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Abstract. The design of complex industrial critical systems involving
asynchronous parallelism requires the use of formal methods, assisted
by appropriate verification tools, in order to detect and correct errors as
early as possible. In this paper, we illustrate the use of the CADP toolbox
for the formal modeling and verification of such systems by considering
as an example a unit dedicated to the drilling of metal products. We
describe in the LoTOS language two different versions of the unit, su-
pervised by a sequential and a parallel controller, respectively. Then,
we perform the generation and minimisation of the two underlying state
spaces, and also the inspection (visual checking) of the smaller one, corre-
sponding to the version equipped with a sequential controller. Finally, we
analyse the behaviour of the two versions of the drilling unit by means of
two complementary verification methods, based on bisimulations (equiv-
alence checking) and temporal logics (model checking).

1 Introduction

Industrial systems that involve asynchronous parallelism, such as communica-
tion protocols, embedded systems, and multiprocessor hardware architectures,
exhibit complex behaviours. Besides, systems of this kind are often critical, since
their malfunctioning may entail the loss of human lives or important damages.
In order to detect possible errors as early as possible in the development cy-
cle of these systems, the usage of formal specification and verification methods,
assisted by suitable software tools, becomes mandatory.

The so-called model-based verification method offers a good cost-performance
tradeoff, which explains its successful application in industry. This method con-
sists of building, from a formal description of the system, a semantic model (state
space) on which the correctness properties, expressed using a suitable formalism
(automata, temporal logics), are verified automatically by means of specialised
algorithms. Although limited to finite-state systems, model-based verification
allows to detect errors in complex systems rapidly and economically, being par-
ticularly useful during the first phases of the design process, when errors are
likely to occur more frequently.

Complex industrial systems often contain asynchronous parts, consisting of
several entities physically distributed that communicate and synchronize by ex-



changing messages, as well as “hard” real-time parts, governed by strong tem-
poral constraints (e.g., delays). In this paper, we focus on the asynchronous
aspects only; the modelling and analysis of hard real-time aspects can be carried
out using specific techniques and tools [5, 8, 36].

The CADP toolbox [17] for the engineering of asynchronous systems offers
a large spectrum of functionalities, which assist the design process effectively:
specification, simulation, rapid prototyping, verification and test generation. The
underlying tools have been designed following a modular architecture, centered
around the generic OPEN/CESAR [14] environment for on-the-fly state space
exploration, which ensures language-independence and favors the reuse of com-
ponents due to well-defined software interfaces. Although several functionalities
for performance evaluation have been recently added to CADP [15], we illustrate
here only functional verification, which takes into account the logical ordering
of events during the execution of the system.

We demonstrate the specification and analysis methodology promoted by
CADP by considering the example of an industrial critical system dedicated to the
drilling of metallic products. More precisely, we detail the design of the software
controller in charge of driving the various physical devices that compose the
drilling unit. This system has been studied as a common example for comparing
the suitability of several specification languages and the power of their associated
verification tools [7, 6].

The paper is organized as follows. Section 2 briefly describes the LoTOS
language and several verification tools of CADP used for this case-study. Next,
Section 3 details the specification in LOTOS of the drilling unit and Section 4
presents its functional verification by means of bisimulations and temporal logics.
Finally, Section 5 concludes the paper and gives some current research directions
in the field of model-based verification techniques.

2 The CADP toolbox

CapP! (Construction and Analysis of Distributed Processes) [17] is a very effi-
cient toolbox for the specification and verification of parallel asynchronous sys-
tems. These systems consist of several entities (processes or agents) that run
in parallel, synchronize and communicate by message-passing. To model the ex-
ecution of these systems, CADP uses the interleaving semantics, which relies
upon the fact that each action (or event) is atomic and only one action can be
observed at a given moment. Examples of asynchronous systems are: telecom-
munication protocols, operating systems, distributed databases, multiprocessor
architectures, embedded softwares, etc.

2.1 The LOTOS language

CADP accepts as input several specification formalisms, ranging from high-level
languages, such as LOTOS, to lower-level languages, such as networks of commu-

! See http://www.inrialpes.fr/vasy/cadp



nicating automata. LOTOS (Language Of Temporal Ordering Specification) [23]
is a formal description technique standardised by Iso. Although initially defined
for the description of communication protocols according to the OS1 model,
the LoTos language has revealed equally suitable for describing other classes
of asynchronous systems, such as those aforementioned. LOTOS consists of two
“orthogonal” parts:

A “data” part, based on algebraic abstract data types, and more specifically
on the ACTONE language [11]. This part allows to describe the data struc-
tures handled by the system by means of sorts and algebraic operations,
defined using equations and pattern-matching;

A “control” part, which combines the best primitives of the process algebras
Ccs [33] and Csp [9]. This part allows to describe the parallel processes
composing the system as terms constructed by applying algebraic operators
(action prefix, choice, parallel composition with handshake synchronisation,
hiding, etc.).

CADP contains two compilers for LoTos: CESAR.ADT [13] translates the
data part of a LOTOS specification in C (the LOTOS sorts and operations are
translated as C types and functions, respectively) and CESAR [20] translates the
control part into a C program that can be embedded in a real system or used
for simulation, verification or test generation.

2.2 Labelled transition systems

The labelled transition systems (LTss) are the semantic model underlying the
specification formalisms used by CADP. An Lrs M is a quadruple (S, A, T, s¢)
consisting of a set of states S, a set of actions (transition labels) A, a transition
relation 7' C Sx Ax S, and an initial state sg € S. A special invisible action 7 ¢ A
allows to model the internal (unobservable) activity of the system. A transition
(s1,a,s2) € T, also noted s; 5 s9, indicates that the system can move from
state s1 to state so by performing action a. CADP provides two complementary
representations for LTSs:

An explicit representation as the list of transitions contained in the LTS,
stored in a file of a compact binary format called Bca (Binary Coded
Graphs). The BCG environment offers a set of tools and libraries for the
manipulation of BCG files (reading/writing, graphical visualisation, minimi-
sation, conversion to other formats, etc.). This explicit representation of LTSs
is suitable for global (or enumerative) verification, which proceeds by a back-
ward exploration of the transition relation and therefore requires the prior
construction of the entire LTs;

An implicit representation as the successor function of the LTS, encoded as
a C program conforming to the application programming interface defined by
the OPEN/CESAR environment [14]. Besides the C types implementing the
Lts states, actions, and transitions, equipped with basic operations (com-
parison, hashing, enumeration of successor states, etc.), OPEN/CESAR offers



also libraries dedicated to the on-the-fly exploration of Lrss (state tables,
transition lists, stacks, etc.). This implicit representation of LTSs is suitable
for local (or on-the-fly) verification, which proceeds by a forward exploration
of the transition relation and therefore allows an incremental construction?
of the LiTs.

