
HAL Id: inria-00266171
https://hal.inria.fr/inria-00266171v2

Submitted on 25 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic foundations and inference of non-null
annotations

Laurent Hubert, Thomas Jensen, David Pichardie

To cite this version:
Laurent Hubert, Thomas Jensen, David Pichardie. Semantic foundations and inference of non-null
annotations. [Research Report] RR-6482, INRIA. 2008. �inria-00266171v2�

https://hal.inria.fr/inria-00266171v2
https://hal.archives-ouvertes.fr

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
64

82
--

FR
+E

N
G

Thème SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Semantic foundations and inference of non-null
annotations

Laurent Hubert — Thomas Jensen — David Pichardie

N° 6482

March 2008

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

Semantic foundations and inference of non-null
annotations

Laurent Hubert? , Thomas Jensen? , David Pichardie??

Thème SYM — Systèmes symboliques
Équipe-Projet Lande

Rapport de recherche n° 6482 — March 2008 — 37 pages

Abstract: This paper proposes a semantics-based automatic null pointer anal-
ysis for inferring non-null annotations of fields in object-oriented programs. The
analysis is formulated for a minimalistic OO language and is expressed as a
constraint-based abstract interpretation of the program which for each field of
a class infers whether the field is definitely non-null or possibly null after ob-
ject initialization. The analysis is proved correct with respect to an operational
semantics of the minimalistic OO language. This correctness proof has been ma-
chine checked using the Coq proof assistant. We also prove the analysis complete
with respect to the non-null type system proposed by Fähndrich and Leino, in
the sense that for every typable program the analysis is able to prove the absence
of null dereferences without any hand-written annotations. Experiments with a
prototype implementation of the analysis show that the inference is feasible for
large programs.

Key-words: program analysis, automated program proving, machine checked
proofs, operational semantics

? CNRS/IRISA, France
?? INRIA Rennes - Bretagne Atlantique/IRISA, France

Foundations sémantiques et inférence
d’annotations de type @NotNull

Résumé : Ce rapport propose une analyse automatique pour inférer des an-
notations @NotNull pour les champs des programmes orienté objet. L’analyse
est proposée pour un langage orienté objet minimaliste et est présentée comme
de l’interprétation abstraite. Pour chaque champs d’une classe, elle infère si
le champs est toujours différent de nul ou bien si il peut être nul après
l’initialisation de l’objet. Cette analyse est prouvée correcte vis-à-vis d’une
sémantique opérationnelle du langage proposé et cette preuve a été vérifiée
par l’assistant de preuve Coq. Nous prouvons aussi que l’analyse est complète
vis-à-vis du système de type proposé par Fähndrich et Leino, c’est à dire
que pour tout programme typable, l’analyse est capable de prouver l’absence
de déréférencement de pointeur nul sans aucune annotation manuelle. Les
expériences faites avec notre prototype montrent que l’inférence est possible
pour de gros programmes.

Mots-clés : analyse de programmes, preuve automatique de programmes,
preuve vérifiée par ordinateur, sémantique opérationnelle

Semantic foundations and inference of non-null annotations 3

1 Introduction

A common source of exceptional program behaviour is the dereferencing of null
references (also called null pointers), resulting in segmentation faults in C or null
pointer exceptions in Java. Even if such exceptions are caught, the presence of
exception handlers creates an additional amount of potential branching which
in turn implies that: 1) fewer optimizations are possible and 2) verification is
more difficult (bigger certification conditions, implicit flow in information flow
verification, etc.). Furthermore, the Java virtual machine is obliged to perform
run-time checks for non-nullness of references when executing a number of its
bytecode instructions, thereby incurring a performance penalty.1 For all these
reasons, a static program analysis which can guarantee before execution of the
program that certain references will definitely be non-null is useful.

Some non-null type systems for the Java language have been proposed [6, 14].
Although non-null annotations are not used by the compiler yet, this could likely
change in the future, in which case it becomes crucial to prove the soundness
of the logic underlying the type checker. Furthermore, although non-null anno-
tations are not yet mandatory, automatic type inference would help to retrofit
legacy code, to lower the annotation burden on the programmer, to document
the code and to verify existing code.

While some object oriented languages ensure all fields are initialized and ob-
jects are not read before being fully initialized, this is not the case in Java. More
precisely, there are three aspects that complicate non-nullness analysis: 1) fields
can be accessed during object construction (before or after their initialization)
which means all fields contain null value before their first assignment; 2) no
guarantee is given on the initialization of fields at the end of the constructor so
if a field has not been initialized it contains a null value; and 3) an object being
initialized can be stored in fields or passed as an argument of methods.

The first aspect means a naive flow-insensitive heap abstraction is not suffi-
cient as all fields are null at some stage and hence would be annotated as possibly
null. The second aspect makes a special initialization analysis necessary in order
to track fields that are certain to be initialized during the construction. Those
fields can safely be considered as non-null unless they are explicitly assigned a
null value. All other fields might not have been initialized and must be considered
as possibly null.

The third aspect was observed in [6] and concerns the problem where a virtual
method A.m() is being redefined in a sub-class B by a method referencing a field
f that is local to the class B. If the constructor of a super-class A executes
this.m() on an object of class B, it calls a method that dereferences field f
before the constructor of B has had the possibility of initializing this field. To
solve this problem, references to objects under construction need to be tracked,
e.g. by a tag indicating their state.

1 Although hardware traps are used for free whenever possible, explicit non-nullness
tests are still required as explained in [12]

RR n° 6482

4 L. Hubert, T. Jensen & D. Pichardie

Related Work. Freund and Mitchell have proposed in [9] a type system combined
with a data-flow analysis to ensure the correct initialization of objects. The goal
is to formalize the initialization part of Java bytecode verification. In this respect
it is different from our analysis, which is focused on field initialization and on
their nullness property. Fähndrich and Leino in [6] have proposed another type
system also combined with a data-flow analysis to ensure a correct manipulation
of references with respect to a nullness property. This system is presented in
Sect. 6 where we compare our inference analysis to their type system and give
examples of how our analysis infers more precise types than what their system
is able to check. More recently, Fähndrich and Xia have proposed another type
system introducing delayed initialization [7]. It generalizes the previous one and
allows to prove some properties that our analysis cannot, like initialization of
circular data structures, but it has also the same loss of precision discussed in
Sect. 6 .

Some works are focused on local type inference, i.e. inferring nullness property
for blocks of code from the guards. This is notably the case of FindBugs [11, 10]
and of the work by Male et al. [14]. They rely on path-sensitive analysis and the
treatment of field initialization is very weak.

To infer type annotations, Houdini [8] generates a set of possible annotations
(non-null annotations among others) for a given program and uses ESC/Java [13]
to refute false assumptions. CANAPA [3] lowers the burden of annotating a
program by propagating some non-null annotations. It also relies on ESC/Java
to infer where annotations are needed. Those two annotation assistants have a
simplified handling of objects under construction and are intented to be used
by the developer to debug and not to certify programs. Indeed, they rely on
ESC/Java [13], which is not sound (nor complete). JastAdd [5] is a tool to infer
annotations for a simplified version of Fähndrich and Leino’s type system. 2

Finally, another approach to lower the amount of annotations is proposed
by Chalin and James [2]. They suggest to consider the references as non-null by
default, so the developer has only to explicitly annotate nullable references. They
claim that, in Java programs, at least 2/3 of declarations of reference types are
meant to be non-null, by design. Despite the lower amount of annotation needed,
about 1/3 of declarations still need annotations which can represent a substantial
amount of annotations in legacy code.

Contributions. The non-null reference analysis presented here makes the follow-
ing contributions.

– A fully automatic analysis.
– A proof of soundness with respect to an operational semantics. This is the

first formal correctness proof for this kind of analyses and it has been machine
checked using the Coq proof assistant.

– A detailed comparison with Fähndrich and Leino’s type system, which is a
reference among the nullness program analyses. We prove the completeness

2 The treatment of objects under initialization is simplified and initializations done
by methods (called from the constructor) are not taken in account.

INRIA

Semantic foundations and inference of non-null annotations 5

with respect to their type system. In this way, the correctness proof of our
analysis also provides a formal proof of correctness of their type system. We
also show that our analysis can be more precise than their type system.

– The analysis is modular: a program can be analysed without analyzing the
libraries if they have already been annotated.

Outline. Section 2 presents the syntax and semantics of the simple OO language
we use to formalize our analysis. Section 3 presents the system of constraints
of the analysis and Sect. 4 gives the proof of soundness. Section 5 proves the
constraint system has a least fixpoint and discusses the modularity. Section 6
then presents Fähndrich and Leino’s type system and proves the completeness
of our analysis with respect to their type system. Section 7 gives some details on
the adaptation of the analysis to the Java bytecode level and Sect. 8 concludes.

2 Syntax and Semantics

We define a minimalistic language 3 to analyze the flow of references in object-
based languages. A program is a collection of classes, arranged in a class hierar-
chy via a transitive subclass relation ≺ (we write � for its reflexive closure). We
only consider single inheritance (where � can be embedded in a sup-semilattice
structure). The language, as described in Fig. 1 has two kinds of expressions E:
variables and references to fields. Assignments are either to variables or to fields.
New objects are created using the new instruction which takes as arguments the
name C of a class, the vector α of the types of the parameters (used to deal with
overloading) and a list of expressions. There is a conditional instruction which
may non-deterministically branches to a given program label. Finally, the in-
structions x.ms(E, . . . , E) and return represent method invocation and return,
respectively. Methods invoked are found with a lookup procedure that looks for a
method depending on its signature and the class of the current object. A method
descriptor ms and a method identifier m are both of the form {|C,mn,α→ β|},
where mn is a method name, α→ β is a type signature (to simplify the presen-
tation we here restrict β to void) and C is, for the method descriptor, the type
of the reference on which the method is called and, for the method identifier,
the class where the method has been defined. We use name(ms) and name(m)
to retrieve mn and class(ms) and class(m) to retrieve C. A method signature is
the couple (mn,α→ β). A method signature can correspond to many methods,
a method descriptor corresponds to at most one method and a method iden-
tifier corresponds to only one method. As a notation abuse, m will be used as
the method identified instead of the identifier itself. A method is composed of
a method signature, a list of parameters and a method body consisting of a la-
belled list of instructions. A class is composed of fields and method definitions.
For a given field f class(f) gives the class in which f is defined. The set of
3 The language is closed to the Java bytecode language but without any operand stack.

Removing the operand stack avoid to introduce an alias analysis which is needed at
the bytecode level, for instance, to know if a stack variable is an alias of this.

RR n° 6482

6 L. Hubert, T. Jensen & D. Pichardie

fields declared in a class C is written fields(C). Each program contains a special
method main used to start the execution.

