Integration of a Normal Field without Boundary Condition

Abstract : We show how to use two existing methods of integration of a normal eld in the absence of boundary condition, which makes them more realistic. Moreover, we show how perspective can be taken into account, in order to render the 3D-reconstruction more accurate. Finally, the joint use of both these methods of integration allows us to obtain very satisfactory results, from the point of view of CPU time as well as that of the accuracy of the reconstructions. As an application, we use this new combined method of integration of a normal eld in the framework of photometric stereo, a technique which aims at computing a normal field to the surface of a scene from several images of this scene illuminated from various directions. The performances of the proposed method are illustrated on synthetic, as well as on real images
Type de document :
Communication dans un congrès
Peter Belhumeur and Katsushi Ikeuchi and Emmanuel Prados and Stefano Soatto and Peter Sturm. Proceedings of the First International Workshop on Photometric Analysis For Computer Vision - PACV 2007, Oct 2007, Rio de Janeiro, Brazil. INRIA, 8 p., 2007
Liste complète des métadonnées

https://hal.inria.fr/inria-00264852
Contributeur : Inria Rhône-Alpes Documentation <>
Soumis le : mardi 18 mars 2008 - 10:41:07
Dernière modification le : jeudi 11 janvier 2018 - 06:21:34
Document(s) archivé(s) le : vendredi 21 mai 2010 - 00:35:47

Fichier

p29.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00264852, version 1

Collections

Citation

Jean-Denis Durou, Frédéric Courteille. Integration of a Normal Field without Boundary Condition. Peter Belhumeur and Katsushi Ikeuchi and Emmanuel Prados and Stefano Soatto and Peter Sturm. Proceedings of the First International Workshop on Photometric Analysis For Computer Vision - PACV 2007, Oct 2007, Rio de Janeiro, Brazil. INRIA, 8 p., 2007. 〈inria-00264852〉

Partager

Métriques

Consultations de la notice

250

Téléchargements de fichiers

232