The on-the-fly verification is a simple manner of combating state explosion
(prohibitive size of the Lrs for systems containing many parallel processes and
complex data types), allowing to detect errors even when the complete construc-
tion of the LiTs exceeds the available computing resources.

2.3 Some verification tools

CADP offers a large palette of tools dedicated to the analysis of L.TSs, covering the
whole spectrum of functionalities necessary to assist the design process: inter-
active and guided simulation, random execution, minimisation modulo various
equivalence relations, partial order reduction, equivalence checking and model
checking, conformance test case generation. Here we briefly present some of the
CADP tools that we used for this case-study and whose functioning will be illus-
trated in the sequel.

Bceg_Min performs the minimisation of an LTS, represented as a BCG file, modulo
various equivalence relations, such as strong bisimulation or branching bisimu-
lation. BcG_MIN also handles probabilistic and stochastic LiTss [15].

Cesar_Solve [29,31] is a generic software library of the OPEN/CHESAR environ-
ment, dedicated to the on-the-fly verification of alternation-free boolean equation
systems (BEss). These BESs consists of several blocks of equations with boolean
variables in their left-hand sides and propositional formulas (disjunctions or con-
junctions over boolean variables) in their right-hand sides. FEach equation block
represents the minimal or the maximal fixed point of the functional taking as
input the variables present in the left-hand sides of equations and returning the
values of the formulas in the right-hand sides of equations.

A boolean variables defined by an equation depends upon the variables oc-
curring in the right-hand side of that equation. A block depends upon another
block if it defines a variable depending upon some variable of the other block; the
alternation-free condition means the absence of cyclic dependencies between the
blocks of a BES. This class of BESs benefits from resolution algorithms having
a time and space complexity linear in the size of the BEs (number of variables
and boolean operators), still being sufficiently general to represent several types
of Lts analyses (equivalence checking, model checking, partial order reduction,
etc.).

2 Of course, an explicit LTs already constructed can also be explored on-the-fly; within
CADP, this is done by means of the BCG_OPEN tool, which implements a represen-
tation of Bca files compatible with the OPEN/C&SAR interface.



The on-the-fly resolution of a BES consists in computing the value of a
boolean variable of interest by exploring incrementally only the part of the BES
necessary to determine the value of that variable. The underlying algorithms can
be developed in a more intuitive way by representing BESs as boolean graphs [1]
whose vertices and edges denote boolean variables and dependencies between
them, respectively. Reformulated in this context, resolution algorithms perform
a forward exploration of the boolean graph, starting at the variable of interest,
intertwined with a backward propagation of stable variables (whose values have
been determined) along dependencies.

CESAR_SOLVE currently provides four on-the-fly resolution algorithms hav-
ing a linear complexity in the size of the BES. Algorithms Al and A2, based
respectively on depth-first and breadth-first traversals of the boolean graph, can
solve general BESs, without imposing constraints on the boolean formulas in the
right-hand sides of the equations. Algorithms A3 and A4, based on depth-first
traversals, are optimised to solve acyclic and disjunctive/conjunctive BEss (fre-
quently encountered in practice) with a lower memory consumption, by storing
only boolean variables and not the dependencies between them. All these algo-
rithms also produce diagnostics, i.e., portions of the boolean graph illustrating
the result of the resolution, following the approach proposed in [28]. Due to the
breadth-first traversal, algorithm A2 exhibits small-depth diagnostics, which are
easier to interpret.

CESAR_SOLVE defines an implicit representation of boolean graphs by means
of an application programming interface in C similar to the interface for LTSs
defined by OPEN/C&SAR: the C type encoding the boolean variables is equipped
with primitives allowing to explore the boolean graph (comparison and hashing
of variables, enumeration of successor variables, etc.). Diagnostics of resolutions
are also produced as boolean subgraphs represented implicitly as their successor
function. CESAR_SOLVE is currently used within CADP as computing engine for
several on-the-fly verification tools, two of them being presented below.

Bisimulator [29,31] is an equivalence checker that compares on-the-fly two LTSs
w.r.t. an equivalence or preorder relation. The first LTS, represented implicitly
as an OPEN/CESAR program, denotes the behaviour of a system (protocol),
whereas the second LTS, represented explicitly as a BcaG file, denotes the ex-
ternal behaviour (service) expected for the system. BISIMULATOR implements
seven equivalence relations between LTss: four bisimulations (strong, branching,
observational, and 7*.a) and three simulation equivalences (safety, trace, and
weak trace), being one of the richest on-the-fly equivalence checkers currently
available. For each relation, the tool can determine both the equivalence of LiTss
and the inclusion of one LTS into the other modulo the corresponding preorder.

The method used by BISIMULATOR consists in reformulating the verification
problem as the resolution of a BES containing a single block of maximal fixed
point equations, directly derived from the mathematical definition of the equiv-
alence relation. The tool is structured in two independent parts: a front-end in
charge of translating the comparison modulo an equivalence in terms of a BES
and of interpreting the diagnostic of the resolution in terms of the two LTSs



being compared; and a back-end (C&£SAR_SOLVE library) responsible for com-
puting the variable of interest, which represents the fact that the initial states
of the two LTss are equivalent or related modulo the preorder considered.

This modular architecture facilitates the addition of new equivalence relations
(each relation is implemented as a separate module containing the BES trans-
lation and the diagnostic interpretation) and does not penalize performance,
BISIMULATOR competing favourably with other implementations of algorithms
dedicated to on-the-fly equivalence checking [4]. The diagnostics (counterexam-
ples) issued by the tool when the LTss are not equivalent (or not included) are
acyclic graphs containing all the sequences that, simultaneously executed in the
two LiTss, lead to non equivalent states.

