N

N
N

HAL

open science

A distributed evolutionary approach for fast 3-D stereo
reconstruction

Amine Boumaza

» To cite this version:

Amine Boumaza. A distributed evolutionary approach for fast 3-D stereo reconstruction. 2008. inria-

00263542

HAL 1d: inria-00263542
https://inria.hal.science/inria-00263542

Preprint submitted on 12 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00263542
https://hal.archives-ouvertes.fr

A distributed evolutionary approach for fast 3-D
stereo reconstruction

Amine. Boumaza

13/01/2008

Abstract

This article describes the fly algorithm an evolutionary approach
aimed at fast three-dimensional scene reconstruction from stereo im-
ages. We describe the main component of the algorithm and present an
experimental analysis of its results on benchmark data, showing that a
good results can be obtained at very low computational cost. We hope
through this work motivate the use of such algorithms in computer
vision problem.

1 Introduction

Stereo-vision is by far the most popular method to solve the problem of
three-dimensional reconstruction. Inspired by biological vision, its uses two
ore more images taken from different viewpoints in order to extract depth
information. This field of computer vision has been under investigation for
many years with a thriving literature and algorithms on the subject[17, §].
Thought the major part of the existing algorithms follow the classical pro-
cessing (segmentation, feature extraction and correspondence), new algo-
rithms have been introduced that propose novel ways to solve the problem
such as voxel coloring[19] and space carving[13, 12]. These methods are
based on computations in the three-dimensional space constructing volumes
and surfaces that are consistent with the input images[6]. In broad outline,
these approaches start by an initial virtual volume comprised of voxels in
the scene from which voxels that are not part of real objects are removed
iteratively leaving at the end a volume that represent the scene.

The fly algorithm[14] is an evolutionary computation method applied
to fast three-dimensional reconstruction. It belongs to the above class of
methods since it operates in the three-dimensional space; however, unlike
the above-mentioned algorithms which explore the search space exhaustively
(each voxel is checked), the fly algorithm uses an evolutionary approach
to explores the space and only interesting regions are explored. This re-
duces the size of the search space and the reconstruction problem is formu-
lated as an optimization problem searching for the best representation of



the scene. The algorithm has been applied to different problems where fast
three-dimensional reconstruction is needed. Such problems includes obstacle
detection[2], robot navigation[3] and tomographic image interpretation|[4].

In this work we focus on the running time and the quality of the recon-
structions by comparing the algorithm’s result with established benchmark
data. We will begin by brief description of the algorithm, after which we
present some experimental results, comment on them and finally conclude
and present future direction of research we are interested to pursue.

2 The algorithm

We choose here to not go into much details in the description of the algo-
rithm, we will only describe the main ideas, details can be found in [14, 2, 3].

The Fly algorithm is an evolutionary three-dimensional reconstruction
method based on the evolution of a population of 3-D points (the flies) in
space. The algorithm evolves the fly population, first initialized without
any reference to the scene, optimizing a fitness function designed such that
the flies converge onto the physical objects in the scene. The result of the
reconstruction is the population of the flies (fig. 1). Each fly’s genome is
a real vector (z,y,z) that represent the position of a fly in space. The
population evolves using classical genetic operator[2] (Gaussian mutation,
barycentric crossover and fitness sharing).

Unlike classical evolutionary algorithms in which each genome represents
a complete potential solutions, and in which the solution of the problem is
the best fit genome, the fly algorithm follows a different scheme where the
solution is distributed on the population: each fly is part of the solution
to the problem and the entire population is the complete solution[5]. The

Figure 1: Input stereo images (left), the initialization of the fly population
(middle) and the reconstruction result of the fly algorithm (right).

fitness function of a fly, is based on the similarity between the neighborhoods
around the fly’s projections on the images. The idea behind this function
relies on the fact that, if a fly is on the surface of an opaque object, the
neighborhood around its projections in both images will normally be highly
similar. Conversely, if the fly is not on the surface of an object, then these



neighborhoods will be poorly correlated. Therefore, the fitness value of a fly
measures the similarity of projections'. Since the aim of the algorithm is to
find a three-dimensional representation of the scene, it is thus important for
the population to cover the scene. Thus to avoid crowds, a sharing procedure
[16] reduces the fitness values of flies located in crowded areas. The selection
pressure drives these flies out of population creating new ones in less crowded
areas. Selection in the evolutionary process leads to populations with better
fit flies and by the same way better representations of the scene.

