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Abstract

We present an original ant model to solve the foraging problem.
We describe simulations and provide a convergence analysis. We prove
the convergence of the model in the discrete and in the continuous
cases. We show that the ant population computes the solution of an
optimal control problem and converges in a well defined sense. We
discuss the rate of convergence with respect to the number of ants
for the discrete case: we give experimental and theoretical arguments
that suggest that this convergence rate is superlinear with respect to
the number of agents. Furthermore, we explain how this model can be
extended in order to solve optimal control problems and more generally
any problem that involves the computation of the fixed point of a
contraction mapping. This allows us to design a large class of formally
well understood ant-like algorithms for problem solving.

1 Introduction

Swarm intelligence [2, 5] was introduced in the 1990s as a novel nature-
inspired approach for problem solving. The inspiring source is the behavior
of real insects: a population of simple interacting agents, communicating
indirectly through an environment, constitutes a massively distributed al-
gorithm for solving a given task (e.g. foraging, flocking, labor division,
prey capture, etc.). Referring to neural networks, another nature-inspired
approach for massively distributed computing, Kohonen wrote in 1988 [13]:

One of the fundamental tasks of this new “neural networks”
science is to demonstrate by mathematical analysis, computer
simulations, and even working artificial sensory and control sys-
tems that it is possible to implement massively parallel information-
processing functions using components, the principles of which
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are not mysterious but already familiar from computer technol-
ogy, communication science, and control engineering. There is
nothing in the “neural network” area which were not known, in
principle at least, from constructs already in use or earlier sug-
gested.

The motivation of this paper is to argue for a similar statement about
swarm intelligence. Classical engineering problem solving and swarm intel-
ligence can be viewed as alternative approaches of the same problem. Then
what makes these approaches seem so different ? As Sutton pointed it [22]
(when discussing the relations between “modern” Machine Learning and
“classical” Intelligent Control), we could

characterize the split as having to do with the familiar dilemma
of choosing between obtaining clear, rigorous results on the one
hand, and exploring the most interesting, powerful systems on
the other.

Roughly speaking, research on swarm intelligence is often focused on im-
pressive proof-of-concept applications through extensive experimental simu-
lations while classical engineering problem solving relies on theoretical con-
vergence proofs for “toy” problems. The intent here is not to judge these
approaches, which are clearly complementary, but rather to express our be-
lief that filling the gap between both is a great research challenge.

There have not been many attempts in the literature that try to actually
fill this gap, in particular in the area of ant-like algorithms. One interest-
ing exception is the probably best known instance of swarm intelligence: the
Ant-Colony Optimization (ACO) meta-heuristic for combinatorial problems,
which has been extensively studied. The theoretical work on ACO have re-
cently been reviewed in [10]. In this review, the authors present theorems
for “convergence in value” (ACO is guaranteed to find an optimal solution
in finite time with a probability that can be made arbitrarily close to 1) and
“convergence in solution” (provided a properly designed decreasing explo-
ration parameter, the ACO asymptotically converges to an optimal solution
almost surely). They also relate ACO to “more standard” optimization tech-
niques such as stochastic gradient descent and cross entropy. The interested
reader should go through [10] for further details.

In this paper, we come back to the original, simpler, inspiration of ant
algorithms, where a population of simple agents (that may be viewed as
mimicking the behavior of real ants) efficiently solve a foraging problem.
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Many models and algorithms have been proposed to solve this problem, see
for example [8, 9, 16, 17, 19, 20]. These studies focus mainly on modeling
the behavior of real ant colonies proposing algorithms and methods to solve
interesting problems. However, from an engineering point of view, they
do not go beyond simulations and do not provide formal analysis of the
algorithms.

In this article, we introduce a massively distributed ant model that is
guaranteed to asymptotically solve the foraging problem. We provide a
convergence proof of the model, and a rate of convergence analysis with
respect to the number of agents. Our analysis relies on optimal control
theory, parallel distributed computing and graph theory. To our knowledge,
this is the first attempt to present an ant model for the foraging problem
and provide a formal analysis of the algorithm in terms of convergence and
rate of convergence.

The remaining of the paper is organized as follows. Section 2 provides a
description of our ant model and discusses some simulations that were made
to measure the convergence and the rate of convergence. In Section 3 we give
a formal proof of convergence and the theoretical analysis is used to discuss
the influence of the model’s parameters. Section 4 analytically discusses
the rate of convergence: it gives formal arguments that explain why one
observes a superlinear rate of convergence. In section 5, we describe the
continuous version of the model we propose. We prove its convergence and
illustrate through experiments the super-linearity of the rate of convergence
with respect to the number of ants. Finally section 6 provides a discussion
about the scope of our model and its relations to other models proposed in
the literature.

2 A simple ant model

In this section, we describe a simple ant model, which is aimed at solving
a foraging task on a discrete environment. We provide simulations that
illustrate the behavior of the model and experimental measurements of its
performance.
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2.1 Description of the ant model

We consider a set of artificial ants moving on a two-dimensional grid environ-
ment1 on which they update artificial pheromone traces. The environment
is composed of four different types of cells: one nest cell, one food cell, sev-
eral bad cells and all the remaining cells are considered free. Each cell s of
the grid stores two pheromone traces as two real numbers: Φf (s) the food
pheromone and Φn(s) the nest pheromone.

Ants can carry one unit of food at a time, and can be in two possible
states: carry food or carry nothing. Food is picked up at food cells and
dropped at the nest. When a unit of food is brought to the nest a food
counter, which will serve as a global performance measure, is incremented.
Initially:

• the food counter is set to 0,

• the positions of the ants are initialized arbitrarily (e.g. all ants are
initialized at the nest or uniformly at random on the grid, etc.) and
all ants are set to be in the carry nothing state,

• the pheromone values are initialized arbitrarily (e.g. 0, random, etc.)