BISIMULATOR employs all the resolution algorithms provided by
CESAR_SOLVE: Al and A2 can be applied to all equivalences (A2, being
based on a breadth-first traversal, has the practical advantage of exhibiting
small-depth counterexamples); A3, optimised in memory for solving acyclic
BESs, serves to verify the inclusion of execution sequences or trees in an LTs;
and A4, optimised in memory for solving conjunctive BESs, is useful when one
Lts is deterministic (for strong bisimulation) and does not contain invisible
transitions (for weak equivalences).

Evaluator 8.5 [29,31] is a model checker that evaluates on-the-fly a temporal
logic formula on an Lrs. The logic accepted as input is the regular alternation-
free pi-calculus [32], which consists of boolean operators, possibility and necessity
modalities containing regular expressions over action sequences (similar to those
of PpL [12]), and fixed point operators of modal p-calculus [26]. The alternation-
free condition, meaning the absence of mutual recursion between minimal and
maximal fixed point operators, leads to verification algorithms having a linear
complexity w.r.t. the size of the formula (number of operators) and the Lrs
(number of states and transitions). The regular alternation-free p-calculus en-
ables a concise and intuitive description of classical properties over Lirss (safety,
liveness, as well as certain forms of fairness). The tool also allows to define
reusable libraries containing derived temporal operators, such as those of ACTL
(Action-Based CTL) [34] and the generic property patterns proposed in [10].

The method used by EVALUATOR 3.5 consists in reformulating the verifica-
tion problem as the resolution of a BES containing an equation block for each
temporal operator contained in the formula. The BES is obtained after several
transformation phases applied to the formula (translation in positive normal
form, elimination of derived operators, translation to modal equation systems,
elimination of regular expressions contained in modalities, simplification).

The tool is structured in two independent parts: a front-end in charge of
translating the evaluation of the formula in terms of a BES and of interpreting the
diagnostic of the resolution in terms of the LTS being analyzed; and a back-end
(CmESAR_SOLVE library) responsible for computing the variable of interest, which
represents the fact that the initial state of the Lrs satisfies the formula. The
diagnostics (examples and counterexamples) issued by the tool are subgraphs of
the Ls illustrating the truth value of the formula on the initial state of the LTs.



EvaLuaTOorR 3.5 employs all the resolution algorithms provided by
C&ESAR_SOLVE: Al and A2 can be applied to all formulas of regular alternation-
free p-calculus (A2, being based on a breadth-first traversal, has the practical
advantage of exhibiting small-depth diagnostics); A3, optimised in memory for
solving acyclic BESs, serves to verify any p-calculus formula on LTSs represent-
ing execution or simulation scenarios; and A4, optimised in memory for solving
disjunctive/conjunctive BESs, is applied for evaluating formulas of AcTL and
PpL, frequently encountered in practice.

3 Specification of a drilling unit

We develop in this section a LOTOS specification of a drilling unit for metallic
products. This example of industrial critical system [7, 6] has served as support
for experimenting the modelling capabilities of various description languages
(x [38], Promela [22], timed automata [3], uCRL [21]) and the functionalities of
their associated verification tools (SPIN [22], UppPAAL [3], CaDP). The LoTos
specification presented below was derived from the x description initially pro-
posed in [7], with some details (e.g., the presence of the TT3 sensor) inspired
from the more elaborated description given in [6]. The drilling unit, illustrated
in Figure 1, consists of a turning table, a drill equipped with a clamp, and a
tester.

TT3

&
oG

TT1 TT2

(a) Turning table

L L
.

D2
L | C1 cC2 L T2
(b) Drill (c) Tester

Fig. 1. Drilling unit for metallic products



Table 1. Dialog between local controllers and physical devices

Gates for sending commands to actuators
Device” Gate | Function
Table ||[TurnOn |Starts a 90 ° rotation
Clamp||COn0£f£ |Blocks or releases the clamp
Drill ||DOn0ff |Starts or stops the engine of the drill
DUpDown|Starts the ascending or descending movement
Tester || TUpDown|Starts the ascending or descending movement

Gates for receiving signals from sensors

Device” Gate | Function
Table ||TT1 Product present at position 0
TT2 Rotation of 90 ° completed
TT3 Product absent at position 3
Clamp||C1 Clamp released
C2 Clamp blocked
Drill ||D1 Drill in upper position
D2 Drill in lower position
Tester ||T1 Tester in upper position
T2 Tester in lower position

The turning table (a) transports the metallic products to the drill and the
tester. It is circular and has four slots, each one possibly containing at most one
product. Each slot can be in one of four positions: entry position (0), drilling
position (1), testing position (2), and exit position (3). Three sensors TT1, TT2,
and TT3 attached to the table indicate if a product is present in the slot at
position 0, if the table just completed a 90 ° counterclockwise rotation, and if
the slot at position 3 is empty, respectively.

The drill (b), located at position 1, is equipped with a clamp allowing to lock
the product during the drilling operation. Two sensors D1 and D2 attached to
the drill detect whether it is in the upper or lower position, respectively. Two
other sensors C1 and C2 attached to the clamp indicate whether it is released or
blocked, respectively.

The tester (c), located at position 2, serves to detect whether a product was
correctly drilled or not. It is equipped with two sensors T1 and T2, which detect
if the tester is in the upper or lower position, respectively. If the tester is in the
lower position, this means that either the product present in the slot at position
2 was correctly drilled, or there is no product in this slot.

Each physical device (turning table, clamp, drill, tester) is equipped with
a local controller in charge of driving the device. Local controllers receive sig-
nals from the sensors and send commands to the actuators attached to physical



Table 2. Dialog of the main controller with the local controllers and the environment

|Gate|| Signal | Meaning |
Turn Rotation of 90 ° of the table

Drill Drilling of the product at position 1
CMD ||Lock Blocking of the clamp

Unlock |Release of the clamp

Test Test of the product at position 2

Turned |Rotation of 90 ° of the table completed
Present |Product present at position 0

Drilled |Drilling of the product at position 1 completed
INF ||[Locked |Clamp blocked

Unlocked|Clamp released

Tested |Product at position 2 tested

Absent |Product absent at position 3

REQ |[|Add Input of a product at position 0
Remove [Output of a product at position 3

devices. Table 1 indicates the communication channels (called gates in LOTOS)
used by local controllers.