The operational semantics of our minimalistic language is defined by the
inference rules in Fig. 2 which specify a (small-step) transition relation →m for
each method m and a (big-step) evaluation relation ⇓h,l for expressions relative
to a heap h and local variables l. The semantics uses an explicit error element
Ω to signal the dereferencing of a null reference. Alternatively, we could have
let the semantics “get stuck” when it encounters an error but our choice of
propagating an error element to method boundaries facilitates the correctness
proof of the null pointer analysis to follow. For space reasons, we only detail
the error case for method invocation; all other instructions may lead to similar
error steps. The analysis keeps track of how objects are initialized and, in order
to prove its correctness, the semantics instruments the fields of objects with
flags def or undef to track the history of field initializations. A field flagged
as undef contains necessarily MayBeNull. This instrumentation is transparent
in the sense that it does not affect the behavior of a program and will be used
later to prove the correctness of the analysis. In Java bytecode, unlike fields,
local variables do not have a default value and the bytecode verifier ensures
uninitialized local variables are never read. We formalized this by using ⊥ as
the default value for local variables and by ensuring with the semantics ⊥ is
never read. We also model object initialization to ensure a constructor of class
C terminates only when at least one constructor of each ancestor has been called.
To do so, we keep for each object the set of classes whose constructor has been
called. The semantics is stuck if a constructor violates that policy. This means
we only consider programs where objects are correctly initialized.

Syntax

E ::= x | E.F

I ::= x← E | x.f ← E | x← new (C, α)(E, . . . , E) | if (?) jmp | x.ms(E, . . . , E) | return

M ::= mn(x1, . . . , xn) { I; . . . ; I }
C ::= {|fields : {f ; . . . ; f}; methods : {M ; . . . ; M}|}
P ::= (C · · · C,≺)

Domains
Val = Loc + {null} Object = F ⇀ Val× {def , undef}

LocalVar = V→ Val + {⊥} Heap = Loc ⇀ Object× C× ℘(C)
State = (N× LocalVar× Heap) + Ω

Expression Evaluation

l(x) 6= ⊥
x ⇓h,l l(x)

e ⇓h,l r r ∈ dom(h) f ∈ dom(h(r))

e.f ⇓h,l h(r)(f)

e ⇓h,l v v ∈ {null, Ω}
e.f ⇓h,l Ω

Fig. 1. Syntax of the language

Notation: We write F, V, Loc and N for fields, variables, memory addresses
and program points, respectively. We consider that a field includes the class

INRIA

Semantic foundations and inference of non-null annotations 7

Operational Semantics: Normal Cases

Pm[i] = x← e

e ⇓h,l v x 6= this

〈i, l, h〉 →m 〈i + 1, l[x 7→ v], h〉

Pm[i] = x.f ← e

l(x) ∈ dom(h) f ∈ dom(h(l(x))) e ⇓h,l v

〈i, l, h〉 →m 〈i + 1, l, upd(h, l(x), f, (v,def))〉

Pm[i] = x← new (C, α)(e1, . . . , en) ∀i, ei ⇓h,l vi r 6∈ dom(h) x 6= this

〈0,⊥[this 7→ r, {i 7→ vi}i=1..n], h[r 7→ default(C)]〉 →∗
{|C,init,α→void|} h′

〈i, l, h〉 →m 〈i + 1, l[x 7→ r], h′〉

Pm[i] = x.ms(e1, . . . , en) ∀i, ei ⇓h,l vi l(x) ∈ dom(h)

m′ = lookup(class(h(l(x))), ms) class(h(l(x))) � class(ms)
〈0,⊥[this 7→ l(x), {i 7→ vi}i=1..n], h〉 →∗

m′ h′ name(ms) = init⇒ x = this

〈i, l, h〉 →m 〈i + 1, l, h′〉

Pm[i] = if jmp

〈i, l, h〉 →m 〈jmp, l, h〉

Pm[i] = if jmp

〈i, l, h〉 →m 〈i + 1, l, h〉

Pm[i] = return C = class(m)

name(m) = init⇒ ∀A, C ≺ A⇒ A ∈ history(l(this))
name(m) = init⇒ h′ = h[l(this) 7→ addHistoryC(set2DefC(h(l(this))))]

name(m) 6= init⇒ h′ = h

〈i, l, h〉 →m h′

Operational Semantics: Error Cases

Pm[i] = x← e e ⇓ Ω

〈i, l, h〉 →m Ω

Pm[i] = x.f ← e l(x) = null ∨ e ⇓ Ω

〈i, l, h〉 →m Ω

Pm[i] = x← new C(e1, . . . , en) ∃i, ei ⇓h,l Ω

〈i, l, h〉 →m Ω

Pm[i] = x← new C(e1, . . . , en) ∀i, ei ⇓h,l vi r 6∈ dom(h)

〈0,⊥[this 7→ r, {i 7→ vi}i=1..n], h[r 7→ default(C)]〉 →{|C,init,α→void|} Ω

〈i, l, h〉 →m Ω

Pm[i] = x.ms(e1, . . . , en) ∀i, ei ⇓h,l vi l(x) ∈ dom(h)

m′ = lookup(class(h(l(x))), ms) class(h(l(x))) � class(ms)
〈0,⊥[this 7→ l(x), {i 7→ vi}i=1..n], h〉 →∗

m′ Ω name(m) = init⇒ x = this

〈i, l, h〉 →m Ω

Pm[i] = x.ms(e1, . . . , en) l(x) = null ∨ ∃i, ei ⇓h,l Ω

〈i, l, h〉 →m Ω

Fig. 2. Semantics of the language

RR n° 6482

8 L. Hubert, T. Jensen & D. Pichardie

name where it has been defined. We note h(r)(f), class(h(r)) and history(h(r))
the accesses to the first, second and third components of the heap cell h(r), re-
spectively. Function upd(h, r, f, (v,def)) sets the field f of the object at location
r to the value v and marks it as defined. The expression default(C) denotes a new
object of class C where all fields contain null values and are undef (the history
of such object is empty). The function set2DefC sets all fields (in fields(C)) of an
object to def . The function addHistoryC adds a class name C to the initializa-
tion history of an object. The star transition →∗m corresponds to the transitive
closure of →m.

A program is considered null-pointer error safe if the execution of the method
main never reaches an error state.

Definition 1. A program P is said to be null-pointer error safe if for all local
variables l and heap h,

〈0, l, h〉 →∗main s implies s 6= Ω

Note that since error states are propagated after method calls, this definition of
safe program implies that no dereferencing of a null reference will occur during
the execution of the program.

3 Null-Pointer Analysis

We will now present the analysis that is able to prove a program is null-pointer
error safe. Without field annotations, this analysis would be the naive intra-
procedural flow-sensitive analysis inferring pre- and post-conditions for methods.

3.1 Abstract Domains

In this section we define an analysis that for each class of a well-typed program in-
fers annotations about nullity of its fields together with pre- and post-conditions
for its methods. The basic properties of interest are NotNull — meaning “def-
initely not-null” — and MayBeNull — meaning possibly a null reference. The
field annotations computed by the analysis are represented as a heap abstraction
H] ∈ Heap] which provides an abstraction for all fields of all initialized objects
and all initialized fields of objects being initialized.4

As explained in the Introduction, object initialization requires a special treat-
ment because all fields are null when the object is created so this would lead a
simple-minded analysis to annotate all fields as MayBeNull. However, we want
to infer non-null annotations for all fields which are initialized explicitly to be so
in a constructor. In other words, fields that are not initialized in a constructor
are annotated as MayBeNull and all other fields have a type compatible with
the value they have been initialized with.

4 We consider fields initialized when they have been assigned a value, whereas we
consider an object initialized when it has returned from its constructor.

INRIA

Semantic foundations and inference of non-null annotations 9

Abstract Domains

Val] = {Raw(Y) | Y ∈ Class} ∪ {Raw−, NotNull, MayBeNull}

Def] = {Def, UnDef} TVal] = F ⇀ Def] Heap] = F→ Val] LocalVar] = V→ Val]

Method] = M→ {|this ∈ TVal]; args ∈ (Val])
∗
; post ∈ TVal]|}

State] = Method] × Heap] ×
“

M× N ⇀ TVal]
”
×

“
M× N ⇀ LocalVar]

”
Selected Partial Orders

Val] Def]

x ∈ Val]

NotNull v x Raw(X) v Raw−

X � Y

Raw(X) v Raw(Y)

x ∈ Val]

x v MayBeNull

Def v UnDef

Fig. 3. Abstract domains and selected partial orders

To this end, the analysis tracks field initializations of the current object
in constructors (and methods called from constructors). This is done via an
abstraction of the this reference by a domain TVal] which maps each of the
fields declared in the current class to Def or UnDef. To allow strong updates,
we need a flow-sensitive abstraction so to each program point we map a such
abstraction (T]).

References are then abstracted by a domain Val] which incorporate the “raw”
references from [6]. A Raw− value denotes a non-null reference of an object being
initialized, which does not yet respect his invariant (e.g. Raw− can be used as
a property of this when it occurs in constructors). If a reference is known to
have all its fields declared in class X and in the parents of X initialized, then the
reference is Raw(X). The inclusion of “raw” references allows the manipulation
of objects during initialization because the analysis can use the fact that for
an object of type Raw(X), only fields declared in X and above have a valid
annotation in the abstract heap H]. A NotNull value denotes a non-null reference
that has finished its initialization.

Figure 3 defines formally each abstract domain. The flow of references
through local variables is analysed with a flow-sensitive abstraction of each
variable (L] ∈ LocalVar]). The analysis also infers method annotations M] ∈
Method]. For any method m, M](m)[this] is an approximation of the initializa-
tion state of this before the execution of m, while M](m)[post] gives the corre-
sponding approximation at the end of the execution. M](m)[args] approximates
the parameters of the method, taking into account all the context in which m
may actually be invoked. We only give the definition of the partial order for Val]

and Def]. The other orders are defined in a standard way using the canonical
orders on partial functions, products and lists. The final domain State] is hence
equipped with a straightforward lattice structure.

RR n° 6482

10 L. Hubert, T. Jensen & D. Pichardie

3.2 Inference Rules

The analysis is specified via a set of inference rules, shown in Fig. 4, which define
a judgment

M],H], T], L] |= (m, i) : instr

for when the abstract state (M],H], T], L]) is coherent with instruction instr
at program point (m, i). For each such program point, this produces a set of
constraints over the abstract domain State], whose solutions constitute the cor-
rect analysis results. The rules make use of an abstract evaluation function for
expressions (explained below) that we write [[e]]]. An example of a program with
the corresponding constraints are given in Sect. 3.3.

Assignment to a local variable (rule (1)) simply assigns the abstract value
associated with the expression to the local variable in the abstract environment
L]. Assignment to a field (2) can either be to a field of the current object, in
which case the field becomes “defined”, or to another object. In both cases, the
abstract heap H] is augmented with the value of the expression as a possible
value for the field. When a return value is encountered (3) in a constructor, all
still-undefined fields are explicitly set to MayBeNull. For a new instruction (4), a
new abstraction >C is built for the pre-condition on this of the constructor. The
first argument (this) is set to Raw−. The result of the constructor is known to
be NotNull (the object is fully initialized). The method call (6) uses conditional
constraints to distinguish a number of cases, depending on whether the call is to
a method in the current class and the receiving object is the current object this
or not. We use Raw(super(C)) to denote the Raw type just above Raw(C). 5

The whole constraint system of a program P is then formally defined by
the judgement M],H], T], L] |= P . We write overrides(m′,m) when the method
m′ overrides m. In such case we require a contravariant property between the
parameters of m and m′. Any overriding overrides(m′,m) need also to invalidate
(in term of precision) M](m)[post] because a virtual call to m could lead to the
execution of m′ which is not able (by definition of T]) to track the initialization
of fields declared in class(m). A similar constraint is required for M](m′)[this]
because for a virtual call to m we have only constrained M](m)[this] and not
M](m′)[this].