At every time step, each ant performs two actions:

1. It updates both food and nest pheromone Φf (s) and Φn(s) of its cur-
rent cell s using the pheromone values of its four neighbors (we note
the set of neighbors of cell s as N (s)), therefore using only local in-
formation. In fact, the update requires only the knowledge of the
maximum and average of both pheromone values over the neighbors.
Define:

maxi(N (s)) ≡ max
s′∈N (s)

Φi(s
′),

and

avgi(N (s)) ≡
1

4

∑

s′∈N (s)

Φi(s
′)

where i ∈ {f, n} represents one of the nest or food pheromone. The
pheromone update rules are then as follows:

Φf (s)←















1 if s is a food cell
−1 if s is a bad cell
β [ α maxf (N (s))
+ (1− α) avgf (N (s))

]

otherwise

(1)

1As the reader will understand in the following, more complicated graph structures
could be used, we address here the 2D grid case for the sake of simplicity.
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Φn(s)←















1 if s is a nest cell
−1 if s is a bad cell
β [ α maxn (N (s))
+ (1− α) avgn (N (s))] otherwise

(2)

where 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 with the condition that β < 1 if
α = 1.

2. It moves to one of its four neighboring cells: with probability ε (0 ≤
ε ≤ 1) (that we shall call the exploration rate) it moves uniformly at
random to one of its neighbors, and with probability 1 − ε, it moves
to the neighbor with the highest pheromone value. The internal state
of the ants conditions which pheromone values are considered: Φf if
it is in state carry nothing and Φn if it is in state carry food.

The β parameter can be considered as some sort of “evaporation param-
eter” and is typically to be set close to 1. The α parameter, which we shall
call the noise parameter for reasons that will be explained later, should typi-
cally be set either close to 0 or close to 1. Two simple instances of our model
correspond to the parameter choices (α = 0, β = 1) and (α = 1,0 < β < 1).
In the former choice, the general pheromone equation (the “otherwise” case
above) reduces to:

Φi(s)← avgi(N (s)), (3)

which is a simple linear update, and in the latter choice the equation reduces
to:

Φi(s)← β maxi(N (s)). (4)

As it will appear clearly in the analysis, the question whether the ant
activities (pheromone values updates and moves) are done synchronously or
asynchronously does not matter.

To summarize and to identify precisely different instances of this model
(and for the reader to be able to reproduce the experiments we will soon
describe), the following information needs to be specified:

• the environment: the set of cells, and their type (nest, food, free, bad),

• the way we initialize the position of the ants and the pheromone values
Φf and Φn over the environment,

• the noise parameter α, the evaporation parameter β and the explo-
ration parameter ε.
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(t = 1000) (t = 7000) (t = 7156)

(t = 8000) (t = 26742) (t = 27000)

Figure 1: Snapshots of the ant model at different times. Thick gray lines
represent undesirable (bad) states. The nest is located at the top right and
the food source at the bottom in the middle (dark middle sized squares).
Small squares represent the ants: filled squares represent ants carrying food,
and empty squares are ants that are not carrying food.

The model we have just described is made of very simple reactive agents
that communicate indirectly through the environment. In a way, this model
is simpler than classical ant models: in our case, pheromones need not to
be evaporated at every cell of the environment (this is a heavy computa-
tion when running a typical ant-like algorithm); in our model, some sort of
evaporation is performed through the β parameter of the local pheromone
update. However, unlike classical ant models which use one pheromone trail,
ours uses two: following Φf leads to the food source and following Φn leads
back to the nest. This is to compensate the fact that our ants, which are
completely reactive agents, do not memorize the path to the nest. Previous
work using a single pheromone trail often relies on ad-hoc mechanisms to
help the ants return to the nest. Other ant models where two pheromone
trails are used for foraging can be found in [12,17,24].
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2.2 Simulations

In this section we illustrate the behavior of our ant model with simulations.
As we will see, we observe a form of convergence. We begin by describing
what form of convergence we obtain and explain the experimental setting
that allows us to measure the rate of convergence. Finally, we will briefly
comment the results, as a formal in-depth analysis follows in sections 3 and 4.

Let us consider a typical run of the algorithm on the environment shown
on Figure 1. In this simulation, the size of the population m = 256 and
the ants were initialized at the nest. The other parameters of the algorithm
were: ε = 0.75, α = 0.99, and β = 0.9999.

Figure 1 shows the evolution of the agents which, over time, move in the
environment searching for food. The food source is discovered by chance by
some isolated agents (iteration 7000). Quickly (between iteration 7000 and
8000), a large portion of the population starts following the discovered path.
Later in the simulation, some agents find, while exploring, an alternative
path (around iteration 26000) ; these agents are rapidly joined by the rest
of the population (iteration 27000). At this stage, the dynamics stabilize
and there will not be significant changes: the ants will move back and forth
between the nest to the food source.

All other things being fixed, if we change the value of the noise parameter
α, we can observe different forms of paths, and sometimes no path. Figure 2
illustrates the asymptotic distribution of ants for different values of α: we
observe paths except for the case where α = 0.2. Suppose a path emerges
between the nest and the food source. We do observe such a path visually,
however it would be interesting to measure something objective that reveals
the emergence of this path. This can be done through the “food counter”
we introduced previously. We may plot the quantity of food brought back
to the nest with respect to time (see Figure 3). After some time, we observe
that the quantity of food brought back to the nest increases linearly. This
linearity means that the foraging behavior of the ants has converged. In
section 3, we will provide theoretical arguments that characterize precisely
this convergence, and we will in particular explain why we do not observe
paths for some values of α.