3 Experiments

The experiment presented bellow aim at measuring the quality and the
precision of the results given by algorithm. These results are mean values
over 50 runs of the algorithm with the same parameters (population size,
sharing coefficient[14] and mutation strength). We will asses the accuracy
of the fly algorithm’s results using the benchmark set of images provided
by the the “Middlebury Stereo Vision Page[10]”. The image set is provided
along with ground-truth data, in the form of disparity maps[8]. We base our

Table 1: Comparison of the results with ground-truth data
Ground-truth Predicted oy, vs. time Fitness

0 500 1000 1500 2000 2500 0 0 20 3 4
Time (ms) Generation ()

8

0 500 1000 1500 2000 2500 0 0 20 3 4
Time (ms) Generations (g)

8

0 500 1000 1500 2000 2500 0 10 2 0 0
Time (ms) Generations (g)

8

0 500 1000 1500 2000 2500 0 10 2 0 0
Time (ms) Generations (g)

8

!The calibration parameter are assumed known so that the projections could be com-
puted using projective geometry.



performance analysis on the comparisons of the disparity maps produced by
the fly algorithm with the ground-truth disparity maps. Examples of such
maps can be seen on (tab. 1). In order to compare the disparity results we
measure the proportion of flies, with the correct disparity.

The curves of tab. 1 show the proportion of flies (o), out of the entire
population (1024 flies), with the correct disparity as a function of time.
This quantity increase with time which shows that the reconstruction is
refined as the evolution goes. We notice however, that the curves stabilizes
at some point in time, near 500 ms in these experiments, and that not
much progress is gained afterwords. The 500 ms mark corresponds to 10
generations of evolution for a population size of 1024. The fitness curves
on the right represent the evolution of the average fitness of the population
with respect to generations. Here again we notice the “diminishing return”,
since starting a generation 10 the progress is not noticeable. This behavior
is typical for evolutionary computation algorithms, reflecting the fact that
at an early stage the algorithm is in its exploration phase, whereas later on
it enters an exploitation phase, refining its search around the optima found.

In the first ay, curve, the progress stops at 0.51 stating that 51% of
the population have the true disparity, which may seem not enough. It is
however, worth to note that the ground-truth disparities were obtained with
sub-pixel accuracy which is not the case for out algorithm. If we allow an
error margin of 1, in other words, measure the proportion of flies that are
within 1 of the true disparity, then o, jumps to 0.9 and higher. Figure 2
illustrates this showing «, for different error tolerances. We believe thought
still under investigation, that using a sub-pixel accuracy may give better
results. However, this potential gain will be at the expense of computation
time.

] cones
04 teddy
rocks2

O * X +

) ) ) cloth3
0 2 4 6 8 10
Tolerance (€)

Figure 2: The proportion of flies with disparities within e error from the
true disparities.



4 Discussion and conclusions

In this work, we have analyzed the quality of the results provided by the
fly algorithm using benchmark images. The comparison of the results with
ground-truth data shows that the quality of the 3D reconstructions of the
fly algorithm falls within a good range of the true reconstruction.

Artificial evolutionary algorithms have become widely used optimiza-
tion techniques and we are starting to see many application of evolutionary
algorithms in computer vision problems[18, 15, 7, 1, 9]. Although, miss-
conceptions about these algorithms, remain: they are thug to be slow and
not well suited for time-critical applications.

The best ranked algorithm[11] on the Middlebury benchmark reports
running times of 14-25 sec to produce a reconstruction. We have shown that
on the same images, the fly algorithm is capable to produce “good enough”
results in a very short time (0.5 sec). Thought these results may not be
well suited for certain type of applications where accurate reconstructions
are needed, they are however sufficient for applications such as obstacle
detection and robot navigation. The use of more elaborate methods, such
as sub-pixel interpolation, may increase the accuracy of the algorithm, but
will surely increase the running time since the computation will be more
complex.