The turning table is controlled through the gate TurnOn, which commands
a 90 ° counterclockwise rotation. Thus, the products are transported from the
entry position to the drilling position, then to the testing position, and finally to
the exit position. The clamp, the drill, and the tester are controlled through gates
that model switching mode commands, so-called because they have two different
effects, which change at each new invocation. For example, the command COn0ff
triggers either the blocking of the clamp if it is released, or the release of the
clamp if it is blocked.

The global functioning of the drilling unit is handled by a main controller,
which is responsible for coordinating the activity of the various devices and for
interacting with the environment. The main controller communicates with the
local controllers associated to the physical devices through the gates CMD (emis-
sion of commands) and INF (reception of information) and with the environment
through the gate REQ (emission of requests). Table 2 indicates the various signals
(denoted by values of en enumerated type Sig) sent on these gates.

The specification assumes that the environment reacts correctly to the re-
quests issued by the main controller: in particular, the products are put at po-
sition 0 and got at position 3 after every Add and Remove signal, respectively.

3.1 Architecture

The architecture of the system specified in LoTOs is illustrated in Figure 2.
Boxes represent parallel processes and arrows indicate communication gates.
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Each physical device and its associated local controller are modelled as couples
of processes: TT and TTC (turning table), D and DC (drill), C and CC (clamp), T
and TC (tester). The main controller is modelled by the process MC.

UpDow:
DOnOff
D2
D1

DC

CMD!
INF

G INF CMD -l
c2 T2

conotz| € Me TC pDown

CMD INF

REQ

INF
CMD

TTC

Environment

TT1

TT2

TT3
TurnOn

ADD

TT

REM

Fig. 2. Architecture of the drilling unit specified in LoTOS

The process TT communicates with the environment through the gates ADD
and REM, which model the input of a product in the slot at position 0 and the
output of the product from the slot at position 3, respectively.

The LoTOS description of the architecture is illustrated below. Each element
is represented by a process call parameterised by communication gates and pos-
sibly by data values. The concurrent execution of processes is described using
the parallel composition operators “| | |” and “| [...]1” of LOTOS, which denote
parallel execution without synchronisation and with synchronisation on a set of
gates, respectively. For instance, the parallel processes TT and TTC synchronise
on the gates TT1, TT2, TT3, and TurnOn, but they execute asynchronously w.r.t.
the other processes D, DC, etc. The gates used for the dialog between physical
devices and their local controllers are hidden (i.e., renamed into the invisible
action, noted “i” in LOTOS) using the “hide” operator.

The processes TT, D, C, and T representing the physical devices have data
parameters (whose meaning will be defined in the following sections) recording
the current state of these processes: when the system starts its execution, the
values of these parameters indicate that all slots of the turning table are empty,
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the drill is stopped and in the upper position, the clamp is released and the
tester is in the upper position. The process MC modelling the main controller
also has data parameters reflecting the current state of the system.

( ( hide TT1, TT2, TT3, TurnOn, D1, D2, DUpDown, DOnOff,
C1, C2, COn0Off, T1, T2, TUpDown in
C «
TT [TT1, TT2, TT3, TurnOn, ADD, REM]
(false, false, false, false)
| [TT1, TT2, TT3, TurnOn]|
TTC [TT1, TT2, TT3, TurnOn, INF, CMD]

[l

(
D [D1, D2, DUpDown, DOnOff] (false, true)
| (D1, D2, DUpDown, DOnOff] |
DC [D1, D2, DUpDown, DOnOff, INF, CMD]

[11
(
Cc [C1, C2, COnOff] (false)
| [C1, C2, COnOff]|
cc [C1, C2, COnOff, INF, CMD]

1]
(
T [T1, T2, TUpDown] (true)
| [T1, T2, TUpDown] |
TC [T1, T2, TUpDown, INF, CMD]

)
)
| [INF, CMD] |
MC [REQ, INF, CMD] (false, false, false, false, false)

)
| [REQ, ADD, REM] |
Env [REQ, ADD, REM, ERR]

3.2 Physical devices and local controllers

We give below the LOTOS specification of the various physical devices and of
the local controllers that drive their functioning. For simplicity, the processes
corresponding to the local controllers are illustrated graphically in Figure 3 (the
initial states are marked with bold lines).

Turning table The process TT has four boolean parameters p0O, p1, p2, and p3,
which are set to true if a product is present in the slot at the corresponding
position of the turning table and are set to false otherwise. At any time, TT can
perform one of the following behaviours: it receives a rotation command from its
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local controller, it carries out the rotation (this is not explicitly modelled here?),
and then sends back to the controller the corresponding response; if the slot at
position 0 of the table is empty, it can input a product from the environment
and signal to its controller that the slot at position 0 became occupied; if the slot
at position 3 of the table is occupied, it can output the corresponding product
to the environment. After performing one of these behaviours, TT updates its
parameters and continues its execution cyclically.

process TT [TT1, TT2, TT3, TurnOn, ADD, REM] (pO, pl, p2, p3:Bool)

noexit :=
TurnOn;
TT2;
TT [TT1, TT2, TT3, TurnOn, ADD, REM] (p3, pO, pl, p2)
(1
[not (p0)] -> ADD;
TT1;
TT [TT1, TT2, TT3, TurnOn, ADD, REM] (true, pl, p2, p3)
(1
[p3] -> REM;
TT3;
TT [TT1, TT2, TT3, TurnOn, ADD, REM] (pO, pl, p2, false)
endproc

The process TTC (see Figure 3) executes the following session cyclically: when
the process TT informs it about the presence of a product in the slot at position
0 of the table, it passes this information to the main controller; when it receives
a rotation command from the main controller, it transmits this command to
the process TT, waits for its response, and then passes it to the main controller;
finally, when the process TT informs it about the presence of a product in the slot
at position 3 of the table, it transmits this information to the main controller.

Clamp The process C has one boolean parameter locked, which is set to true
when the clamp is blocked and to false otherwise. C executes the following
behaviour cyclically: it receives a block or release command from its local con-
troller, executes it (this is not explicitly modelled here) and, according to its
current state, send the appropriate response to the controller.

process C [C1, C2, COnOff] (locked:Bool) : noexit :=
COnO£ff;
( [locked] -> Ci;
C [C1, C2, COnOff] (not (locked))
1
[not (locked)] -> C2;
C [C1, C2, COnOff] (not (locked))
)

endproc

3 In a system specification that takes into account the real-time aspects, the actions
TurnOn and TT2 (as well as the commands sent to the actuators and the responses of
the sensors attached to the other physical devices) would be separated by a delay.
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INF !Present CMD !Lock COnOf£f Cc2
CMD !