The food counter curve shows experimentally for one simulation that
there is convergence ; this curve can be exploited further to measure a
convergence rate. For that we proceed as follows: we fix a sufficiently large
maximum evolution time (tmax) and we fit a line on the upper portion of the
food counter curve (the linear part of the curve). The size of the portion to
fit is a parameter (p), which we typically chose between 0.25 and 0.5, taking
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α = 1.0 α = 0.8

α = 0.2 α = 0.0

Figure 2: Limit distribution of the population for various values of α: dif-
ferent values of the noise parameter will result in different paths between
the nest and the food source and sometimes none.

into account from the upper quarter to the upper half of the curve for the
linear regression.

We define the time of convergence as the intersection of the fitted line
and the time axis2 (see Figure 3). The rate of convergence is thus defined
as the inverse of the time of convergence.

2This is analogous to the computation of the time-constant of an electrical capacitor.
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Figure 3: Measuring the rate of convergence: food units correspond to the
accumulated amount of food brought back to the nest normalized by the
number of ants. For one simulation we measure the rate of convergence as
the inverse of the time when the convergence line intersects the x-axis (the
convergence line is the linear regression over the linear part of the curve).

In order to determine the influence of the population size on the rate
of convergence, we measure the rate for different values of the population
size m. Thus one simulation consists in running the algorithm with different
values of m on the same environment fixing all other parameters (α, β, ε,
tmax and p). At the end of a simulation we obtain values of the rate of
convergence with respect to m. Given the stochasticity of the simulation
(the ants have ε probability of moving randomly), we reproduce the simula-
tions a certain number of time in order to measure statistics on the rate of
convergence.

Figure 4 presents a typical curve showing the rate of convergence with
respect to the size of the environment. For this experiment, we used the en-
vironment of Figure 2 and the following parameters: α = 0.9, β = 0.999999,
ε = 0.7, tmax = 100000 and p = 0.5. The agents were initialized uni-
formly at random over the environment. The statistics (median values and
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Figure 4: Convergence rate as a function of the population size: the curve
represents the median value over 7000 simulations on the environment of
Figure 2 with the following parameters: α = 0.9, β = 0.999999, ε = 0.7,
tmax = 100000 and p = 0.5.

the absolute median deviation) were computed from 7000 simulations. Fig-
ure 5 shows similar experiments on different environments (with 5000 sim-
ulations).

These curves show experimentally that when the number of agents grows
linearly, the convergence rate grows super-linearly. In other words, when
the number of agents is doubled the rate of convergence grows with a factor
greater than two. This observation will be analyzed in section 4: we will
give arguments that support such a superlinear rate.

3 Convergence Analysis

In this part, we are going to give an analysis of our ant model. We will
prove that it converges in some sense. To understand what our ant model
does and why we see a path emerge, we will first make a detour into the
theory of discrete-time stochastic optimal control, and particularly into the
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Figure 5: Convergence rate as a function of the population size: the curves
represent the median value over 5000 simulations. The above curve cor-
responds to simulations in the environment on the left and the one below
to the environment on the right. In both simulations, the parameters used
were: α = 0.9, ε = 0.8, β = 0.999999, tmax = 100000 and p = 0.5.

Markov Decision Process (MDP) framework. A MDP is a controlled stochas-
tic process satisfying the Markov property with rewards (numerical values)
assigned to states. Formally, an MDP is a four-tuple 〈S, A, T, R〉 where S
is the state space, A is the action space, T is the transition function and
R is the reward function. T is the state-transition probability distribution
conditioned by the action. For all states s and s′ and actions a, T (s, a, s′)
is the probability to go from state s to state s′ after executing action a at
state s,

T (s, a, s′)
def
= Pr(st+1 = s′|st = s, at = a).
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R(s) ∈ IR is the instantaneous reward for being in state s. In the MDP
framework, the optimal control problem consists in finding a policy, that is
a mapping π : S → A from states to actions, that maximizes the expected
long-term amount of rewards, also called value function of policy π:

V π(s) = E

[

∞
∑

t=0

γt.R(st)|s0 = s

]

. (5)

We here consider an infinite time horizon; also, future rewards are discounted
exponentially with a discount factor γ ∈ (0, 1) (setting γ < 1 can be seen
as a mathematical trick so that the above performance criterion remains
bounded). Given an MDP model, it is shown (e.g. by Puterman [18]) that
there exists a unique optimal value function V ∗ which is the fixed point of
the following mapping on functions, also called Bellman operator, ∀W ∈ IRn:

[B.W ] (s) = max
a

(

R(s, a) + γ.
∑

s′

T (s, a, s′).W (s′)

)

(6)

Once an optimal value function V ∗ is computed, an optimal policy π∗ can
immediately be derived as follows:

π∗(s) ∈ arg max
a

(

R(s, a) + γ.
∑

s′

T (s, a, s′).V (s′)

)

. (7)

The fundamental reason why the above Bellman operator B has a unique
fixed point is related to the fact it is a contraction mapping with contraction
factor at most γ: i.e. for all pairs of real functions U , U ′ on S,

‖BU −BU ′‖ ≤ γ‖U − U ′‖

where ‖.‖ is the “max-norm” on S: ‖U‖ = maxs |U(s)|. A standard ap-
proach for solving the optimal control problem is to use a sequential iterative
procedure, known as “Value Iteration” [18], which consists in initializing a
value function V 0 arbitrarily and iterating the following process:

For all states s ∈ S, do:
V t+1(s)← [BV t](s).