Finally an abstract state is said safe (noted safe]
P (M],H], T], L])) when for

each program point (m, i), if Pm[i] is of the form x.f ← e or x.ms(. . .) then
L](m, i)(x) 6= MayBeNull, and for all expressions e which appear in the instruc-
tion Pm[i], any dereferenced sub-expression e′ has an abstract evaluation strictly
lower than MayBeNull.

The analysis uses a function ρ to transfer information from domain Val] to
domain TVal]: ρ transforms an abstract reference Val] to a TVal] abstraction
of a current object this in the class C. The notations ⊥C , respectively >C ,
correspond to the function that maps all fields defined in C to Def, respectively
UnDef. The analysis also relies on an abstract evaluation [[e]]]C,H],t],l] of expres-
sions parameterised by the current class C, an abstract heap H], an abstraction
5 If C is the root of the class hierarchy (Object in Java), then Raw(super(C)) = Raw−

INRIA

Semantic foundations and inference of non-null annotations 11

Inference Rules

T](m, i) v T](m, i + 1) L](m, i)[x 7→ [[e]]]] v L](m, i + 1)

M], H], T], L] |= (m, i) : x← e
(1)

. .

if x = this ∧ f ∈ fields(class(m)) then T](m, i)[f 7→ Def] else T](m, i) v T](m, i + 1)

L](m, i) v L](m, i + 1) [[e]]] v H](f)

M], H], T], L] |= (m, i) : x.f ← e

(2)

. .

T](m, i) vM](m)[post]
name(m) = init⇒

∀f ∈ fields(class(m)).(T](m, i)(f) = UnDef⇒ MayBeNull v H](f))

M], H], T], L] |= (m, i) : return

(3)

. .
m′ = {|C, init, α→ void|}

>C vM](m′)[this] Raw− :: [[e1]]
] :: · · · :: [[ej]]

] vM](m′)[args]

L](m, i)[x 7→ NotNull] v L](m, i + 1) T](m, i) v T](m, i + 1)

M], H], T], L] |= (m, i) : x← new (C, α)(e1, . . . , ej)

(4)

. .

L](m, i) v L](m, i + 1) L](m, i) v L](m, jmp)

T](m, i) v T](m, i + 1) T](m, i) v T](m, jmp)

M], H], T], L] |= (m, i) : if jmp

(5)

. .
m′ = lookup(class(ms), ms) C′ = class(m′)0BB@

if x = this ∧ class(m) = C′ ∧ [[x]]] v Raw(super(C′)) ∧M](m′)[post] u T](m, i) v ⊥C′
then L](m, i)[x 7→ Raw(C′) u [[x]]]] v L](m, i + 1)

else if name(m′) = init then L](m, i)[x 7→ Raw(C′)] v L](m, i + 1)

else L](m, i) v L](m, i + 1)

1CCA
„

if x = this ∧ class(m) = C′ then M](m′)[post] u T](m, i) v T](m, i + 1)

else T](m, i) v T](m, i + 1)

«
„

if x = this ∧ class(m) = C′ then T](m, i) vM](m′)[this]

else ρ(C′, [[x]]]) vM](m′)[this]

«
[[x]]] :: [[e1]]

] :: · · · :: [[ej]]
] vM](m′)[args]

M], H], T], L] |= (m, i) : x.ms(e1, . . . , ej)

(6)

. .

∀m, m′, overrides(m′, m)⇒M](m)[args] vM](m′)[args]

∀m, m′, overrides(m′, m)⇒ >class(m) vM](m)[post]

∀m, m′, overrides(m′, m)⇒ >class(m′) vM](m′)[this]

∀m, M](m)[args] v L](m, 0)

∀m, M](m)[this] v T](m, 0)

∀m, ∀i, M], H], T], L] |= (m, i) : Pm[i]

M], H], T], L] |= P

(7)

Auxiliary Operators

ρ(C, NotNull) = ⊥C

ρ(C, Raw(X)) = if X � C then ⊥C else >C

ρ(C, MayBeNull) = ρ(C, Raw
−

) = >C

[[x]]
]

C,H],t],l]
=

Raw(C) if x = this ∧ t] = ⊥c ∧ l](x) = Raw(super(C))

L](x) otherwise

[[e.f]]
]

C,H],t],l]
=

8><>:
H](f) if [[e]]]

C,H],t],l]
= NotNull or (e = this ∧ t](f) = Def)

or [[e]]]
C,H],t],l]

= Raw(X) with X � class(f)

MayBeNull otherwise

Fig. 4. Analysis specification

RR n° 6482

12 L. Hubert, T. Jensen & D. Pichardie

deletekeywords=not,prefix,value,where,morekeywords=assert,asr,class,closed,constraint,external,false,functor,include,inherit,land,lazy,lor,lsl,lsr,lxor,method,mod,module,new,open,parser,private,sig,struct,true,val,virtual,when,

class A {
private Object f ;
private Object g ;

A(Object o){ f = o ;}

void m(){ g=f ;}

public stat ic void main (St r ing args []) {
Object o = new Object () ;
A a = new A(o) ;
a .m() ;

}
}

Fig. 5. Java source

t] of the fields (declared in class C) of the this object and an abstraction l] of the
local variables. The first equation states that the type of a local variable is ob-
tained from the L] function and can be refined from Raw(super(C)) to Raw(C)
if this is sufficiently initialized. The second equation states that the type of a
field is obtained from the heap abstraction if the type of the reference is NotNull
or if it is a reference to an object sufficiently deeply initialized. Otherwise, it is
MayBeNull. In the inference rules we write [[e]]] for [[e]]]class(m),H],T](m,i),L](m,i)

3.3 Example

The Java source code of our example is provided in Fig. 5, while Fig. 6 shows
the code in the syntax defined in Sect. 2 and the constraints obtained from the
rules defined in Sect. 3.2. This example is fairly simple and, for conciseness, the
code of the main method has been omitted, but the generated constraints should
be sufficient to give an idea of how the inference works.

The labels in the source starting with the character @ are the annotations
inferred by the analysis for the fields and the methods signatures. An annotation
in front of a method corresponds to the property of this before the invocations
of the method. The other annotations are placed just before the variable they
refer to.

Lines 6, 7, 24 and 25 list the constraints obtained from rule (7) in Fig. 4.
They “initialize” the flow-sensitive abstractions L](m, 0) and T](m, 0) with the
information of the method signatures. All other constraints are directly deduced
from the rule corresponding to the instruction where conditional constraints have
been simplified where it was possible. Lines 9 to 12 list the constraints obtained
from rule (6) when name(m′) = init and class(m) 6= class(m′). Lines 14 to 16
correspond to a field assignment on this of a field defined in the current class.

INRIA

Semantic foundations and inference of non-null annotations 13

1: class A {
2: Object @NotNull f;

3: Object @MayBeNull g;

4:

5: @RawTop void init(Object @NotNull o){
6: M](A.init)[args] v L](A.init, 0)
7: M](A.init)[this] v T](A.init, 0)
8: 0: this.{|Object,init,[] -> void|}()
9: ρ(Object, [[this]]) v M](Object.init)[this]
10: [] v M](Object.init)[args]
11: L](A.init, 0)[this 7→ Raw(Object)] v L](A.init, 1)
12: T](A.init, 0) v T](A.init, 1)
13: 1: this.f = o

14: [[o]] v H](A.f)
15: T](A.init, 1)[A.f 7→ Def] v T](A.init, 2)
16: L](A.init, 1) v L](A.init, 2)
17: 2: return

18: if T](A.init, 2)(A.f) = UnDef then MayBeNull v H](A.f)
19: if T](A.init, 2)(A.g) = UnDef then MayBeNull v H](A.g)
20: T](A.init, 2) v M](A.init)[post]
21: }
22:

23: @NotNull void m(){
24: M](A.m)[args] v L](A.m, 0)
25: M](A.m)[this] v T](A.m, 0)
26: 0: this.g = this.f

27: [[this.f]] v H](A.g)
28: T](A.m, 0)[A.g 7→ Def] v T](A.m, 1)
29: L](A.m, 0) v L](A.m, 1)
30: 1: return

31: T](A.m, 1) v M](A.m)[post]
}

}

Fig. 6. Code with constraints

Lines 18 to 20 correspond to a return instruction of a constructor, which adds
the value MayBeNull in the abstract heap for all (maybe) undefined fields, while
line 31 corresponds to a return instruction of a non-constructor method.

The methods are called from the main method of Fig. 5. The method init
is annotated with Raw− (@RawTop) as it is called on a completely uninitialized
value. The constraint line 11 then refine Raw− to Raw(Object) so if a field of
Object were accessed in the rest of the method, the abstraction of the heap
would be used. The NotNull (@NotNull) annotation before the argument of the
method init is first transferred to a local variable at line 6 and then moved
from o to H](A.f) at line 14. At the same time, line 15 records that the field f

RR n° 6482

14 L. Hubert, T. Jensen & D. Pichardie

is defined. Then, line 18, as f has been defined H](A.f) is not modified whereas,
line 19, T](A.init, 2)(A.g) = UnDef so H](A.g) is constrained to MayBeNull.

4 Correctness

In this section we prove the correctness of the analysis. We first define (see Fig. 7)
the logical link between concrete and abstract domains via a correctness relation.
Then we prove (Theorem 1) that any solution of the constraint system which
verifies the predicate safe]

p enforces the null-pointer error safety property for the
set of preconditions inferred by the analysis. The result mainly relies on a suitable
subject reduction lemma (Lemma 1). The theorem has been mechanically proved
with the Coq proof assistant6.

v ∈ Val

Def ∼ (v, def)

v ∈ Val d ∈ {def , undef}
UnDef ∼ (v, d)

v ∈ dom(h) ∀f ∈ dom(h(v)), IsDef(h(v)(f))

NotNull ∼h v

v ∈ Val

MayBeNull ∼h v
v ∈ dom(h) ∀f ∈

S
A�C fields(C) ∩ dom(h(v)), IsDef(h(v)(f))

Raw(A) ∼h v

v 6= null

Raw− ∼h v

∀x, l(x) = ⊥ ∨ L](x) ∼h l(x)

L] ∼h l

r ∈ dom(h) fields(C) ⊆ dom(T]) ∩ dom(h(r))

∀f ∈ fields(C), T](f) ∼ h(r)(f)

T] ∼h,C r
∀r ∈ dom(h), ∀f ∈ dom(h(r)), h(r)(f) = (v, d)⇒ d = undef ∨H](f) ∼h v

H] ∼ h
o = l(this) L](m, i) ∼h l T](m, i) ∼h,class(m) l(this) H] ∼ h

(M], H], T], L]) ∼m,o 〈i, l, h〉
M](m)[post] ∼h,class(m) o H] ∼ h

(M], H], T], L]) ∼m,o h (M], H], T], L]) ∼m,o Ω

Fig. 7. Correctness relations

An abstract element (M],H]) induces a set of method preconditions defined
by

Pre(M],H])(m) =
{

(l, h)
∣∣∣∣ H] ∼ h, M](m)[this] ∼class(m),h l(this),

V]
0 ∼h l(this) and ∀i = 1..n, V]

i ∼h l(i)

}
with M](m)[args] = V]

0 :: · · · :: V]
n

Note that a method m which is not called by any other method in the program,
will be associated with a non-null assumption on all its parameters. This corre-
sponds to the non-null by default approach advocated by Chalin and James [2].