This work shows that a well designed evolutionary algorithm may be well
suited for applications in three-dimensional reconstruction, and we hope to
through this to motivate further the use of methods such as evolutionary
computation in image analysis.

References

[1] G. Bebis, S. Louis, Y. Varol, and A. Yfantis. Genetic object recogni-
tion using combinations of views. IEEE Transactions on Evolutionary
Computation, 6(2):132-146, April 2002.

[2] A. Boumaza and J. Louchet. Dynamic flies: Using real-time parisian
evolution in robotics. In E. J. W. Boers et al, editor, Applications
of Fwolutionary Computing, volume 2037 of LNCS, pages 288-297.
Springer-Verlag, April 2001.

[3] A. Boumaza and J. Louchet. Mobile robot sensor fusion using flies.
In G. R. Raidl et al, editor, Applications of Evolutionary Computing,
volume 2611 of LNCS, pages 357-367. Springer-Verlag, April 2003.

[4] A. Bousquet and J-M. Rocchisani J. Louchet. Fully three-dimensional
tomographic evolutionary reconstruction in nuclear medicine. In Pro-

ceeding of the 8'h International Conference on Artificial Evolution
EA07.



[5]

[13]

[14]

P. Collet, E. Lutton, F. Raynal, and M. Schoenauer. Individual gp:
an alternative viewpoint for the resolution of complex problems. In
W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honovar,
M. Jakiela, and R. E. Smith, editors, Genetic and Evolutionary Compu-
tation Conference GECC099. Morgan Kaufmann, San Francisco, CA,
1999.

C. Dyer. Volumetric Scene Reconstruction from Multiple Views, pages
469-489. Kluwer, Boston, 2001.

Yong Fan, Tianzi Jiang, and David J. Evans. Volumetric segmentation
of brain images using parallel genetic algorithms. IEFE Transactions
on Medical Imaging, 21(8), 2002.

O. D. Faugeras. Three-Dimensional Computer Vision: A Geometrical
Viewpoint. The MIT Press, Cambridge, MA, 1993.

Yoshi Fujiwara and Hidefumi Sawai. Evolutionary computation applied
to mesh optimization of a 3-d facial image. IEEFE Transactions on
Evolutionary Computation, 3(2):113-123, 1999.

H. Hirschmiiller and D. Scharstein. Evaluation of cost functions for
stereo matching. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, Minneapolis, MN,, June 2007.

A. Klaus, M Sormann, and K Karner. Segment-based stereo match-
ing using belief propagation and a self-adapting dissimilarity measure.
In Proceedings of the 18th International Conference on Pattern Recog-
nition (ICPR’06), pages 15-18, Washington, DC, USA, 2006. IEEE
Computer Society.

K. N. Kutulakos. Approximate n-view stereo. In Proc. of the Furo-
pean Conference on Computer Vision, volume LNCS 1842, pages 67-83.
Springer - Verlag, 2000.

K. N. Kutulakos and S. M. Seits. A theory of shape by space carving.
Journal of computer vision, 38(3):199-218, 2000.

J. Louchet, M. Guyon, M. Lesot, and A. Boumaza. Dynamic flies:
a new pattern recognition tool applied to stereo sequence processing.
Pattern recognition letters, 23:335—-345, 2002.

E. Lutton and P. Martinez. A genetic algorithm for the detection of
d geometric primitives in images. In The Proceedings of the Interna-
tional Conference on Pattern Recognition, ICPR’94, pages 526—528,
Los Alamitos, CA, October 9-13 1994. IEEE Computer Society.



[16]

[17]

[18]

[19]

Samir W. Mahfoud. Niching methods for genetic algorithms. PhD
thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA,
1995.

D. Marr and T. Poggio. Cooperative computation of stereo disparity.
Science, 194:283-287, 1976.

G. Roth and M. D. Levine. Geometric primitive extraction using genetic
algorithm. In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition. IEEE Computer Society Press, 1992.

S. M. Seitz and C. R. Dyer. Photorealistic scene reconstruction by voxel
coloring. Journal of computer vision, 38(2):151-173, 1999.