Because of the contraction mapping property, this sequence is guaranteed
to asymptotically converge to the optimal value function V ∗, from which we
can deduce the optimal controller π∗ (cf equation 7). Furthermore, such an
iterative sequence, has a linear rate of convergence γ:
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‖V t+1 − V ∗‖ ≤ γ.‖V t − V ∗‖ ≤ γt+1.‖V 0 − V ∗‖ (8)

Berstekas and Tsitsiklis have argued [4] that an asynchronous version of
Value Iteration:

Pick (randomly) a state s ∈ S, do:
V t+1(s)← [BV t](s)

(9)

will also converge to the fixed point V ∗, as long as all states keep on being
picked. In the asynchronous case, one can rewrite a variant of equation 8 as:

‖V kt+1 − V ∗‖ ≤ γ ‖V kt − V ∗‖ ≤ γt+1‖V 0 − V ∗‖ (10)

where k0, k1 . . . is an increasing series such that k0 = 0 and all components
of s (all states) are updated at least once between instant kt and kt+1 − 1
for all t (see [3] p. 27). Each time all the states have been updated, we
know that V approaches V ∗ at a linear rate γ. In fact, once again, the proof
of such a result relies on the contraction mapping property. We will in the
following use this property to prove the convergence of our ant algorithm.
While the aim in [4] was to come up with efficient parallel implementations
on real parallel computers, ours is slightly different: we are going to show
that the optimal control computation fits in the (virtual) ant paradigm.

Coming back to the ant model we described earlier, we are going to make
a clear link between what the ant population computes and some optimal
control problems. Indeed, we will show that the pheromone values Φf and
Φn correspond each to the value function of a control problem. This is our
first result:

Proposition 1 Consider the ant model described in section 2.1. If the
exploration rate ε is strictly positive, then the pheromone value Φf (resp.
Φn) asymptotically converges to the optimal value function of the MDP
Mf = 〈S, A, Tf , Rf 〉 (resp. Mn = 〈S, A, Tn, Rn〉) with discount factor β
where:

• S is the set of grid cell plus an extra “end state”.

• A is the set of the four cardinal moves (North, East, South, West)

• The transition Tf (resp. Tn) is characterized as follows: 1) when,
in a state s corresponding to a free cell or the nest cell (resp. to
a free cell or the food cell), one chooses one of the four directions
a ∈ A, the probability of actually making the move in the direction a
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is α + 1−α
4 = 3α+1

4 while the probability of getting to each of the three
other neighbors is 1−α

4 . 2) From all the other states, that is from bad
cells, the food and the “end state” (resp. from bad cells, the nest and
the “end state”), there is, for every action, a probability 1 to reach the
“end state”, which is an absorbing state.

• The reward Rf (resp. Rn) is defined as follows: for all states s corre-
sponding to a free cell or to a nest cell (resp. a free cell or a food cell),
the reward is 0. For the state corresponding to the food cell (resp. the
nest), the reward is 1. The reward is −1 for all states corresponding
to bad cells and 0 for the “end state”.

Figure 6 provides a graphical view of what a part of these MDP can look
like.

The proof of the above result simply consists in checking that the ant
model is an asynchronous version of the value iteration algorithm for the
corresponding problems: concretely, we need to check that, for all cells,
the updates for Φf and Φn (equations 1 and 2) are identical to the one
that would be done by the Bellman operator (equation 9). This is a simple
question of rewriting. For instance, to update Φi(s) (i ∈ {f, n}) when s is a
free cell, we have:

Φi(s)← β (αmaxi(N (s)) + (1− α)avgi(N (s)))

⇔ Φi(s)← β

(

α max
s′∈N (s)

Φi(s
′)

+
1− α

4

∑

s′∈N (s)

Φi(s
′)



 (11)

⇔ Φi(s)← β max
s′∈N (s)



αΦi(s
′) +

1− α

4

∑

s′′∈N (s)

Φi(s
′′)





⇔ Φi(s)← β max
s′∈N (s)

(

(

α +
1− α

4

)

Φi(s
′)

+
1− α

4

∑

s′′∈N (s)\{s′}

Φi(s
′′)





⇔ Φi(s)← β max
a∈A

(

∑

s′∈S

Ti(s, a, s′)Φi(s)

)

. (12)
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Figure 6: Representation of the MDP model. Each node of the graph is a
state. The associated reward is written inside the node. In one state, there
are four actions. The picture above shows the transition probabilities from
the current state (the center cell) if action East is picked. It also shows the
transitions to the “end state”. See text for details.
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We let the interested reader check that this equation also holds in the few
other cases (when s is not a free cell). Finally, the condition ε > 0 ensures
that all states will keep on being visited and updated, which in turn ensures
the convergence of this asynchronous version to the optimal value functions.

Now let us interpret what this means and especially why we observed the
emergence of paths between the nest and the food source in the experiments.
Solving Mf (resp. Mn) means finding a policy that will generate trajectories
that avoids (on average) the bad cells for which the reward is −1 and try to
reach the food cell (resp. the nest cell) for which the reward is 1; because of
the discount factor β < 1, the optimization also tries to minimize the time
to reach the food cell (resp. the nest cell). In other words, Mf (resp. Mn)
are natural formulations of the control problem: “go to the food cell (resp.
the nest cell) by avoiding the bad states” assuming that there is some noise
in the transition models Tf and Tn. The level of noise is related to α: calling
α a “noise parameter” was thus fully justified.

In each state, the optimal action is the one for which the maximum is
reached in equation 12 above, and it is easy to see that this optimal action
is the one that points to the cell for which the maximum is reached in equa-
tion 11: that is the cell with the highest pheromone value. The pheromone
values asymptotically converge to the corresponding optimal value func-
tions Φf and Φn. Therefore, the moves of the ants, which are (recall the
ant move description in section 2.1) a mixture of random uniform moves
(with a weight ε) and the action that climbs up the pheromone value (with
a weight 1 − ε), converge to a mixture of random uniform moves and the
optimal corresponding moves. The smaller ε, the clearer will be the path
when the pheromones have converged (at the limit if ε = 0 all the ants fol-
low the optimal policy). However, the smaller ε, the longer it will take for
the ants to repeatedly visit all the states and make the pheromone values
converge. This trade-off is typical of optimal control theory and is known as
the exploration-exploitation dilemma (see for instance Sutton & Barto [23]).