We write→(n)
m (resp→(n)∗

m) for the operational step relation (resp. transitive
closure) where exactly n method calls are performed during step (resp. transitive
closure), including sub-calls.
6 The proof is available at http://www.irisa.fr/lande/pichardie/np/

INRIA

Semantic foundations and inference of non-null annotations 15

Lemma 1 (Subject reduction). Let (M],H], T], L]) such that
M],H], T], L] |= P and safe]

P (M],H], T], L]). Let n be an integer such that for
all k, k < n, and all methods m, local variables l, heap h and configuration X if
(l, h) ∈ Pre(M],H])(m) and 〈0, l, h〉 →(k)∗

m X then (M],H], T], L]) ∼m,l(this) X
and X 6= Ω.

Let p be an integer, i a program counter, l local variables, h a heap and X a
configuration such that 〈i, l, h〉 →(p)

m X, (M],H], T], L]) ∼m,o 〈i, l, h〉 and p ≤ n
then (M],H], T], L]) ∼m,o X and X 6= Ω.

Proof. See Appendix C

Theorem 1 (constraint system soundness). If there exists (M],H], T], L])
such that M],H], T], L] |= P and safe]

P (M],H], T], L]) holds then P is null-
pointer error safe w.r.t the set of preconditions Pre(M],H]).

Proof. The proof proceeds by induction on the maximum number of method calls
in the execution sequences and then another induction on the length of intra-
method derivation, in order to be able to conclude with the subject reduction
Lemma 1.

5 Inference

Expressing the analysis in terms of constraints over lattices has the immediate
advantage that inference can be obtained from standard iterative constraint solv-
ing techniques for static analyses. Proposition 1 asserts that there is a decision
procedure to detect programs which are verifiable with the analysis.

Proposition 1. For all program P there exists an algorithm which de-
cides if there exists (M],H], T], L]) such that M],H], T], L] |= P and
safe]

P (M],H], T], L]).

Proof. It is a standard proof since the system of constraint is composed of mono-
tone functions on a finite lattice. The least solution can then be computed and
be checked with respect to predicate safe]

P .

Furthermore, the present analysis is modular in the sense that, rather than
performing an analysis of all classes of a program, it is possible to describe certain
classes (e.g., classes coming from a library) by providing interfaces consisting of
some method signatures M](m), m ∈ Mfix and field invariants H](f), f ∈ F fix

relative to the classes. 7 The validity of these signatures can be established once
and for all by the modular type checker proposed by Fähndrich and Leino (which
works class by class). The analysis of partial programs would then proceed in
several stages. First, the constraint system is generated only for the available
classes. The system may refer to the variables M](m), m ∈ Mfix and H](f),
7 Modular inference is less precise: to keep the same precision the analysis would need

richer annotations for the libraries.

RR n° 6482

16 L. Hubert, T. Jensen & D. Pichardie

f ∈ F fix. Then the partial system is solved starting the iteration à la Kleene
from

(M]
0 ,H

]
0, T

]
0 , L]

0) = (⊥ t {m 7→M](m)}m∈M fix ,⊥ t {f 7→ H](f)}f∈F fix ,⊥,⊥)

If one of the variables M](m), m ∈ Mfix or H](f), f ∈ F fix has to be updated
during the iteration, the constraint resolution fails, since this means there does
not exist a solution compatible with the proposed signatures.

Theorem 2 (Relative completeness of the modular solver). If the previ-
ous algorithm halts then the partial constraint system has no solution compatible
with the signatures provided for the unknown classes.

Proof. Let S denote the set

{(M],H], T], L]) |M],H], T], L] |= P and (M]
0 ,H

]
0, T

]
0 , L]

0) v (M],H], T], L])}

Suppose the previous algorithm halts. Since the iteration is ascending it means
the least solution of S is necessarily strictly greater than (M]

0 ,H
]
0, T

]
0 , L]

0). Since
any solution compatible with the signatures M](m), m ∈Mfix or H](f), f ∈ F fix

is in S, we can conclude that such a solution does not exist.

6 Fähndrich and Leino’s Type System

In this section we compare our analysis with the type system proposed by
Fähndrich and Leino [6]. This comparison relies on a formal definition8 of their
notion of typable program.

Figure 8 presents the corresponding typing rules. A typing judgment for
expression e is of the form Γ,L ` e : τ with Γ a type annotation for fields
and methods, L a type annotation for local variables and τ a type in Val].
Each instruction instr is also associated to a type judgement Γ,m ` instr :
L → L′ where m is the current method, L the current annotation for local
variables and L′ a valid annotation after the execution of instr. [inits F] is
a method annotation that indicates the method initializes the fields in the set
F . If a method initializes all the fields defined in its class, it is also written
[inits]. A program is said well-typed w.r.t. Γ if there are no overridden methods
annotated as [inits F], arguments are contravariant and there exists L such
that for all methods m and for all program points i, either Pm[i] = return
or for all successors points j of i, their exists L′ such that L′ v L(m, j) and
Γ,m ` Pm[i] : L(m, i)→ L′.

This type system is coupled with a data flow analysis to ensure that all
fields not declared as MayBeNull in class C are sure to be defined at the end of
all constructors of C. It is a standard data flow analysis, described in Fig. 8 .
F(m, i) represents the fields that are not initialized at program point (m, i). At

8 Note that in their paper the authors only propose an informal definition so what we
formalise here is only our interpretation of their work.

INRIA

Semantic foundations and inference of non-null annotations 17

the beginning of every constructor m, it is constrained to the set of fields defined
in the class of m. For field assignation on this, the field is not propagated to
the next node. For method calls to methods tagged as [inits F], fields in F are
not propagated to the next node, but the set of undefined fields is propagated to
the first instruction of the callee. It is then checked that those tagged methods
initialize their fields.

Theorem 3. If P is FL-typable then there exists (M],H], T], L]) such that
M],H], T], L] |= P and safe]

P (M],H], T], L]) holds.

Proof. We show that if P is FL-typable for a given Γ and L then this type
annotations represent a valid solution of the constraint system which furthermore
satisfies the safe]

P property.

Corollary 1 (FL type system soundness). If there exists Γ such that P is
FL-typable then P is null-pointer error safe w.r.t. the preconditions given by Γ .

Proof. Direct consequence of Theorem 3 and Theorem 1.

Theorem 4. There exists P such that P is not FL-typable and there exists
(M],H], T], L]) such that M],H], T], L] |= P and safe]

P (M],H], T], L]) holds.

Proof. As shown in Fig. 4, the analysis of expressions is parametrized on the
abstraction of this in order to know if a field has already been defined or not.
In Fähndrich and Leino’s analysis, the type checking is separated from the data-
flow analysis that knows which fields have already been defined. For example,
in

class C {
Object f; //NotNull
Object g; //MayBeNull or NotNull?
public C(){ this.f = new Object(); this.g = this.f;}

}

our analysis benefits from the abstraction of this and knows this.f has been
initialized before it is assigned to this.g. In Fähndrich and Leino’s analysis,
an intermediate local variable set to the new object and affected to f and g
or an explicit cast operator which checks the initialization at run-time would
be needed in order to type the program. Our abstraction of this can also be
passed from a method to another, here also keeping some more information as
the intra-procedural data-flow of Fähndrich and Leino.

Gain in practice To evaluate the practical gain of our analysis w.r.t the type
system of Fähndrich and Leino, we count the number of program points that
evaluate [[e.f]]] where ¬([[e]]] = NotNull ∨ [[e]]] = Raw(X) with X � class(f)),
to avoid the cases handled by the type system, and e = this ∧ T](f) = Def
where our analysis use a more precise information than the type system, i.e. the
inferred type instead of MayBeNull.

RR n° 6482

18 L. Hubert, T. Jensen & D. Pichardie

Expression Typability

Γ, L ` x : L(x)

Γ, L ` e : NotNull

Γ, L ` e.f : Γ [f]

Γ, L ` e : Raw−

Γ, L ` e.f : MayBeNull

class(f) ≺ C
Γ, L ` e : Raw(C)

Γ, L ` e.f : MayBeNull

C � class(f)
Γ, L ` e : Raw(C)

Γ, L ` e.f : Γ [f]

Γ, L ` e : A A v B

Γ, L ` e : B

Instruction Typability

Γ, L ` e : τ

Γ, m ` x← e : L→ L[x 7→ τ]

Γ, L ` e : τ τ v Γ [f] L(x) 6= MayBeNull

Γ, m ` x.f ← e : L→ L

Γ [{|C, init, α→ void|}] = [Raw−]β → void (∀i, Γ, L ` ei : βi)

Γ, m ` x← new (C, α)(e1, . . . , en) : L→ L[x 7→ NotNull]

m′ = lookup(ms) Γ [m′] = [τ]β → void (∀i, Γ, L ` ei : βi) τ 6= MayBeNull
C′ = class(m′) Γ, L ` x : if τ ∈ Val] then τ else Raw(super(C′))

τ ′ =

8<:
τ u Raw(C′) if name(m′) = init
Raw(C′) if τ = inits F ∧ fields(C′) ⊆ F ∧ class(m) = C′ ∧ x = this
τ otherwise

Γ, m ` x.ms(e1, . . . , en) : L→ L[x 7→ τ ′]

Γ, m ` if jmp : L→ L

Data Flow Analysis to Ensure All NotNull Fields Are Defined

F : M× N ⇀ P(F)
initsm,m′,x,F ≡ Γ [m′] = [inits F]α→ void ∧ class(m) = class(m′) ∧ x = this

F(m, i) \ {f} ⊆ F(m, i + 1)

Γ, F |= (m, i) : this.f ← e

x 6= this F(m, i) ⊆ F(m, i + 1)

Γ, F |= (m, i) : x.f ← e

F(m, i) ⊆ F(m, i + 1)

Γ, F |= (m, i) : x← e

F(m, i) ⊆ F(m, i + 1)

Γ, F |= (m, i) : x← new (C, α)(e1, . . . , en)

m′ = lookup(ms) initsm,m′,x,F ′ F(m, i) \ F ′ ⊆ F(m, i + 1)

Γ, F |= (m, i) : x.ms(e1, . . . , en)

m′ = lookup(ms) ¬(∃F ′, initsm,m′,x,F ′) F(m, i) ⊆ F(m, i + 1)

Γ, F |= (m, i) : x.ms(e1, . . . , en)

F(m, i) ⊆ F(m, i + 1) F(m, i) ⊆ F(m, jmp)

Γ, F |= (m, i) : if (?) jmp

name(m) = init
∀f ∈ F(m, i).(MayBeNull v Γ [f])

Γ, F |= (m, i) : return

Γ [m] = [inits F]α→ void
F ∩ F(m, i) = ∅

Γ, F |= (m, i) : return

∀m, m = {|C, init, α→ void|} ∨ Γ [m] = [inits F]α→ void
⇒ fields(class(m)) ⊆ F(m, 0) ∧ ∀i, Γ, F |= (m, i) : Pm[i]

Γ, F |= P

Fig. 8. Fähndrich and Leino’s type system

INRIA

Semantic foundations and inference of non-null annotations 19

In the Soot suite we have analysed [15] (see the next section), on 800 analyzed
constructors, 391 program points have been found in 45 different constructors
(of which 16 where part of the run-time). This does not take in account the gain
obtained in methods called from a constructor.

