Recovering Material Reflectance from Polarization and Simulated annealing

Abstract : This paper presents a novel image-based method for estimating BRDF information. The goal is to determine the dependence of the reflected radiance on the surface orientation for any given illumination direction. The proposed method consists of two stages. In the first stage, the polarization state of light reflected from an object of unknown shape is analysed using a linear polarizer and digital camera. This is interpreted using Fresnel theory to estimate a field of surface normals. This stage of the algorithm is largely based on existing ideas. In the second stage, a 3D histogram of surface normals and measured pixel brightnesses is constructed. The BRDF is recovered by fitting an arbitrary surface to this histogram data using simulated annealing and elastica. The experiments presented in this paper show that realistic image rendering is possible based on the recovered BRDFs of smooth dielectric materials.
Type de document :
Communication dans un congrès
Peter Belhumeur and Katsushi Ikeuchi and Emmanuel Prados and Stefano Soatto and Peter Sturm. Proceedings of the First International Workshop on Photometric Analysis For Computer Vision - PACV 2007, Oct 2007, Rio de Janeiro, Brazil. INRIA, 8 p., 2007
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00265255
Contributeur : Inria Rhône-Alpes Documentation <>
Soumis le : mardi 18 mars 2008 - 16:30:01
Dernière modification le : samedi 11 novembre 2017 - 19:04:02
Document(s) archivé(s) le : vendredi 28 septembre 2012 - 11:21:39

Fichier

p22.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00265255, version 1

Collections

Citation

Gary Atkinson, Edwin Hancock. Recovering Material Reflectance from Polarization and Simulated annealing. Peter Belhumeur and Katsushi Ikeuchi and Emmanuel Prados and Stefano Soatto and Peter Sturm. Proceedings of the First International Workshop on Photometric Analysis For Computer Vision - PACV 2007, Oct 2007, Rio de Janeiro, Brazil. INRIA, 8 p., 2007. 〈inria-00265255〉

Partager

Métriques

Consultations de la notice

147

Téléchargements de fichiers

64