In the description of the algorithm in section 2.1, we wrote about the
parameters α and β that we needed 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 with the
condition that β < 1 if α = 1. We can now explain these conditions from
the optimal control viewpoint: setting the discount factor of an MDP to a
value strictly lower than 1 ensures that the infinite time horizon performance
(equation 5) remains bounded and that the Bellman operator is a contraction
mapping. As soon as there is some amount of noise (i.e. α < 1) in the
transition model of our MDP Mf and Mn, then for any action, there is
a probability 1 of reaching one of the absorbing “end state” (with zero
reward) and this suffices to ensure that the performance criterion remains

16



bounded and the Bellman operator is contracting. However, in the purely
deterministic case (α = 1), the discount factor β needs to be set to a value
strictly lower than 1.

We can explain further the influence of the noise parameter α. When α is
equal to 1 (and the update is equation 4), there is no noise in the transition
model and the optimal policies matches the shortest path (with the respect
to the Manhattan distance, see Figure 2, case α = 1) between the nest and
the food source. When we decrease α, the level of noise increases and the
optimal policies get smoother (they try to stray away from the bad states).
At some point, when α goes on decreasing, there is so much noise that the
probability of first reaching a bad state when trying to reach the food source
(or the nest) is too large for any policy. Consequently the optimal behavior
consists in simply staying away from the bad cells and not trying to reach
the food source (or the nest): in this case it is better to have a 0 reward than
a −1 (which happens when one hits a bad state). This explains why there
was no path in Figure 2 for α = 0.6. Furthermore when α goes on decreasing
and gets close to 0, something apparently strange happens: paths appear
again. We can give two explanations of this: 1) when the noise gets so large
that the influence of the actions nearly vanish, the optimal controller cannot
even prevent from hitting a bad state and, as a “kamikaze” who would know
he’s going to die anyway, it again becomes interesting to try to reach the
food source (or the nest). 2) At the limit when α = 0 (and the update
is equation 3), the pheromone potentials, which satisfy an equation of the
type Φi(s) = avgi(N (s)) is equal to a discrete harmonic function and it is
known that climbing a harmonic function can be used for navigation (see
Connolly [7] and Boumaza & Scherrer [6] for further details).

4 Rate of convergence analysis

We showed the convergence of the proposed ant model by arguing that it
is an asynchronous computation of two contraction mapping fixed points:
pheromone potentials that result from the ant local updates stabilize towards
the optimal value functions of some control problems, which guide the ants
between the nest and the food source. The aim of this section is to study
the rate of convergence of this process with respect to the number of ants.
We shall describe some objects and results related to Markov chains on
graphs that highlight the experimental observation (made in section 2.2)
that this rate of convergence is superlinear: doubling the number of ants
may accelerate the process by more than a factor two.
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To study the rate of convergence, we go back to equation 10 that de-
scribes, in general, the convergence rate of the asynchronous computation of
a contraction mapping fixed point. We rewrite it here for the sake of clarity:

‖V kt − V ∗‖ ≤ γ ‖V kt−1 − V ∗‖ ≤ γt‖V 0 − V ∗‖ . (13)

Recall that k0, k1 . . . is an increasing series such that k0 = 0 and all com-
ponents of s (all states) are updated at least once between instants kt and
kt+1 − 1 for all t. The rate of convergence is thus clearly related to the
random variable kt: the slower kt grows the faster the process converges.
Since we are interested in the rate with respect to the number m of ants, we
can make this dependence explicit by writing km

t . What we need to study
is thus km

t+1 − km
t .

Fortunately the quantity km
t+1 − km

t can be related to a known object of
the probability literature. Consider the expectation of this quantity when
m = 1: E[k1

t+1−k1
t ] is the average time for one ant to visit all the cells of the

environment. More formally, if we see the environment as a graph G (there
is one node for each cell and a connection when two cells are neighbors) it
is the average time for a Markov chain (that describes the positions of the
ant) to visit all the nodes of the graph G, and such a quantity is usually
called the cover time of the Markov chain on the graph G [1]. Similarly, for
any m, E[km

t+1 − km
t ] is the average time for several parallel Markov chains

to visit all the nodes of the graph G and it is known as the cover time of
the parallel Markov chains on the graph G.

Unfortunately, it is in general very hard to compute the cover time of
a graph for a given Markov chain and a given initial distribution: they are
computable in exponential time and it is not known whether it is possible to
approximate them in deterministic polynomial time [11]. It is thus reason-
able to think that it might be harder to compute the cover time of a graph
for several Markov chains. For our specific ant model, it is probably even
harder, since we would need to compute the cover times since the Markov
chains and the distribution of ants vary over time in a non-trivial way: the
transition probabilities depend upon the pheromone potentials which them-
selves are continuously updated by the Markov chains. There is therefore
little hope that one could estimate very precisely the rate of convergence of
our ant model. A general asymptotic study of the convergence (where one
considers that 1) the pheromone values have converged and 2) the ants have
reached their stationary distribution) may be pursued and this is a possible
subject for future research.

Nonetheless, by studying the literature on the cover time, we were able
to find the following interesting result by Aldous [1]:
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Proposition 2 On a regular n-vertex graph3, consider m independent bal-
anced random walks4, each started at a uniform random vertex. Let Cm be
the time until every vertex has been hit by some walk5. Then as the size of
the graph n → ∞ and while the number of walks satisfies m ≥ 6 log n, we
have:

E [Cm] ≤
(25 + o(1))n2 log2 n

m2
.

The interesting point is the 1
m2 dependence: this implies that (as n → ∞

and m ≥ 6 log n) the cover time is bounded by a function which is inversely
quadratic in the number of walks. On simple graphs like the n − cycle,
Aldous explains that the above bound is sharp, so in such a case, the cover
time is inversely quadratic in the number of walks [1].