7 Towards a Null-Pointer Analyzer for Java Bytecode

A prototype of the analysis has been implemented. The analysis works at the
Java bytecode (JVML) level but annotations on fields and method can be prop-
agated at the source level with a minor effort.

Working in the fragment of JVML without exceptions does not modify the
analysis but some points need to be taken in account. JVML is a stack lan-
guage, we therefore need to track aliases of this on the stack to know when
a field manipulation or a method call is actually done on this. Operations on
numbers do not add any difficulty as JVML is typed and numbers are guar-
antied not to be assigned to references. The multi-threading cannot interfere
with weak updates, but it could interfere with the strong updates used on the
abstraction of this. However, as the initialization evolves monotonically (i.e.
a field once defined cannot be reverted to undefined) it is still correct. Static
methods do not have an abstraction of this and do not add any other difficulty
to handle.

Static fields are difficult to analyse precisely as they are initialized through
<clinit> methods, which are not explicitly called in the code but executed
by the Java Virtual Machine (at loading-time) in an unspecified order in the
general case (in particular in case of circular dependencies between the classes).
It should be noted here that strong updates on static fields could be done if
there were no multi-threading. Exceptions in Java can be Raw object, i.e. it
is possible in a constructor to throw this as an exception, although we have
not found examples of this yet. We could imagine a solution where abstract
method signatures would include the type of the exceptions a method can throw.
Tracking initialization of array cells precisely is also challenging as checking that
all cells have been initialized requires numerical abstraction. We currently and
conservatively annotate static fields and array cells as MayBeNull and references
to caught exception objects as Raw− and left their precise handling for future
work.

Other small optimizations (that have not been formalized) are possible. For
example, the abstraction of this could be done for all other references of type
Raw(X) (or Raw−). It would give a more precise information on fields in general.

The first performance tests are promising as large programs such as Javacc
4.0 and Soot 2.2.4 can be analysed in about 40 seconds and 5 minutes respec-
tively. The analysis still needs to be completed with a path-sensitive analysis [4]
to recover non-nullness information from the conditionals. Table 1 gives the exe-
cution times for Soot 2.2.4 (520.651 instructions), Jasmin (104.810 instructions),
which provided with Soot 2.2.4, and Javacc 4.0 (160.942 instructions) with the
Java run-time provided with gij 4.0.2. The test machine was a MacBook Pro

RR n° 6482

20 L. Hubert, T. Jensen & D. Pichardie

with a 2.4GHz Intel Core 2 Duo with 2GB of RAM, MacOS 10.5 and OCaml
3.10.0. Table 2 gives the current results of the inference, but as the tool as not
been properly tested yet, results may evolve in the future. The table gives, for
each program, the number of fields that have been annotated as NotNull, Raw
or MayBeNull and that are actually read somewhere in the program (fields never
read are not counted as they mostly correspond to dead code and do not risk to
produce any exception). Fields declared in the run-time are not counted.

Table 1. Performance of the inference of non-null annotations (in seconds)

lo
a
d

in
g

a
n

d
p

a
rs

in
g

co
ll

ec
ti

n
g

(a
li

a
s)

so
lv

in
g

(a
li

a
s)

co
ll

ec
ti

n
g

(N
N

A
)

so
lv

in
g

(N
N

A
)

sa
v
in

g

to
ta

l

jasmin 1.5 1.1 1.2 2.8 5.2 8.6 20.4

javacc 2.0 1.6 2.0 4.7 9.1 20.4 39.8

soot 6.3 21.5 10.5 48.8 63.2 139.5 289.8

Table 2. Results: annotations inferred for fields actually read in the code

NotNull Raw MayBeNull

jasmin 70 (44.9%) 4 (2.6%) 82 (55.5%)

javacc 46 (44.2%) 0 (0.0%) 58 (55.8%)

soot 1389 (44.0%) 158 (5.0%) 1608 (51.0%)

8 Conclusions and Future Work

We have defined a semantics-based analysis and inference technique for auto-
matically inferring non-null annotations for fields. The analysis has been proved
correct and the correctness proof has been machine-checked in the proof assis-
tant Coq. This extends and complements the seminal paper of Fähndrich and
Leino in which is proposed an extended type system for verifying non-null type
annotations. Fähndrich and Leino’s approach mixes type system and data-flow
analysis. In our work, we follow an abstract interpretation methodology to gain
strong semantic foundations and a goal-directed inference mechanism to find a
minimal (i.e. principal) non-null annotation. By the same token we also gained
in precision thanks to a better communication between abstract domains. We
then proved the correctness of our analysis and its completeness with respect to
their type system.

INRIA

Semantic foundations and inference of non-null annotations 21

Variations of the present analysis can be envisaged. For example, in our
analysis, preconditions for methods are computed as the least upper bounds of
the conditions verified at call points. It corresponds more to the actual behaviour
of the program than to the intention of the developer and in some cases, weaker
preconditions would still be safe. Another approach would be to infer the weakest
preconditions that prevents null-pointer exceptions. It would be specially useful
to annotate libraries.

In the future, we also plan to extend our analysis and its correctness proof to
the full Java bytecode language. To manage this substantial extension it is im-
portant to be able to machine-check the correctness proof, which will necessarily
be large. Our previous experience with developing a certified static analyser for
Java [1] using the Coq proof assistant leads us to believe that such a formalisation
is indeed feasible.

References

1. D. Cachera, T. P. Jensen, D. Pichardie, and V. Rusu. Extracting a data flow
analyser in constructive logic. Theoretical Computer Science, 342(1), 2005.

2. P. Chalin and P. R. James. Non-null references by default in Java: Alleviating
the nullity annotation burden. In Proceedings of European Conference on Object-
Oriented Programming (ECOOP’07).

3. M. Cielecki, J. Fulara, K. Jakubczyk, and L. Jancewicz. Propagation of JML
non-null annotations in Java programs. In Proceedings of the 4th international
symposium on Principles and practice of programming in Java (PPPJ ’06).

4. M. Das, S. Lerner, and M. Seigle. Esp: path-sensitive program verification in poly-
nomial time. In Proceedings of the ACM SIGPLAN Conference on Programming
language design and implementation (PLDI’02).

5. T. Ekman and G. Hedin. Pluggable non-null types for Java. In Torbjörn Ekman,
editor, Extensible Compiler Construction, chapter V. Lund University, June 2006.

6. M. Fähndrich and K. R. M. Leino. Declaring and checking non-null types in an
object-oriented language. In Proceedings of Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA’03).

7. M. Fähndrich and S. Xia. Establishing object invariants with delayed types. In
OOPSLA ’07: Proceedings of the 22nd ACM conference on Object Oriented Pro-
gramming Systems and Applications.

8. C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for ESC/Java.
In Proceedings of International Symposium of Formal Methods Europe (FME’01).

9. S. N. Freund and J. C. Mitchell. A formal framework for the java bytecode lan-
guage and verifier. In Proceedings of the 14th ACM conference on Object-oriented
programming, systems, languages, and applications (OOPSLA ’99).

10. D. Hovemeyer and W. Pugh. Finding more null pointer bugs, but not too many.
In PASTE ’07: Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering.

11. D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and tuning a static analysis
to find null pointer bugs. SIGSOFT Softw. Eng. Notes, 31(1), 2006.

12. M. Kawahito, H. Komatsu, and T. Nakatani. Effective null pointer check elimina-
tion utilizing hardware trap. SIGPLAN Not., 35(11), 2000.

RR n° 6482

22 L. Hubert, T. Jensen & D. Pichardie

13. K. R. M. Leino, J. B. Saxe, and R. Stata. ESC/Java user’s manual. Compaq
Systems Research Center, technical note 2000-002 edition, October 2000.

14. Chris Male, David J. Pearce, Alex Potanin, and Constantine Dymnikov. Java
bytecode verification for @NonNull types. In Proceedings of the Conference on
Compiler Construction (CC’08).

15. R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot
— a Java bytecode optimization framework. In CASCON ’99: Proceedings of the
1999 conference of the Centre for Advanced Studies on Collaborative research.

INRIA

Semantic foundations and inference of non-null annotations 23

A Abstract safety

safe]
expr(x)C,H],T],L]

[[e]]]C,H],T],L] 6= MayBeNull
safe]

expr(e)C,H],T],L]

safe]
expr(e.f)C,H],T],L]

∀m, ∀i,
Pm[i] = x← e =⇒ safe]

expr(e)class(m),H],T](m,i),L](m,i)

Pm[i] = x.f ← e =⇒ L](m, i)(x) 6= MayBeNull
∧ safe]

expr(e)class(m),H],T](m,i),L](m,i)

Pm[i] = x← new (C,α)(e1, . . . , ej) =⇒
∀j, safe]

expr(ej)class(m),H],T](m,i),L](m,i)

Pm[i] = x.m(e1, . . . , en) =⇒
L](m, i)(x) 6= MayBeNull
∧ ∀j, safe]

expr(ej)class(m),H],T](m,i),L](m,i)

safe](M],H], T], L])

For all expression e we note Γ [e]:

Γ [x] = Γ [x]
Γ [e.f] = Γ [f]

Lemma 2. e ⇓h,l v implies v Ch Γ [e].

Proof. By inspection of the definition of ⇓h,l and Ch.

Lemma 3. If e ⇓h,l v, H] ∼ h, T] ∼Γ [this],h l(this) and L] ∼h l then
[[e]]] ∼h,Γ [e] v or v = Ω.

By induction on e.

– If e = x then v = l(x) 6= ⊥ and v Ch Γ [x]. Hence L](x) ∼h,Γ [x] v. We
distinguish two cases:
• if x = this, T] = ⊥Γ [this] and L](x) = Raw(super(Γ [this])) then we

have to show Raw(Γ [this]) ∼h v. First, Γ [this] on Γ [e] since e = this.
Then since ⊥Γ [this] ∼Γ [this],h l(x), all fields in fields(Γ [this]) are initial-
ized. Since furthermore L](x) = Raw(super(Γ [this])) we can conclude.
• otherwise [[e]]]Γ [this],H],T],L] = L](x) and we conclude because

L](x) ∼h,Γ [e] v holds.
– If e = e′.f we suppose that the property holds for e′. The case v =

Ω is easy. Since MayBeNull ∼h v the only interesting case occurs
when [[e′]]]Γ [this],H],T],L] = NotNull or (e′ = this ∧ T](f) = Def) or

[[e′]]]Γ [this],H],T],L] = Raw(X) with X � class(f). In all these cases, the
field f is necessarily initialized so H](f) ∼h,Γ [f] v holds.

RR n° 6482

24 L. Hubert, T. Jensen & D. Pichardie

Lemma 4. If e ⇓h,l v, safe]
expr(e)Γ [this],H],T],L] , H] ∼ h, T] ∼Γ [this],h l(this)

and L] ∼h l then v 6= Ω.

