the model-graph to the data-graph
and of finding the kinematic pose.
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