Using the above discussion, we can “translate” the above proposition
into something that is meaningful for our ant framework:

Proposition 3 Consider the ant model described in section 2.1 on a toric
grid environment with n cells, with an exploration rate ε = 1 and initialize
the ants uniformly on the environment. When the size of the environment
n → ∞ and while the number m of ants satisfies m ≥ 6 log n, the time for
the pheromone values to reduce their distance to their limit by a factor β is

bounded by (25+o(1))n2 log2 n

m2 that is a function that is inversely quadratic in
the number m of ants.

We consider a toric environment so that the corresponding graph is regular.
We take ε = 1 so that the ants follow a balanced random walk. Also notice
then that the uniform initialization is the stationary distribution of the
random walks, so that the distribution of ants is stationary over time. Our
proposition is thus simply a corollary of proposition 2.

The bound is sharp when the environment is a n-cycle graph, that is
a long (cycled) corridor: in such a case, the rate of convergence can be
quadratic in the number of ants. We there have a superlinear rate of conver-
gence. The experiments we made suggest that superlinearity also happens
for other values of ε and general environments. Extending the above results
to these more general setting constitutes future research.

3A regular graph is a graph where all nodes have the same degree, i.e: each node is
connected to the same number of nodes.

4A balanced random walk on the graph is such that transitions are uniform distributions
on neighbors.

5
E[Cm] is thus the cover time of the graph by these parallel random walks.
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5 Extension to continuous space

The fact that the environment we have considered so far was discrete might
seem like a strong limitation for the scope of our ant model. We aim in this
section to show that, with slight modifications, most of the ideas described
previously apply in a continuous (space & time) foraging task where ants
can move in any direction θ ∈ (0, 2π).

Our approach will be rather straight-forward: we will describe a con-
tinuous variant of navigation through optimal control, argue that it can be
approximated by an asynchronous distributed algorithm, and deduce the
corresponding ant algorithm. Though in this article our presentation of the
discrete model was made the other way round (we presented the ant model
and then the link with optimal control), this section will show the method-
ology we actually followed for building it. For the sake of simplicity, we
will here restrict our attention to half of the foraging task: finding paths to
some food source. The other half can be implemented in the same way as we
did for the discrete case (using an internal state for each ant and switching
between two optimal control problems “going to food”/“going back to the
nest”).

A natural model for navigation in a continuous 2D setting goes as follows.
One considers a system defined at time t by its position in the free environ-
ment (or equivalently its state) x (t) ∈ Ω̄ where Ω̄ ⊂ IR2 (the state space)
is the closure of an open set Ω and ∂Ω is its boundary (Ω̄ = Ω ∪ ∂Ω). The
boundaries of the environment are decomposed into two sets ∂Ω = B ∪ F :
B is the set of bad states and F the set of food states. At each time step,
this system is controlled by a direction variable θ(t) ∈ (0, 2π) ((0, 2π) is the
control space). The dynamics of such a system is governed by the following
stochastic differential equation:

dx = −→u (θ(t)) dt + σ dw

where w is a 2-dimensional Brownian motion, σ is a positive constant that
corresponds to the level of noise in the environment, and −→u (θ) is a unit
vector in the direction θ ∈ (0, 2π) (thus a unit speed control). We consider
the case of infinite time horizon. For any initial state x0, any control law
θ (.) and trajectory x (.), we note τ the exit time of x (.) from Ω, with the
convention that τ = ∞ when the trajectory stays infinitely within Ω. We
use rewards in order to evaluate the performance of these trajectories: one
defines an instantaneous reward function r : Ω→ IR and a terminal reward
function R : ∂Ω → IR when the system hits a boundary. For our simple
navigation purpose, we take r(x) = 0 at free states (∀x ∈ Ω), R(x) = −1
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on bad boundaries (∀x ∈ B) and R(x) = 1 on food boundaries (∀x ∈
F). Similarly to the discrete case, we introduce an optimal value function
which is the maximum expected total amount of discounted reward on the
controlled trajectories:

J∗ (x) = max
θ(.)

Eθ(.)

[∫ τ

0
γtr (x (t)) dt + γτR (x (τ))

]

= max
θ(.)

Eθ(.) [γτR (x (τ))]

where the integral term vanishes since the instantaneous reward r(·) is 0.
As the function t 7→ γt is decreasing and because of the definition of the
terminal reward function (−1 on bad boundaries and 1 on food boundaries),
maximizing this quantity intuitively means both 1) maximizing the time of
hitting an obstacle and 2) minimizing the time of reaching food.

The theory of optimal control shows that the above value function sat-
isfies a partial differential equation known as the Hamilton-Jacobi-Bellman
equation:

J∗(x) ln(γ) + maxθ∈(0,2π) {∇J∗( x )·−→u (θ)}

+
σ2

2
∆J∗ (x) = 0 (14)

for x ∈ Ω with boundary conditions ∀x ∈ ∂Ω, J∗(x) = C(x), where ∇J∗

denotes the gradient of J∗ and ∆J∗ the Laplacian of J∗. Analogously to
the discrete case, the optimal control (the optimal direction θ) is the one
for which the max in equation 14 is attained. In this case, it is easy to see
that the optimal control θ∗(x) in state x is the direction of steepest ascent

of ∇J∗(x): −→u (θ∗(x)) = ∇J∗(x)
‖∇J∗(x)‖ . Indeed, ∇J∗(x) · −→u (θ) is maximal when θ

is in the direction of the gradient ∇J∗(x).
In practice, one cannot compute exact analytical solutions to equation

(14) and a usual approach consists in building a finite difference scheme.
To do so, we follow the lines of Kushner & Dupuis [14]. Given a space
discretization resolution δ > 0, we build a grid Σδ and its border ∂Σδ on
the domain of the problem. Given a grid resolution δ, the function J is
approximated by a function J δ defined on Σδ∪∂Σδ and the optimal controller
is the one that goes up the gradient of an interpolation (e.g. a triangulation)
of Jδ on Ω.