Proof. By induction on the hypothesis e ⇓h,l v. If e = x, v is necessarily different
from Ω. If e = e′.f , e′ ⇓h,l r and e ⇓h,l h(r)(f), h(r)(f) is necessarily different
from Ω. Finally if e = e′.f , e′ ⇓h,l v′ with v′ ∈ {null, Ω}, we have by definition
of safe]

expr(e), safe]
expr(e

′)Γ [this],H],T],L] and [[e′]]]Γ [this],H],T],L] 6= MayBeNull.
Hence by lemma 3, v′ 6= null or v′ = Ω. But the case v′ = Ω is also impossible
by induction hypothesis.

B Technical lemmas

Monotony of the correctness relations All the correctness relations can be proved
monotone by inspection of their definition and the associated partial order v.

Lemma 5. If V]
1 ∼h,τ v and V]

1 v V]
2 then V]

2 ∼h,τ v.

Lemma 6. If L]
1 ∼h l and L]

1 v L]
2 then L]

2 ∼h l.

Lemma 7. If T]
1 ∼h,C r and T]

1 v T]
2 then T]

2 ∼h,C r.

Lemma 8. If H]
1 ∼ h and H]

1 v H]
2 then H]

2 ∼ h.

Monotony w.r.t. to preceq

Lemma 9. If V] ∼h,τ1 v and τ1 � τ2 then V] ∼h,τ2 v.

Heap update

Lemma 10. If r ∈ dom(h) and V] ∼h,τ v then V] ∼upd(h,r,f,(v,def)),τ v.

Proof. By case analysis on V] ∼h v. Since r ∈ dom(h),
dom(upd(h, r, f, (v,def))) = dom(h) and we remark that a field which
was initialized in h is still initialized in upd(h, r, f, (v,def)). This allows us to
conclude the proof.

Lemma 11. If r ∈ dom(h) and L] ∼h l then L] ∼upd(h,r,f,(v,def)) l.

Proof. Direct consequence of lemma 10 and definition of ∼h on local variables.

Lemma 12. If r ∈ dom(h) and T] ∼h,C o then T] ∼upd(h,r,f,(v,def)),C o.

Proof. The property holds by definition of ∼, by remarking that
dom(upd(h, r, f, (v,def))) = dom(h) (since r ∈ dom(h)) and by using lemma 10.
We must also use the fact that for any D] ∈ Def] and v ∈ Val, D] ∼ (v,def).

Lemma 13. If r ∈ dom(h), f ∈ dom(h(r)), H] ∼ h and H](f) ∼h,Γ [f] v then
H] ∼ upd(h, r, f, (v,def)).

Proof. By definition of ∼ and lemma 10.

Lemma 14. If T] ∼h,C r then T][f 7→ Def] ∼upd(h,r,f,(v,def)),C r.

Proof. By inspection of the definition of ∼h,C .

INRIA

Semantic foundations and inference of non-null annotations 25

Heap allocation

Lemma 15. If r 6∈ dom(h) and V] ∼h,τ v then V] ∼h[r 7→default(C)],τ v.

Proof. By definition of V] ∼h v, since it only depends of valid address in the
heap.

Lemma 16. If r 6∈ dom(h) and L] ∼h l then L] ∼h[r 7→default(C)] l.

Proof. Direct consequence of lemma 15 and definition of ∼h on local variables.

Lemma 17. If r 6∈ dom(h) and T] ∼h,C o then T] ∼h[r 7→default(C)],C o.

Proof. Similar proof as for lemma 16.

Lemma 18. If r 6∈ dom(h), f ∈ dom(h(r)) and H] ∼ h then H] ∼ h[r 7→
default(C)].

Proof. For any r′ ∈ dom(h[r 7→ default(C)]) either r 6= r′ and the property
still holds, or r = r′ and the property holds because all fields in default(C) are
undef .

Similar lemmas (for L] et T]) hold for the heap transformation used a the
end of constructors when all fields of an object are set to def . By iteration of
the previous lemma we obtain the two following results.

Lemma 19. If L] ∼h l and 〈i0, l0, h〉 →∗m h′ then L] ∼h′ l.

Lemma 20. If T] ∼C,h r and 〈i0, l0, h〉 →∗m h′ then T] ∼C,h′ r.

C Analysis soundness

Lemma 21 (Subject reduction). Let (M],H], T], L]) such that
M],H], T], L] |= P and safe](M],H], T], L]). Let n an integer such that for all
k, k < n, and all methods m, local variables l, heap h and configuration X if
(l, h) ∈ Pre(M],H])(m) and 〈0, l, h〉 →(k)∗

m X then (M],H], T], L]) ∼m,l(this) X
and X 6= Ω.

Let p and n two integers, i a program counter, l some local variables, h a heap
and X a configuration such that 〈i, l, h〉 →(p)

m X, (M],H], T], L]) ∼m,o 〈i, l, h〉
and p ≤ n then (M],H], T], L]) ∼m,o X and X 6= Ω.

RR n° 6482

26 L. Hubert, T. Jensen & D. Pichardie

Proof. We assume

∀n, k,m, l, h, X,

k < n ∧ (l, h) ∈ Pre(M],H])(m) ∧ 〈0, l, h〉 →(k)∗
m X ⇒

(M],H], T], L]) ∼m,l(this) X ∧X 6= Ω

(1)

〈i, l, h〉 →(p)
m X (2)

M],H], T], L] |= P (3)
safe](M],H], T], L]) (4)

L](m, i) ∼h l (5)
T](m, i) ∼h,class(m) l(this) (6)

H] ∼ h (7)
o = l(this) (8)

and make a case analysis on (2).
Case 1.1: Pm[i] = x← e and X = 〈i + 1, l[x 7→ v],h〉.
We immediately see that X 6= Ω.

Furthermore, by hypothesis,

e ⇓h,l v (9)
x 6= this (10)

Γ [e] � Γ [x] (11)

and

T](m, i) v T](m, i + 1) (12)

L](m, i)[x 7→ [[e]]]class(m),H],T](m,i),L](m,i)] v L](m, i + 1) (13)

We must show that (M],H], T], L]) ∼m,o 〈i + 1, l[x 7→ v], h〉 holds.
The property holds for the previous state and since the heap is not mod-

ified, we only have to show o = l[x 7→ v](this), L](m, i + 1) ∼h l[x 7→ v]
and T](m, i) ∼h,class(m) l[x 7→ v](this). Since l[x 7→ v](this) = l(this),
T](m, i) ∼h,class(m) l[x 7→ v](this) is easily proved by monotonicity of∼h,class(m),
(12) and (6). o = l[x 7→ v](this) holds also because of hypotheses (8) and (10).
Now for any variable y, we must establish

l[x 7→ v](y) = ⊥ ∨ L](m, i + 1)(y) ∼h,Γ [y] l[x 7→ v](y)

knowing that ∀y, l(y) = ⊥ ∨ L](m, i)(y) ∼h l(y). By monotonicity of ∼h it is
sufficient to prove

l[x 7→ v](y) = ⊥∨L](m, i)[x 7→ [[e]]]class(m),H],T](m,i),L](m,i)](y) ∼h,Γ [y] l[x 7→ v](y)

The case y 6= x is trivial so we conclude by proving

[[e]]]class(m),H],T](m,i),L](m,i) ∼h,Γ [x] v

INRIA

Semantic foundations and inference of non-null annotations 27

thanks to Lemma 3 and 9 and hypotheses (9) and (11).
Case 1.2: Pm[i] = x← e and X = Ω.
We must show that this case is impossible. By hypothesis e ⇓h,l Ω. But this is
contradictory with the result of lemma 4, using hypotheses (4), (5), (6) and (7).
Case 2.1: Pm[i] = x.f ← e and X = 〈i + 1, l,upd(h, l(x), f , (v,def))〉.
We immediately see that X 6= Ω.

Furthermore, by hypothesis,

e ⇓h,l v (14)
l(x) ∈ dom(h) (15)

f ∈ dom(h(l(x))) (16)
Γ [e] � Γ [f] (17)

and

if x = this then T](m, i)[f 7→ Def] else T](m, i) v T](m, i + 1) (18)
L](m, i) v L](m, i + 1) (19)

[[e]]] v H](f) (20)

We must show that (M],H], T], L]) ∼m,o 〈i + 1, l, upd(h, l(x), f, (v,def))〉
holds. That is

o = l(this), L](m, i + 1) ∼upd(h,l(x),f,(v,def)) l,
T](m, i + 1) ∼upd(h,l(x),f,(v,def)),class(m) l(this) and H] ∼ upd(h, l(x), f, (v,def))

o = l(this) holds by (8).
L](m, i + 1) ∼upd(h,l(x),f,(v,def)) l holds by monotony of ∼ and by lemma 11

and hypothesis (19).
For T](m, i + 1) ∼upd(h,l(x),f,(v,def)),class(m) l(this), by monotony of ∼ and

hypothesis (18), we only need to prove(
if x = this then T](m, i)[f 7→ Def] else T](m, i)

)
∼upd(h,l(x),f,(v,def)),class(m) l(this)

If x 6= this the property holds thanks to (6) and lemma 12 else we conclude by
lemma 14.

Finally, for H] ∼ upd(h, l(x), f, (v,def)) we first apply lemma 13 and so it is
sufficient to prove H](f) ∼h v to conclude. This holds thanks to lemma 3 and 9,
and hypotheses (20) and (17) and monotony of ∼h.
Case 2.2: Pm[i] = x.f ← e and X = Ω.
We must show that this case is impossible. By hypothesis l(x) = null or
e ⇓h,l Ω. Both case are contradictory with the result of lemma 4, using hy-
potheses (4), (5), (6) and (7).
Case 3.1: Pm[i] = x← new (C,α)(e1, . . . , en) and X = 〈i + 1, l[x 7→ r],h′〉.
We immediately see that X 6= Ω.

RR n° 6482

28 L. Hubert, T. Jensen & D. Pichardie

Furthermore, by hypothesis,

∀i, ei ⇓h,l vi (21)
r 6∈ dom(h) (22)

〈0,⊥[this 7→ r, {i 7→ vi}i=1..n], h[r 7→ default(C)]〉 →(n−1)∗
{|C,init,α→void|} h′ (23)

x 6= this (24)
C � Γ [x] (25)

∀i = 1..n, Γ [ei] � Γ [i] (26)

and

m′ = {|C, init, α→ void|} (27)
>C vM](m′)[this] (28)

Raw− :: [[e1]]
] :: · · · :: [[ej]]

] vM](m′)[args] (29)
L](m, i)[x 7→ NotNull] v L](m, i + 1) (30)

T](m, i) v T](m, i + 1) (31)
(32)

We must show that (M],H], T], L]) ∼m,o 〈i + 1, l[x 7→ r], h′〉 holds. That is

o = l[x 7→ r](this), L](m, i + 1) ∼h′ l[x 7→ r],
T](m, i + 1) ∼h′,class(m) l[x 7→ r](this) and H] ∼ h′

o = l[x 7→ r](this) holds by (24) and (8).
L](m, i + 1) ∼h′ l[x 7→ r] is reduced, by monotony of ∼ and (30) to

L](m, i)[x 7→ NotNull] ∼h′ l[x 7→ r]. Given a variable y we hence prove that
L](m, i)(y)[x 7→ NotNull] ∼h′,Γ [y] l[x 7→ r](y). If x = y, we have to prove
NotNull ∼h′,Γ [x] r. By hypothesis (23) the execution must have ended with an
instruction return and so all fields of h′(r) in fields(C) (and also those declared
in the C’s ancestor) are now set to def . h′(r) is hence fully initialized since it is of
class C. Together with the remark that class(default(C)) = C � Γ [x] (by (25)),
this proves NotNull ∼h′,Γ [x] r. If x 6= y, we have to prove L](m, i)(y) ∼h′,Γ [y] l(y)
and this comes from lemma 19 and hypothesis (5).

