Spatio-Temporal Frequency Analysis for Removing Rain and Snow from Videos

Abstract : Capturing good videos outdoors can be challenging due to harsh lighting, unpredictable scene changes, and most relevant to this work, dynamic weather. Particulate weather, such as rain and snow, creates complex flickering effects that are irritating to people and confusing to vision algorithms. Although each raindrop or snowflake only affects a small number of pixels, collections of them have predictable global spatio-temporal properties. In this paper, we formulate a model of these global dynamic weather frequencies. To begin, we derive a physical model of raindrops and snowflakes that is used to determine the general shape and brightness of a single streak. This streak model is combined with the statistical properties of rain and snow, to determine how they effect the spatio-temporal frequencies of an image sequence. Once detected, these frequencies can then be suppressed. At a small scale, many things appear the same as rain and snow, but by treating them as global phenomena, we achieve better performance than with just a local analysis. We show the effectiveness of removal on a variety of complex video sequences.
Type de document :
Communication dans un congrès
Peter Belhumeur and Katsushi Ikeuchi and Emmanuel Prados and Stefano Soatto and Peter Sturm. Proceedings of the First International Workshop on Photometric Analysis For Computer Vision - PACV 2007, Oct 2007, Rio de Janeiro, Brazil. INRIA, 8 p., 2007
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00264716
Contributeur : Inria Rhône-Alpes Documentation <>
Soumis le : lundi 17 mars 2008 - 16:44:48
Dernière modification le : lundi 17 mars 2008 - 17:15:15
Document(s) archivé(s) le : jeudi 20 mai 2010 - 21:14:19

Fichier

p16.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00264716, version 1

Collections

Citation

Peter Barnum, Takeo Kanade, Srinivasa Narasimhan. Spatio-Temporal Frequency Analysis for Removing Rain and Snow from Videos. Peter Belhumeur and Katsushi Ikeuchi and Emmanuel Prados and Stefano Soatto and Peter Sturm. Proceedings of the First International Workshop on Photometric Analysis For Computer Vision - PACV 2007, Oct 2007, Rio de Janeiro, Brazil. INRIA, 8 p., 2007. 〈inria-00264716〉

Partager

Métriques

Consultations de la notice

510

Téléchargements de fichiers

401