According to the theory of optimal control [14], this discretization ends
up by some good news: the (discrete-space) approximation J δ of the contin-
uous value function J∗ happens to be the value function of some (discrete-
time) optimal control problem. In other words, we fall back on an MDP. As
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a consequence, it is straight-forward to build an ant-like model that com-
putes Jδ as an asynchronous version of the Value Iteration algorithm. The
pheromone updates just need to match the corresponding Bellman operator,
which we describe now.

−→u (θ)

α

β
σ2

2Nθ

α
Nθ

+ σ2

2Nθ

β
Nθ

+ σ2

2Nθ

σ2

2Nθ

Figure 7: Transition probabilities pθ [(x, y), (x′, y′)] in the discrete model:
neighbors in direction θ have a component that is proportional to the coor-
dinates of the unit vector −→u (θ).

We define cos+, cos−, sin+ and sin− as the positive and negative parts
of cos and sin: cos±(θ) = max(± cos θ, 0) and sin±(θ) = max(± sin θ, 0).
Furthermore, we define the following transitions probability from grid point
(x, y) to its four neighbors when going in direction θ:







pθ [(x, y), (x± δ, y)] = 1
Nθ

[

σ2

2 + δ cos± θ
]

pθ [(x, y), (x, y ± δ)] = 1
Nθ

[

σ2

2 + δ sin± θ
] (15)

where Nθ = δ(cos+ θ + cos− θ + sin+ θ + sin− θ) + 4σ2/2 = δ(| cos θ| +
| sin θ|) + 2σ2 can be regarded as a normalizing factor that ensures that
the the transition probabilities pθ((x, y), (x′, y′)) sum to 1. These transition
probabilities on the discretized grid have a natural geometric interpretation:
all of them have the same noise component ( σ2

2Nθ
), and two of them (the ones

that are in the control direction θ) have non-zero weights (see Figure 7). We

finally write τ(θ) = δ2

Nθ
, which is a quantity that can be interpreted as the

time needed to go from one grid point to another when following direction
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Figure 8: A discrete representation of J δ, illustrating the gradients vector
field.

θ. Then, an approximation of J is obtained by computing the unknown J δ

in the following system:

Jδ(x, y) = γτ(θJδ

x,y)
∑

(x′,y′)∈Σδ

p
θJδ

x,y
[(x, y), (x′, y′)] Jδ(x′, y′), (16)

for all (x, y) ∈ Σδ and Jδ = C on ∂Σδ, and where θJδ

x,y is the angle that
corresponds to the steepest slope direction at (x, y) when considering a piece-

wise linear interpolation of J δ (see Figure 8). The notation θJδ

x,y may seem
somewhat heavy, but it is important to remember that the optimal angle
depends on the coordinate (x, y) and the value function J δ. Introducing the
following operator Bδ on Σδ:

[Bδ W ](x, y) = γτ(θW
x,y)

∑

(x′,y′)∈Σδ

pθW
x,y

[(x, y), (x′, y′)] W (x′, y′)

for all (x, y) ∈ Σδ and [Bδ W ] = C on ∂Σδ, thus equation 16 becomes

Jδ = Bδ[Jδ]. Since γ < 1 and τ(·) > δ2

δ+2σ2 > 0, the operator Bδ satisfies a

contraction property (with contraction factor at least γ
δ
2

δ+2σ2 ). Therefore, J δ

23



is unique, and can be computed using value iteration, that is as the limit of
the sequence Jδ

t+1 ← Bδ[Jδ
t ] when t tends to infinity. Once J δ is computed,

the (approximate) optimal control is the direction θJδ

x,y that descends the

gradient of (the linear interpolation of) J δ. It can be proved [14] that such
a finite difference scheme is convergent: J δ uniformly tends to J∗ and the
approximate optimal controller ∇J δ tends to the optimal controller ∇J∗

when the discretization resolution δ tends to 0.

t = 1 t = 20 t = 210 t = 930 t = 1210

t = 1370

Figure 9: A typical experiment showing the convergence and the path emer-
gence: four snapshots of an execution of the algorithm on a continuous
environment underlying 20×50 grid point after discretization and 256 ants.
See the text for details.

At this stage, a continuous instance of the ant algorithm can now be
easily built. Ants are embedded in the original continuous environment
(each ant has continuous coordinates) ; they move around and update the
pheromone value which is coded by J δ. At each time step, each ant does
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two things:

1. It updates the pheromone value J δ(x) of the closest grid point x as
follows:

Jδ(x)← [BδJδ](x)

therefore using only the pheromone values of x’s neighbors.

2. It makes a move of a given length l ∈ IR: with probability ε (the
exploration rate) it moves in a direction that is chosen uniformly at
random in (0, 2π). With probability 1 − ε, it moves in the direction
of the steepest slope of the (local) linear interpolation of J δ (following
the optimal controller with respect to J δ). If an ant reaches a food
border, it is reinitialized at the nest.

A typical simulation of this algorithm is illustrated in Figure 9, in an envi-
ronment with one nest one food source. Ants are all initialized at the nest.
One observes the emergence of a path that is being reinforced as long as
time goes.

5.1 Simulations

We follow the same experimental protocol as presented in section 2.2 and
measure the rate of convergence with respect to the size of the population
in the continuous setting. Since we have only addressed one MDP, the
one whose solution will lead to the food source, we will increment the food
counter each time an ant reaches the food source.

In this case, it is also possible to make a convergence analysis. If the
exploration rate ε > 0, one can prove that the ants will keep on passing
by and updating every grid point. The population therefore constitutes an
asynchronous version of Value Iteration. Thus similarly to the discrete case
the algorithm converges.