T](m, i + 1) ∼h′,class(m) l[x 7→ r](this) reduces to T](m, i + 1) ∼h′,class(m)

l(this) because x 6= this. We then conclude by lemma 20, monotony of ∼ and
hypothesis (31).

At last, for H] ∼ h′ we invoke (1) on the execution of {|C, init, α→ void|} to
obtain (M],H], T], L]) ∼{|C,init,α→void|},l(this) h′ and hence conclude. In order
to justify the use of (1) it remains to prove

(⊥[this 7→ r, {i 7→ vi}i=1..n], h[r 7→ default(C)]) ∈ Pre(M],H])(m′)

To establish this, it is sufficient to prove the followings, thanks to monotony of
∼ and hypothesis (29):

H] ∼ h[r 7→ default(C)], Raw− ∼h[r 7→default(C)],Γ [this] r,

M](m′)[this] ∼C,h[r 7→default(C)] r and ∀i = 1..j, [[ei]]
] ∼h[r 7→default(C)],Γ [i] vi

INRIA

Semantic foundations and inference of non-null annotations 29

H] ∼ h[r 7→ default(C)] holds by lemma 18 and Raw− ∼h[r 7→default(C)],Γ [this] r

holds since r 6= null. M](m′)[this] ∼C,h[r 7→default(C)] r is proved by hypoth-
esis (28). By lemmas 3, 15, 9 and hypothesis (26) we at last prove ∀p =
1..j, [[ep]]

] ∼h[r 7→default(C)],Γ [i] vi and conclude.
Case 3.2: Pm[i] = x← new (C,α)(e1, . . . , en) and X = Ω.
Thanks to lemma 4 we know that none of the expression ei may lead to an error.
The only remaining case is when the execution of the constructors ends with an
error, but this contradictory with hypothesis (1) (which can be invoked thanks
to the same arguments than in Case 3.1).
Case 4: Pm[i] = return and X = h′.
We immediately see that X 6= Ω.

Furthermore, by hypothesis,

name(m) = init⇒ ∀A, class(m) ≺ A⇒ A ∈ history(l(this)) (33)
if name(m) = init
then h′ = h[l(this) 7→ addHistoryclass(m)(set2Defclass(m)(h(l(this))))]
else h′ = h

(34)

and

T](m, i) vM](m)[post] (35)
m = {|C, init, α→ void|} ⇒

∀f ∈ fields(C).(T](m, i)(f) = UnDef⇒ MayBeNull v H](f)) (36)

We must show that (M],H], T], L]) ∼m,o h′ holds. That is

M](m)[post] ∼h′,class(m) o and H] ∼ h′

By (35), (8) and monotony of ∼ we reduces M](m)[post] ∼h′,class(m) o to
T](m, i) ∼h′,class(m) l(this). If h = h′ we conclude directly with (6) else we add
the remark that setting some fields to def does not break (6).

At last, for H] ∼ h′ we only have something to prove when m is a constructor
{|C, init, α→ void|} and all fields in h(o) have been set to def . For all reference
r distinct from o we use (7) to conclude. Otherwise we must show that for any
field f ∈ dom(h(o)), H](f) ∼h,Γ [f] h′(o)(f). There are two cases to consider in
order to conclude:

1. f was already initialized before, then we conclude by H] ∼ h.
2. f was undef in h and is now def in h′. This mean that f ∈ fields(C) and

then by (36) MayBeNull v H](f) so the property holds.

Case 5.1: Pm[i] = x.ms(e1, . . . , en) and X = 〈i + 1, l,h′〉.
We immediately see that X 6= Ω.

RR n° 6482

30 L. Hubert, T. Jensen & D. Pichardie

Furthermore, by hypothesis,

∀i, ei ⇓h,l vi (37)
l(x) ∈ dom(h) (38)

m′′ = lookup(class(h(l(x))),ms) (39)
〈0,⊥[this 7→ l(x), {i 7→ vi}i=1..n], h〉 →∗m′′ h′ (40)

name(ms) = init⇒ x = this (41)

and

ms = {|C,m, α→ void|} (42)
m′ = lookup(C,m, α) (43)

C ′ = class(m′) (44)
m = init⇒ L](m, i)[x 7→ Raw(C ′) u L](m, i)(x)] v L](m, i + 1)
m 6= init⇒ L](m, i) v L](m, i + 1) (45)

x = this⇒M](m′)[post] u T](m, i) v T](m, i + 1)
x 6= this⇒ T](m, i) v T](m, i + 1) (46)(

if x = this ∧ class(m) = C ′ then T](m, i) vM](m′)[this]
else ρ(C ′, L](m, i)(x)) vM](m′)[this]

)
(47)

L](m, i)(x) :: [[e1]]
] :: · · · :: [[ej]]

] vM](m′)[args] (48)

We must show that (M],H], T], L]) ∼m,o 〈i + 1, l, h′〉 holds. That is

o = l(this), L](m, i + 1) ∼h′ l,
T](m, i + 1) ∼h′,class(m) l(this) and H] ∼ h′

o = l(this) holds by (8).
For L](m, i + 1) ∼h′ l we make two cases:

– if m = init, by monotony and (45) we show L](m, i)[x 7→ Raw(C ′) u
L](m, i)(x)] ∼h′ l. Since m = init, we have x = this by (41). For vari-
able distinct from x the proof is similar to Case 3.1. Otherwise we show
Raw(C ′)uL](m, i)(x) ∼h′,Γ [x] l(x) which holds because the called construc-
tor has initialized all fields declared in C ′ (and its ancestors).

– if m 6= init, the proof is similar to Case 3.1.

For T](m, i + 1) ∼h′,class(m) l(this) we make two cases:

– x = this and class(m) = class(m′): by monotony we have to prove
M](m′)[post] u T](m, i) ∼h′,class(m) l(this). By lemma 20, we have
T](m, i) ∼h′,class(m) l(this). By correctness of the execution of the called
method, M](m′′)[post] ∼h′,class(m′′) l(this). If m′ = m′′ we can conclude
since class(m) = class(m′). Otherwise overrides(m′′,m′) and thus we can
affirm that >C v M](m′)[post]. Hence M](m′)[post] u T](m, i) = T](m, i)
and we can conclude.

INRIA

Semantic foundations and inference of non-null annotations 31

– x 6= this: by monotony we have to prove T](m, i) ∼h′,class(m) which is justi-
fied by lemma 20.

For H] ∼ h′ we invoke the hypothesis (1) in a similar way than for case 3.1.
It finally remains to justify the use of hypothesis (1) we have made several

times in this part of the proof. That is:

(⊥[this 7→ l(x), {i 7→ vi}i=1..n], h) ∈ Pre(M],H])(m′′)

First we remark that, since m′ = m′′ or overrides(m′′,m′),

M](m′)[args] vM](m′′)[args] (49)

To establish this, it is sufficient to prove the followings, thanks to monotony of
∼ and hypothesis (48) and (49):

H] ∼ h, L](m, i)(x) ∼h l(x),
M](m′′)[this] ∼class(m′′),h l(x) and ∀p = 1..j, [[ep]]

] ∼h vi

H] ∼ h holds by hypothesis (7) and L](m, i)(x) ∼h l(x) by (5). By lemmas 3
and 15 we prove ∀p = 1..j, [[ep]]

] ∼h vi.
To finish we have to prove

M](m′′)[this] ∼class(m′′),h l(x)

If m′ 6= m′′ then overrides(m′′,m′) holds, by consequence >class(m′′) v
M](m′′)[this] and the property holds. Otherwise we must prove

M](m′)[this] ∼C′,h l(x)

We distinguish two cases

1. x = this ∧ class(m) = C ′: by hypothesis (47), T](m, i) v M](m′)[this] and
thanks to (6) we have T](m, i) ∼h,class(m) l(this) and we can conclude by
monotony.

2. otherwise: hypothesis (47) gives ρ(C ′, L](m, i)(x)) v M](m′)[this] and it
remains to prove:

ρ(C ′, L](m, i)(x)) ∼C′,h l(x)

which holds by definition of ρ and hypothesis (5).

Case 5.2: Pm[i] = x.m(e1, . . . , en) and X = Ω.
This case is similar to case 3.2.
Case 6: Pm[i] = if jmp Trivial case.

RR n° 6482

32 L. Hubert, T. Jensen & D. Pichardie

D Comparison to Fähndrich and Leino’s type system

Program typability

Γ [m] = [τ]β → void τ 6= MayBeNull L′ = ⊥[{xi 7→ βi}i=1..|β|]
τ = inits F ⇒ F ⊆ fields(class(m))

τ ∈ Val] ⇒ L′[this 7→ τ] v L(m, 0)
τ = inits F ⇒ L′[this 7→ Raw(super(class(m)))] v L(m, 0)

∀i
(

Pm[i] = return ∨
∀j.(j ∈ succ(i) ∧ ∃L′ v L(m, j) ∧ Γ,m ` Pm[i] : L(m, i)→ L′)

)
Γ,L,m ` P

∀m,m′, Γ [m] = [τ]β → void ∧ Γ [m′] = [τ ′]β′ → void ∧ overrides(m,m′)
⇒ τ ′ ∈ Val] ∧ τ ′ v τ ∧ ∀i, β′i v βi

∀m,Γ,L,m ` P Γ, F |= P

Γ,L, F ` P

Conversion to our analysis. We define a function Conv : (Γ,L, F) 7→
(M],H], T], L]) which inject an annotation of Fähndrich and Leino’s type sys-
tem to an abstract value for our constraint system such that:

∀m,M](m)[this] = >class(m) (50)

∀m,M](m)[args] = Raw(super(class(m))) :: β (51)
if Γ [m] = [inits F]β → void

= τ :: β otherwise, where Γ [m] = [τ]β → void

∀m,M](m)[post] = >class(m) if Γ [m] = [τ]β → void ∧ τ ∈ Val] (52)

= >class(m)[
⋃

f∈F

{f 7→ Def}] (53)

if Γ [m] = [inits F]β → void

∀f,H](f) = Γ [f] (54)
∀m, i, L](m, i) = L(m, i) (55)

∀m, i, T](m, i) = ⊥class(m)[
⋃

f∈F(m,i)

{f 7→ UnDef}] (56)

if (Γ [m] = [inits F]β → void ∨ name(m) = init)
= >class(m) otherwise (57)

We then propose to prove that a such value is a safe solution of our constraint
system.

Lemma 22. Let P be a well-typed program w.r.t Γ ,L and F such that Γ,L,F `
P , and e be an expression reachable at program point (m, i) of P . Let
(M],H], T], L]) = Conv(Γ,L,F). Then

Γ,L(m, i) ` e : τ ⇒ ∀C ∈ C, [[e]]]C,H],T](m,i),L](m,i) v τ

INRIA

Semantic foundations and inference of non-null annotations 33

Proof. We denote in this proof L](m, i) by L] and T](m, i) by T]. We propose
an induction on e.

