$(\ell,k)$-Routing on Plane Grids

Omid Amini 1 Florian Huc 1 Janez Zerovnik 1
1 MASCOTTE - Algorithms, simulation, combinatorics and optimization for telecommunications
CRISAM - Inria Sophia Antipolis - Méditerranée , COMRED - COMmunications, Réseaux, systèmes Embarqués et Distribués
Abstract : The packet routing problem plays an essential role in communication networks. It involves how to transfer data from some origins to some destinations within a reasonable amount of time. In the $(\ell,k)$-routing problem, each node can send at most $\ell$ packets and receive at most $k$ packets. Permutation routing is the particular case $\ell=k=1$. In the $r$-central routing problem, all nodes at distance at most $r$ from a fixed node $v$ want to send a packet to $v$. In this article we study the permutation routing, the $r$-central routing and the general $(\ell,k)$-routing problems on plane grids, that is square grids, triangular grids and hexagonal grids. We use the \emph{store-and-forward} $\Delta$-port model, and we consider both full and half-duplex networks. The main contributions are the following: \begin{itemize} \item[1.] Tight permutation routing algorithms on full-duplex hexagonal grids, and half duplex triangular and hexagonal grids. \item[2.] Tight $r$-central routing algorithms on triangular and hexagonal grids. \item[3.] Tight $(k,k)$-routing algorithms on square, triangular and hexagonal grids. \item[4.] Good approximation algorithms (in terms of running time) for $(\ell,k)$-routing on square, triangular and hexagonal grids, together with new lower bounds on the running time of any algorithm using shortest path routing. \end{itemize} \noindent All these algorithms are completely distributed, i.e. can be implemented independently at each node. Finally, we also formulate the $(\ell,k)$-routing problem as a \textsc{Weighted Edge Coloring} problem on bipartite graphs.
Type de document :
Rapport
[Research Report] RR-6480, INRIA. 2008
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00265297
Contributeur : Rapport de Recherche Inria <>
Soumis le : mardi 25 mars 2008 - 16:07:54
Dernière modification le : jeudi 11 janvier 2018 - 16:14:40
Document(s) archivé(s) le : mardi 21 septembre 2010 - 16:22:04

Fichiers

RR-6480.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00265297, version 2
  • ARXIV : 0803.2759

Collections

Citation

Omid Amini, Florian Huc, Janez Zerovnik. $(\ell,k)$-Routing on Plane Grids. [Research Report] RR-6480, INRIA. 2008. 〈inria-00265297v2〉

Partager

Métriques

Consultations de la notice

386

Téléchargements de fichiers

106