TurnOn
O INF !'Unlocked INF !'Locked
INF !Turned TT2
INF !Absent une c1 COnOff CMD !Unlock
(process TTC) (process CC)
CMD !Drill DOnOff DUpDown INF !Tested !true T1

INF !Drilled

DOn0ff D1 DUpDown INF !Tested !false T1
(process DC) (process TC)

Fig. 3. Lrss modelling the behaviour of local controllers

The process CC (see Figure 3) executes the following session cyclically: when
it receives a block command from the main controller, it commands the blocking
of the clamp, waits for the response from the process C, and then transmits this
response to the main controller; then, it waits for a release command from the
main controller, it commands the release of the clamp, waits for the response
from the process C, and propagates it to the main controller.

Drill The process D has two boolean parameters on and up, which are set to true
if the drill is started and in the upper position, and are set to false otherwise.
At any time, D can perform one of the following behaviours: it receives from
its local controller a start or stop command; if the drill is started, it receives
a command for moving up or down, executes it (this is not explicitly modelled
here), and sends back the appropriate response to its controller. After one of these
behaviours, D updates its parameters and continues its execution cyclically.

process D [D1, D2, DUpDown, DOnOff] (on, up:Bool) : noexit :=
DOnOff;
D [D1, D2, DUpDown, DOn0ff] (not (on), up)
[
[on] -> (
DUpDown;
(  [up] -> D2;
D [D1, D2, DUpDown, DOnOff] (on, not (up))
[]
[not (up)] -> Di;
D [D1, D2, DUpDown, DOnOff] (on, not (up))

)

endproc
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The process DC (see Figure 3) executes the following session cyclically: when
it receives a drill command from the main controller, it commands the start of
the drill engine, then the descending movement of the drill, and waits for the
response of the process D; then, it commands the ascending movement of the
drill, waits for the response from D, then commands the engine to stop; finally,
it sends to the main controller the response meaning that the drilling operation
has been accomplished.

Tester The process T has a boolean parameter up, which is set to true if the
tester is in the upper position and is set to false otherwise. T performs the
following behaviour cyclically: it receives a command for moving up or down
from its local controller; it executes the command (this is not explicitly modelled
here) and, according to its current state, sends an appropriate response to its
controller. The fact that the product located in the slot at position 2 of the table
was correctly drilled or not is modelled as a nondeterministic choice consisting
in sending the response to the controller (product correctly drilled) or sending
no response (product incorrectly drilled).

process T [T1, T2, TUpDown] (up:Bool) : noexit :=

TUpDown;
( [upl -> (
T2; (* Correct drilling *)
T [T1, T2, TUpDown] (not (up))
1
T [T1, T2, TUpDown] (not (up)) (* Incorrect drilling *)
)
1

[not (up)] -> T1;
T [T1, T2, TUpDown] (not (up))
)

endproc

The process TC (see Figure 3) executes the following session cyclically: when
it receives a test command from the main controller, it commands the descend-
ing movement of the tester, then it waits for the response from the process T (an
absence of response indicates a product incorrectly drilled); afterwards, it sends
an ascending movement command to the tester, then it waits for the response
from the process T; finally, it sends an appropriate response to the main con-
troller, indicating by means of a boolean value true or false that the product
in the slot at position 2 of the table was correctly drilled or not.

3.3 Main controller — sequential version

We describe below a first version of the main controller, in which the various
phases of dialog with the local controllers are performed sequentially, one after
the other. The process MC has five boolean parameters: p0, p1, p2, and p3 indicate
the presence of products in the slots at the corresponding positions of the turning
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table; tr is set to true if a product correctly drilled occupies the slot at position
3 and is set to false otherwise. MC performs the following session cyclically,
consisting of five control phases executed one after the other:

1.

If the slot at position 0 of the table is empty, it sends a product input request
to the environment (which is supposed to react immediately by supplying a
product), then it waits for the appropriate response from the controller TTC;

. If a product is present in the slot at position 1, it sends a clamp block

command to the controller CC and waits for its response, then it sends a drill
command to the controller DC and waits for its response, and finally it sends
a clamp release command and waits for the response of the controller CC;

. If a product is present in the slot at position 2, it sends a test command to

the controller TC and then it waits for the corresponding response;

. If a product is present in the slot at position 3, it sends a product out-

put request to the environment (which is supposed to react immediately by
removing the product), then it waits for the appropriate response from TTC;

. It sends a table rotation command to the controller TTC, then it waits for the

response before updating its parameters and restarting its cyclic execution.

The chaining of the five control phases is modelled using the LOTOS sequen-

tial composition operators: “exit” and “exit (V7, ..., V},)” denote the termination
of a behaviour without returning any result and by returning values Vi, ..., V,,,
respectively; “Bj >> By” expresses the execution of behaviour By after the exe-
cution of By has successfully terminated by an “exit”; and “B; >> accept z1:711,
ooy Tp: Ty in By” denotes the execution of By after By successfully terminated
its execution by performing an “exit (V4, ..., V;,)” of which the resulting values
are assigned to the variables x1, ..., x,, subsequently used by Bs.

process MC [REQ, INF, CMD] (pO, pl, p2, p3, tr:Bool) : noexit :=
( [not (p0)] -> REQ !Add; INF !Present;
exit (true)

(1

[p0] -> exit (p0O)
)
>>
accept new_p0:Bool in
( ( [p1] -> CMD !Lock; INF !Locked;

CMD !Drill; INF !Drilled;
CMD !Unlock; INF !Unlocked;

exit
[]
[not (p1)] -> exit
)
>>
( [p2] -> CMD !Test; INF !Tested 7r:Bool;

exit (r)
[]
[not (p2)] -> exit (tr)
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>>
accept new_tr:Bool in
( ( [p3] -> REQ !Remove !tr; INF !Absent;
exit (false)
(]
[not (p3)] -> exit (p3)
)
>>

accept new_p3:Bool in
CMD !Turn; INF !Turned;
MC [REQ, INF, CMD] (new_p3, new_pO, pl, p2, new_tr)