Furthermore the experimental results using this continuous version ex-
hibit a superlinearity of the convergence rate as shown in Figure 10. We can
also characterize the rate of convergence using some generalized notion of
cover time. In the case where ants move in the real continuous environment
while updating the value of the closest grid points, the dynamical process of
the grid points that are updated is not a simple Markov chain, but a hidden
Markov chain: the specific grid point that is updated is a function of the
real position of the ant, which is itself a Markov chain on the continuous en-
vironment. We should here consider the cover time of some hidden Markov
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Figure 10: Convergence rate as a function of the population size: the curve
represents the mean value over 5000 simulations on the environment of Fig-
ure 9 with the following parameters: σ = 0.01, β = 0.99, l = 1, ε = 0.7,
tmax = 10000 and sp = 0.5.

chain. Unfortunately, to the best of our knowledge, this quantity has not
been studied in the probability literature. If we have been able to observe
experimentally a superlinear rate of convergence for the continuous model,
we have no theoretical result that would support it.

6 Discussion

We have presented a class of ant models that can be related to the frame-
work of optimal control, and proved that they converge in some sense. We
have also studied the rate of convergence with respect to the number of ants:
we showed, through experimental and analytical arguments, that the rate
of convergence is superlinear in the number of ants. At first sight, super-
linearity may look like an impressive property. Nothing actually comes for
free: the fundamental reason why we have such a superlinear rate is due to
the fact that small populations of ants are especially inefficient at visiting
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the whole state space, and therefore making the pheromone potentials con-
verge. In fact, the convergence analysis of contraction mapping that we used
clearly suggests (compare equations 8 and 10) that the fastest method for
computing the optimal value function is the synchronous version: at each
step, the value is approaching its limit with the linear rate γ. The relative
slowness of the asynchronous version has to be understood as the price for
a decentralized update of the pheromones.

There are many directions in which the current work could be extended.
The ant model is very flexible and can incorporate many variations. For
instance, we could consider that there are several food sources, each con-
taining a finite quantity of food, which decreases over time as ants come
and go. In this case the quantity could be incorporated in the correspond-
ing optimal control model, through the reward function at food states. The
reward would then evolve over time, and the pheromones, which are contin-
uously being updated, would keep on following the corresponding “moving”
optimal value function. This idea could be extended even further, including
moving food sources as suggested by [17]. One could also use different pa-
rameters for the back and forth trips of the ants: this could model different
strategies depending on the fact that the ant carries food or not. Finally,
if the environment is static, one could make the exploration rate ε slowly
tend to 0, so that the ants eventually converge to the deterministic optimal
policies. Studying good ways of “freezing” the ant behavior through the
exploration parameter ε constitutes future research.

It is in fact easy to see that one could construct similar ant algorithms for
almost any optimal control problem. As long as the problem is formulated as
an MDP, we know that it can be solved by an asynchronous version of Value
Iteration, and building the corresponding ant system is immediate: we just
need to have ants move around the state space and do the Bellman update
everywhere they go. If we care about the constraints that “ants should
make their decision only using local information” then this approach will
work as long as the transitions in the MDP are also local in the state space.
We can even go further: All our analysis (the convergence and the rate of
convergence) relies on the “contraction mapping” property. This suggests
that any problem that involves the computation of a contraction mappings6

on a finite space has a natural (superlinear) ant-like solution: ants move
around on this finite space and perform local contraction updates.

The ant model we have presented is closely related to previously pub-

6Contraction mappings can for instance appear in zero crossing problems, constrained
and unconstrained optimization [15].
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lished algorithms for the foraging problem. In [20], Simonin presents an
algorithm that computes shortest path using an asynchronous implemen-
tation of the Bellman-Ford algorithm: the local update is of the form
U(x) ← 1 + minx′∈N (x) U(x′). Modulo the variable change U ↔ log(Φ)

log(β)
this is equivalent to our pheromone update with α = 1 expressed in equa-
tion 4. In [17], Panait & Luke address the foraging problem and identify,
as we proposed, the value function of control problems as pheromone rates.
They use an asynchronous version of Value Iteration as well as variants of al-
gorithms from reinforcement learning [23] (which is also formulated through
MDPs) to solve the optimal control problem. Furthermore, they present
many experiments which illustrate that these models are robust in environ-
ments with obstacles and where the positions of the nest and the food source
vary over time. As in our model, the authors use multiple pheromones trails
for the different paths to find.

There are however significant differences between these works and ours:

1. In the previous published works, the authors only focus on the foraging
problem whereas we have just argued that in principle, any optimal
control problem (and any computation of contraction mapping) could
be tackled by ant-like algorithms.

2. To our knowledge, there are no arguments concerning the convergence
for the models of Panait & Luke [17] whereas an extended version of Si-
monin’s model [20] presents a convergence proof, that uses arguments
close to the arguments we gave here [21] (recall that the pheromone is
here equivalent to the special case of equation 4).

3. Last but not least, the super-linearity of the convergence rate is ex-
perimentally observed by Simonin [20], but it is not addressed theo-
retically.

7 Conclusion

Swarm intelligence algorithms are usually difficult to analyze, and many
works of the field rely on extensive experimental simulations. In this paper,
we have described several models where many simple interacting agents col-
lectively solve a non trivial task, and for which we could derive an analysis
in terms of convergence; to our knowledege, our work is also the first that
addresses analytically the rate of convergence with respect to the size of
the population. Our analysis, based on the idea that the ant population
computes the fixed point of a contraction mapping, explains many results
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obtained through simulations, among which the potential superlinearity of
the rate of convergence. We have showed how we could extend this model in
order to tackle continuous time and space foraging problems and argued that
any problem that involves the computation of a contraction mapping fixed
point on a finite space has a natural similar (potentially superlinear) ant-like
solution. We hope that the methodology we have developped, among which
the notion of contraction plays a crucial role, will be useful to the com-
munity for analysing and building new Swarm intelligence algorithms. We
also believe that such “contracting” ant-like algorithms may be of practical
interest in real world decentralized applications.
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