)

endproc

3.4 Main controller — parallel version

We describe below a second version of the main controller, in which the phases
of dialog with the local controllers are performed in parallel. The behaviour of
this version is more complex (because of the interleavings of the various con-
trol phases), but also more efficient than the sequential version, the complete
processing of a product being faster (this can be confirmed by evaluating the
throughput of the turning table, following the approach proposed in [15]). The
new process MC is obtained by composing the first four control phases (associated
to the positions of the turning table) described in the previous section, by using
the asynchronous parallel composition operator “| | |” of LOTOS.

process MC [REQ, INF, CMD] (pO, pl, p2, p3, tr:Bool) : noexit :=
( ( [not (p0)] -> REQ 'Add; INF !Present;
exit (true, pl, p2, any Bool, any Bool)
(]
[pO] -> exit (pO, pl, p2, any Bool, any Bool)

[11
( [p1] -> CMD !Lock; INF !Locked;
CMD !Drill; INF !Drilled;
CMD !Unlock; INF !Unlocked;
exit (any Bool, pl, p2, any Bool, any Bool)
1
[not (p1)] -> exit (any Bool, pl, p2, any Bool, any Bool)

[11
( [p2] -> CMD !Test; INF !Tested ?r:Bool;
exit (any Bool, pl, p2, any Bool, r)
1
[not (p2)] -> exit (any Bool, pl, p2, any Bool, tr)

11
( [p3] -> REQ !'Remove !tr; INF !Absent;
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exit (any Bool, pl, p2, false, any Bool)
1
[not (p3)] -> exit (any Bool, pl, p2, p3, any Bool)

)
>> accept new_pO, new_pl, new_p2, new_p3, new_tr:Bool in
CMD !Turn; INF !Turned;
MC [REQ, INF, CMD] (new_p3, new_pO, new_pl, new_p2, new_tr)
endproc

The execution of each phase changes the state of the turning table, which
is recorded by the boolean parameters p0, pl, p2, p3, and tr of the main con-
troller. These changes are modelled using the “exit” operator, which allows to
indicate, for each parameter, either its new value obtained after executing the
corresponding processing phase, or the fact that the parameter is modified by
another phase (pattern “any”). The occurrences of the “exit” operator at the
end of the four parallel phases must be compatible, i.e., each parameter must
have the same value or be filtered by “any” in each of the four “exit” statements
(for instance, parameter p0 is set to true or left unchanged in the first phase
and filtered by “any” in the other phases). This is necessary in order to ensure
the correct synchronisation of the four parallel phases upon their termination
(join), as specified by the semantics of the “| | |” operator.

Once the four parallel phases terminated, the main controller commands
the rotation of the table, waits for the corresponding response from the local
controller, then updates its parameters (with the values catched using the “>>
accept ... in” operator) and restarts its cyclic execution.

3.5 Environment

The last element that we must specify in order to obtain a complete description
of the system is the environment, which handles the input and output requests
of the main controller by inserting and removing products into and from the
slots at positions 0 and 3 of the turning table, respectively.

process Env [REQ, ADD, REM, ERR] : noexit :=
REQ 'Add;
ADD;
Env [REQ, ADD, REM, ERR]
(1
REQ !'Remove ?7r:Bool;
( [xr] -> REM;
Env [REQ, ADD, REM, ERR]
1
[not (r)] -> ERR; REN;
Env [REQ, ADD, REM, ERR]
)

endproc
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When a product is removed, the main controller also indicates to the envi-
ronment whether the product has been correctly drilled or not, this latter case
being signaled by the environment through the gate ERR.

4 Analysis of the functioning of the drilling unit

Once the drilling unit has been specified in LOTOS, we can analyse its behaviour
by using the verification tools of CADP. We study first the coherence between
the two versions of the system, equipped with the sequential and the parallel
main controller, respectively. Then, we identify a set of correctness properties
of the drilling unit, express them in temporal logic and verify them on the two
versions of the system.

4.1 Equivalence checking

We begin by constructing, using the two LOTOS compilers C&SAR and
CASAR.ADT, the LrTs model M., of the drilling unit equipped with the se-
quential main controller, in order to estimate its size and possibly to attempt its
visual inspection. This LTS, minimized modulo branching bisimulation with the
BcGa_MIN tool and displayed graphically using the BcG_EDIT tool, is illustrated
in Figure 4. It has 69 states and 72 transitions, and thus an average branching
factor (number of transitions going out of a state) of 1,04, which reflects the
sequential nature of this version of the system.

Starting at the initial state (numbered 0) of the LTS, we observe a sequence
of actions modelling the insertion of products in the slots of the turning table
(which was initially empty) until the permanent functioning regime is reached
(all the slots of the table are occupied). This sequence is followed by two differ-
ent execution branches, corresponding to the fact that the product present at
position 2 was correctly drilled (branch at the left) or not (branch at the right).
These to branches denote a similar behaviour, excepting the presence of an ERR
action on the branch at the right, indicating the output of an incorrectly drilled
product to the environment.

We then build the Lrs model My, of the drilling unit equipped with the
parallel main controller. This model is much larger than the model correspond-
ing to the sequential controller: it has 24 346 states and 85013 transitions?, its
average branching factor being 3,49. This increase in size is caused by the inter-
leaving of the four processing phases (corresponding to the positions of products
on the turning table), which previously were chained sequentially. The size of the
new LTS makes its visual inspection impractical; therefore, the use of verification
tools becomes mandatory in order to assess the good functioning of the system.

A first verification consists to ensure that the behaviours of the two versions
of the system modelled by M., and M,,, are coherent. Intuitively, since the

* A reduction of My, by T-confluence [35] using the REDUCTOR tool of CADP would
reduce its size to 5373 states and 17711 transitions.
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sequential chaining of the processing phases is a particular case of their parallel
interleaving, all behaviours of the system equipped with the sequential controller
should be “simulated” by the system equipped with the parallel controller. This
is indeed the case: using BISIMULATOR, we can check that M., is included
in Mpqr modulo the preorder of branching bisimulation. In other words, if we
abstract away from the actions modelling the dialogue with the sensors and
the actuators (see Section 3.1), the execution trees contained in M., are also
contained in M,,,. This verification can be done by traversing M, on-the-fly;
the underlying BES explored by BISIMULATOR has 515 boolean variables and
934 operators.

On the other hand, the two LTSs M., and My, are equivalent modulo
none of the seven equivalence relations implemented by BISIMULATOR. Indeed,
the following execution sequence (restricted to visible actions only) is present in
M per but not in Meq:

REQ 'ADD ADD INF !PRESENT CMD !TURN INF !TURNED CMD !LOCK
— 51— 8y — 83 —— S — 85 — 8¢

This sequence, obtained automatically as a counterexample by trying to check
the weak trace equivalence of M., and M., shows that after the input of the
first product and the first rotation of the table, the sequential controller does
not begin the drilling of the product (currently located at position 1) by com-
manding the block of the clamp, but restarts its cyclic functioning by handling
the insertion of a new product in the slot at position 0 (currently empty). On
the contrary, the parallel controller is able to command the drilling before the
insertion, because it authorizes the concurrent execution of the four processing
phases.

4.2 Model checking

The equivalence checking provided some indication about the coherence of the
two versions of the system; however, it does not guarantee their correct function-
ing. In this section, we identify several temporal properties characterizing the
correct ordering of actions during the execution of the system, and we express
them in regular alternation-free p-calculus [32], the temporal logic accepted as
input by the EVALUATOR 3.5 model checker. We consider two kinds of classical
properties (illustrated graphically in Figure 5):

Safety properties intuitively specify that “something bad never happens”
during the execution of the system. They can be expressed in regular
p~calculus by the “[R] false” formula, where R is a regular expression (de-
fined over the alphabet of predicates on LTS actions) characterizing the un-
desirable action sequences that violate the safety properties. The necessity
modality above states that all execution sequences going out of the current
state and satisfying R must lead to states satisfying false; since there are no
such states, the corresponding sequences do not exist either;
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Liveness properties intuitively specify that “something good eventually hap-
pens” during the execution of the system. Most of the liveness properties
that we will use here can be expressed in regular p-calculus by (variants
of) the “[R] inev(A4, B, P)” formula, where R is a regular expressions over
action sequences, A and B are action predicates, and P denotes a state for-
mula. The formula above states that all execution sequences going out of the
current state and satisfying R must lead to states from which all sequences
are made of (zero or more) actions satisfying A, followed by an action sat-
isfying B and leading to a state satisfying P. In other words, after every
sequence satisfying R, it is inevitable to arrive (after some actions satisfying
A, followed by an action satisfying B) at a state satisfying P.

O—»0O—» -+ —»=0O0—»0 false

R

.—A>O—B>OP

A -
N O/
4{ A A B
O—»O—»---—»O—»WO—»---—»O—»OP
R O_A
T~ .. 4 B
—»0O0—»0O P

Fig. 5. Illustration of the “[R] false” and “[R] inev(A, B, P)” operators

Table 3 shows seven safety properties of the drilling unit, together with their
definitions in regular alternation-free p-calculus. EVALUATOR 3.5 allows to ex-
press basic action predicates by using character strings surrounded by double
quotes ” (denoting a single action) or by using regular expressions over charac-
ter strings (denoting a set of actions). Properties P;—Ps5 characterize the order
of the processing phases performed on a product by the drilling unit, induced by
the counterclockwise rotation (insertion, locking, drilling, unlocking, testing, and
removal). Property Py expresses the safety of the drilling unit w.r.t. the testing
of the products. Property P; expresses a constraint over the order of drilling and
testing execution when the corresponding positions are both occupied.

Using EVALUATOR 3.5, we can check that all properties P;—FPg are satisfied by
the LTSs Me, and M,y corresponding to the two versions of the main controller.
The size of the underlying BESss explored by EVALUATOR 3.5 varies from 321
variables and 336 operators (for property P> on M,,) to 48 712 variables and
171645 operators (for property Py on M, ). However, property P; is satisfied
by Mper but not by M., by running EVALUATOR 3.5 with the breadth-first
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Table 3. Safety properties of the drilling unit

|N0.|

Formula

Description |

P

[ true®* . “INF !PRESENT” .

(not “INF !TURNED”)* . “INF !TURNED”
(not “INF !LOCKED”)* . “CMD !DRILL”
false

After the input of a product and a ro-
tation of the table, the main controller
cannot command a drilling before the
clamp has been blocked.

P

true* . “INF !DRILLED” .

(not ‘INF !UNLOCKED. *’)*
“CMD !TURN”
false

‘|controller cannot command a rotation

After the drilling of a product, the main

before the clamp has been released.

P

true® . “INF !'UNLOCKED” .

(not “INF !TURNED”)* . “INF !TURNED”
(not ‘INF !TESTED.*’)* . “CMD !TURN”
| false

After the release of the clamp on a
product and a rotation of the table, the
main controller cannot command an-
other rotation before the product has
been tested.

Py

[ true™ . “INF !TESTED.* .

(not “INF !TURNED”)* . “INF !TURNED”
(not “INF !ABSENT”)* . “CMD !TURN”

| false

After the test of a product and a ro-
tation of the table, the main controller
cannot command another rotation be-
fore the product has been removed.

Ps

[ true® . “INF 'ABSENT” .

(not “INF !TURNED”)*.
“INF !TURNED’’ .

(not “INF !PRESENT”)*. “CMD !TURN”
| false

After a product remove and a rotation
of the table, the main controller can-
not command another rotation before
a new product has been supplied.

[ true* . “INF !TESTED !TRUE’ .
(not “INF !TURNED”)* . “INF !TURNED”

Every time the tester detects a cor-
rectly drilled product, no error will be

Ps |. . . .
(not “INF ITURNED”)* . “ERR” signaled during the next processing cy-
| false cle.
[ true™ . “INF !'PRESENT” .
true* . “INF !PRESENT” . After the testing and drilling positions
P, true* . “INF !PRESENT” . of the table have been occupied, the
true* . “CMD !TEST” . main controller cannot command a test

(not “INF !TURNED”)* . “CMD !DRILL”
| false

before commanding a drill.
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strategy, we obtain a minimal counterexample sequence consisting of 23 visible
actions. This sequence, absent from M,., but present in Mp,,, models three
insertions of products and two rotations of the table (which ensures that the
slots at the drilling and testing positions become occupied), a clamp blocking
command (which prepares the drilling), and a testing command followed by a
drilling command. Indeed, the sequential controller handles the products present
on the table in a precise order — the testing of the product at position 2 being
carried out after the drilling of the product present at position 1 — whether the
parallel controller is able to handle the various processing phases simultaneously.

Although the safety properties described above forbid the malfunctionings of
the drilling unit, they do not guarantee the completion of the various processing
phases on the products: thus, a drilling unit whose turning table does not move
satisfies all these safety properties. In order to ensure the start and the progress
of the processing phases, the system must also satisfy certain liveness properties.
Table 4 shows seven liveness properties of the drilling unit, together with their
corresponding temporal formulas. Property Ps describes the starting sequence
of the system, during which the products are inserted in all the slots of the
turning table, which reaches the permanent functioning regime. Properties Py—
Py5 are the counterparts of properties P;—P;: they characterize the progress of
each processing phase and also the rotation of the table. Property P53 indicates
the responses to the commands and requests of the main controller, which are
sent by the system or by the environment during each processing cycle. Finally,
property P4 specifies the correct reaction of the system when the drilling of
some products failed.

Using EVALUATOR 3.5, we can verify that all properties Ps—Py4 are satisfied
by the LTSs M., and Mp,, corresponding to the two versions of the main
controller. The size of the underlying BESs varies from 650 variables and 947
operators (for property Ps on Mseq) to 275277 variables and 606 747 operators
(for property Pig on M, ).

5 Conclusion and future work

By means of the drilling unit example detailed in this paper, we tried to illus-
trate the specification and verification methods offered by the CADP toolbox
for analysing the functional properties of industrial critical systems that involve
asynchronous parallelism. The LOTOS language appears to be suitable for de-
scribing in a succinct and abstract manner the functioning of the controllers in
charge of driving the physical devices. At the present time, CADP has been used
for analysing 104 industrial case-studies® and the various generic components of
the Bea and OPEN/CAESAR environments have enabled the development of 32
derived tools®. The feedback received from these applications led to the devel-
opment of new tools as well as to the improvement of existing tools as regards
performance and user-friendliness.

® See the online catalog http://wuw.inrialpes.fr/vasy/cadp/case-studies
6 See the online catalog http://www.inrialpes.fr/vasy/cadp/software



24

Table 4. Liveness properties of the drilling unit

| No. | Formula Description
inev (not “CMD ITURN", “REQ 'ADD”,
inev (not “CMD !TURN”, “CMD !TURN”,
inev (not “CMD !TURN”, “REQ 'ADD”, Initially, the main controller
P inev (not “CMD !TURN”, “CMD !TURN”, eventually commands the inser-
% linev (not “CMD !TURN”, “REQ 'ADD”, tion of products in all the slots
inev (not “CMD !TURN”, “CMD !TURN”, of the turning table.
inev (not “CMD !TURN”, “REQ !'ADD”, true) ) ) )
[ true® . “INF !PRESENT” ]
inev (not “CMD !TURN”, “CMD !TURN”, . ,
P, [inev (not “cvD 1TURN", “oMD 1L.OCK”, dEaf‘flh dprf‘idu‘;; mserttedt V:?H b?
? linev (not “CMD !TURN”, “CMD !DRILL”, riied after the next rotation o
inev (not “CMD ITURN”, “CMD !UNLOCK”, true) )|the table-
[ true® . “INF !UNLOCKED” | Each product drilled will be
Pyglinev (not “CMD !TURN”, “CMD !TURN”, tested after the next rotation of
inev (not “CMD !TURN”, “CMD !TEST”, true) ) |[the table.
[true® . ‘INF ITESTED.* | Each roduct tested will b
inev (not “CMD ITURN”, “CMD !TURN” ach product tested witl be re-
P ) ) 7 .
"linev (not “CMD !TURN”, ‘REQ !REMOVE. ', true)| 0Ved after the next rotation of
) the table.
[ true* . “INF !ABSENT” | Fach product removal will be
Pisinev (not “CMD !TURN”, “CMD !TURN” followed by the insertion of a
inev (not “CMD | TURN, “REQ !ADD” ’true) y o |mew product after the next ro-
i K ’ ’ tation of the table
true
[ “REQ !'ADD” ] inev (not “INF !TURNED”,
“INF !PRESENT”, true) and
[ “CMD !'LOCK” ] inev (not “INF !TURNED”,
“INF !LOCKED”, true) and Each command (resp. request)
[ “CMD !'DRILL” ] inev (not “INF !TURNED”, sent by the main controller to
“INF !DRILLED”, true) and the physical devices (resp. to
P13 [ “CMD !UNLOCK” ] inev (not “INF ":["URI\]’ED”7 the environment) will be even-
“INF !UNLOCKED’_’, true) and tually followed by its acknowl-
[ “CMD !TEST” ] inev (not “INF !TURNED”, edgement before the next rota-
‘INF !TESTED.*’, true) and tion of the table.
[ ‘REQ 'REMOVE.*’ | inev (not “INF !TURNED”,
“INF !ABSENT”, true) and
[ “CMD !TURN” ] inev (not “INF !TURNED”,
“INF !ITURNED”, true) )
Every time the tester detects an
[ true* . “INF !TESTED !FALSE” | incorrectly drilled product, an
P14linev (not “CMD !TURN”, “CMD !TURN”, error will be eventually signaled
inev (not “CMD !TURN”, “ERR”, true) ) during the next processing cy-
cle




25

We presented here only a few basic tools of CADP, which implement classical
verification methods (equivalence checking and model checking) on Lrss. CADP
also offers sophisticated analysis functionalities in order to deal with large-scale
systems: compositional verification using the Exp.OPEN 2.0 tool [27], distributed
verification on clusters using the DISTRIBUTOR and BCG_MERGE tools [19, 18]
and distributed BES resolution algorithms [24, 25], partial order reduction [35,
30]. These functionalities are orthogonal and operate on-the-fly, being based
upon the implicit representation of Lrss defined by OPEN/CESAR: consequently,
they can be combined in order to cumulate their benefits and scale up the analysis
capabilities to large systems. Moreover, CADP offers the SVL language [16] and its
associated compiler, which enable a succinct and elegant description of complex
verification scenarios, involving hundreds of invocations of the verification tools.

The research and development activities around CADP are currently pursued
along several directions. The rise of massively parallel computing architectures
such as clusters and grids requires the design of specific distributed verification
algorithms as well as the definition of LTS representations adequate for the distri-
bution [19]. CADP can also play the role of analysis engine for other languages,
namely those dedicated to the description of asynchronous hardware [37]. Fi-
nally, the application of the verification techniques promoted by CADP in other
domains, such as bioinformatics, appears particularly promising [2].
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