– If e = x then Γ,L ` e : L(x). We distinguish two cases.
• If L](x) = Raw(super(C)), as Raw(C) v Raw(super(C)), Raw(C) v

L(x) holds
• otherwise L](x) v L(x) holds by definition of L] (55).

– If e = e′.f , by hypothesis, we have Γ,L ` e′ : τ ′ ⇒ [[e′]]]C,H],T],L] v τ . We
distinguish four cases.
• If Γ,L ` e′ : Raw−, then Γ,L ` e′.f : MayBeNull and [[e′.f]]]C,H],T],L] v

MayBeNull holds.
• If Γ,L ` e′ : Raw(C) and class(f) ≺ C, then Γ,L ` e′.f : MayBeNull

and [[e′.f]]]C,H],T],L] v MayBeNull holds.
• If Γ,L ` e′ : Raw(C) and C � class(f), then Γ,L ` e′.f : Γ [f] and

[[e′]]]C,H],T],L] v Raw(C). The analysis gives us [[e′.f]]]C,H],T],L] = H](f),

so, from (54), [[e′.f]]]C,H],T],L] v Γ [f] holds.

• If Γ,L ` e′ : NotNull, then Γ,L ` e′.f : Γ [f] and [[e′]]]C,H],T],L] v
NotNull, so we can deduce [[e′.f]]]C,H],T],L] = H](f). With (54) we can

conclude that [[e′.f]]]C,H],T],L] v Γ [f] holds.
ut

Lemma 23.
L(m, i) v L(m, j)⇒ L](m, i) v L](m, j)

Proof. Trivial from (55). ut

Lemma 24.
F(m, i) v F(m, j)⇒ T](m, i) v T](m, j)

Proof. Trivial from (56). ut

Lemma 25.

Γ,L,F ` P ⇒ ∀m, i,Conv(Γ,L,F) |= (m, i) : Pm[i]

Proof. We do a case analysis on Pm[i].

Case 1: x← e. We have to prove that:

T](m, i) v T](m, i + 1)

L](m, i)[x 7→ e[[e]]]class(m),H],T](m,i),L](m,i)] v L](m, i + 1)

We first prove that T](m, i) v T](m, i + 1).
Case 1.1: Γ [m] = [inits . . .]β → void or m = {|C, init, α→ void|}. By

hypothesis, F(m, i) ⊆ F(m, i + 1), which, with Lemma 24, implies
T](m, i) v T](m, i + 1).

RR n° 6482

34 L. Hubert, T. Jensen & D. Pichardie

Case 1.2: otherwise. From (57), T](m, i + 1) = >class(m), so T](m, i) v
T](m, i + 1) holds.

We now prove that L](m, i)[x 7→ e[[e]]]class(m),H],T](m,i),L](m,i)] v L](m, i+1).
By hypothesis, Γ,m ` x ← e : L(m, i) → L(m, i)[x 7→ τ] and L(m, i)[x 7→
τ] v L(m, i+1) so, from Lemma 22, we have [[e]]]class(m),H],T](m,i),L](m,i) v τ .
We can conclude with (55).

Case 2: x.f ← e. The value of T] depends on whether x equals to this.
Case 2.1: x = this. By hypothesis, F(m, i)\{f} ⊆ F(m, i+1) so, from (56),

T](m, i)[f 7→ Def] v T](m, i + 1) holds.
Case 2.2: x 6= this. By hypothesis, F(m, i) ⊆ F(m, i + 1) so, from

Lemma 24, T](m, i) v T](m, i + 1) holds.
By hypothesis,

L(m, i) v L(m, i + 1) (58)
Γ,L ` e : τ (59)

τ v Γ [f] (60)

From Lemma 23 and (58) L](m, i) v L](m, i + 1) holds.
From Lemma 22 and (59), [[e]]]class(m),H],T](m,i),L](m,i) v τ . So with (60) and

(54), [[e]]]class(m),H],T](m,i),L](m,i) v H](f) holds.
Case 3: x← new (C,α)(e1, . . . , ej). Let m′ be {|C, init, α → void|}. We have

to prove:

>class(m′) vM](m′)[this]

Raw− :: [[e1]]
] :: · · · :: [[ej]]

] vM](m′)[args]
L](m, i)[x 7→ NotNull] v L](m, i + 1)

T](m, i) v T](m, i + 1)

By hypothesis,

Γ [m′] = [Raw−]β → void (61)
L(m, i)[x 7→ NotNull] v L(m, i + 1) (62)

∀i, Γ, L ` ei : βi (63)
F(m, i) ⊆ F(m, i + 1) (64)

By (50), >class(m′) vM](m′)[this] holds.
From Lemma 22 and (63), we have ∀i, [[ei]]

] v βi. With (51) and (61),
Raw− :: [[e1]]

] :: · · · :: [[ej]]
] v M](m′)[args] holds. Proofs of L](m, i)[x 7→

NotNull] v L](m, i + 1) and T](m, i) v T](m, i + 1) are trivial from defini-
tions (55) and (56) and equations (62), (64).

INRIA

Semantic foundations and inference of non-null annotations 35

Case 4: if jmp. We have to prove

L](m, i) v L](m, i + 1)
L](m, i) v L](m, jmp)
T](m, i) v T](m, i + 1)
T](m, i) v T](m, jmp)

By hypothesis,

F(m, i) ⊆ F(m, i + 1) (65)
F(m, i) ⊆ F(m, jmp) (66)
L(m, i) v L(m, i + 1) (67)
L(m, i) v L(m, jmp) (68)

(69)

Trivial with lemmas 23 and 24.
Case 5: return We have to prove

T](m, i) vM](m)[post]
name(m) = init⇒

∀f ∈ fields(C).(T](m, i)(f) = UnDef⇒ MayBeNull v H](f))

By hypothesis,

name(m) = init ⇒
∀f ∈ F(m, i).(MayBeNull v Γ [f]) (70)

Γ [m] = [inits F]α→ void ⇒
F ∩ F(m, i) = ∅ (71)

Γ [m] 6= [inits F]α→ void ⇒
M](m)[post] = >class(m) (72)

Γ [m] = [inits F]α→ void ⇒
M](m)[post] = >class(m)[

⋃
f∈F

{f 7→ Def}](73)

We first prove the first equation: T](m, i) vM](m)[post].
Case 5.1: Γ [m] 6= [inits F]α→ void. From (72) T](m, i) vM](m)[post]

trivially holds.
Case 5.2: Γ [m] = [inits F]α→ void. Equation (71) implies

fields(class(m)) ∩ F ⊆ fields(class(m)) \ F(m, i), which implies,
with (56) and (73), that T](m, i) vM](m)[post].

From (56), (54) and (70), we easily prove that, if name(m) = init, then
∀f ∈ fields(C).(T](m, i)(f) = UnDef⇒ MayBeNull v H](f)).

RR n° 6482

36 L. Hubert, T. Jensen & D. Pichardie

Case 6: x.ms(e1, . . . , ej). Let m′ = lookup(ms) and C ′ = class(m′). We have
to prove:0B@ if

“
x = this ∧ class(m) = C′ ∧M](m′)[post] u T](m, i) v ⊥C′

”
∨ name(m′) = init

then L](m, i)[x 7→ Raw(C′) u [[x]]]] v L](m, i + 1)

else L](m, i) v L](m, i + 1)

1CA
„

if x = this ∧ class(m) = C′ then M](m′)[post] u T](m, i) v T](m, i + 1)

else T](m, i) v T](m, i + 1)

«
„

if x = this ∧ class(m) = C′ then T](m, i) vM](m′)[this]

else ρ(C′, [[x]]]) vM](m′)[this]

«
[[x]]] :: [[e1]]

] :: · · · :: [[ej]]
] vM](m′)[args]

Let τ be such that Γ [m′] = [τ]β → void.
Case 6.1: L](m, i + 1). We consider three cases.

Case 6.1.1: name(m′) = init. By hypothesis, we have L(m, i)[x 7→
τ u Raw(C ′)] v L(m, i + 1). So with (55), name(m′) = init ⇒
L](m, i)[x 7→ Raw(C ′) u [[x]]]] v L](m, i + 1) holds.

Case 6.1.2: τ = inits F ∧ x = this ∧ class(m) = C ′ ∧ fields(C ′) ⊆ F .
By hypothesis, Γ,L ` x : Raw(super(C ′)) so, by Lemma 22,
[[x]]] v Raw(super(C ′)), so x and Raw(C ′) are compa-
rable, so [[x]]] u Raw(C ′) v Raw(C ′), so L(m, i)[x 7→
[[x]]] u Raw(C ′)] v L(m, i)[x 7→ Raw(C ′)]. As, by hypothesis,
L(m, i)[x 7→ τ] v L(m, i + 1), from (55), we can deduce that
L](m, i)[x 7→ Raw(C ′) u [[x]]]] v L](m, i + 1) holds.

Case 6.1.3: otherwise. By hypothesis we have Γ,L(m, i) ` x : τ

which implies that, with Lemma 22, [[x]]] v τ . As L(m, i)[x 7→ τ] v
L(m, i + 1), by transitivity and with (55), L](m, i) v L](m, i + 1)
holds.

Case 6.2: T](m, i + 1) and M](m′)[this]. We consider two cases.
Case 6.2.1: initsm,m′,x,F ′ . Let fC = fields(C ′). By hypothesis, we have

F(m, i) \ F ′ ⊆ F(m, i+1), which implies (fC∩F(m, i))∩(fC \F ′) ⊆
(fC ∩ F(m, i + 1)). So

⊥C′ [
[

f∈fc∩F(m,i)

{f 7→ UnDef}]u⊥C′ [
[

f∈fC\F′
{f 7→ UnDef}] v ⊥C′ [

[
f∈fc∩F(m,i+1)

{f 7→ UnDef}]

which, with (53) and (56), is equivalent to T](m, i)uM](m′)[post] v
T](m, i + 1).
Equation (50) trivially implies T](m, i) vM](m′)[this].

Case 6.2.2: ¬(∃F ′, initsm,m′,x,F ′). By hypothesis we have F(m, i) ⊆
F(m, i + 1), which implies T](m, i) v T](m, i + 1).
Equation (50) trivially implies ρ(C ′, [[x]]]) vM](m′)[this].

Case 6.3: M](m′)[args]. By hypothesis we have ∀i, Γ, L ` ei : βi which
implies, with Lemma 22, ∀i, [[ei]]

] v βi. If τ ∈ Val], by hypothesis and
with Lemma 22, we also have [[x]]] v τ , so with (51) [[x]]] :: [[e1]]

] ::
· · · :: [[ej]]

] v M](m′)[args] holds. If τ 6∈ Val], by hypothesis and with
Lemma 22, we have [[x]]] v Raw(super(C ′)), so with (51) [[x]]] :: [[e1]]

] ::
· · · :: [[ej]]

] vM](m′)[args] holds. ut

INRIA

Semantic foundations and inference of non-null annotations 37

Lemma 26.

Γ,L ` e : τ ∧ (M],H], T], L]) = Conv(Γ,L,F)⇒ ∀C, safe]
expr(e)C,H],T](m,i),L](m,i)

Proof. By induction on e.

– If e = x, then safe]
expr(e)C,H],T](m,i),L](m,i) holds by definition.

– If e = e′.f , we suppose that safe]
expr(e

′)C,H],T](m,i),L](m,i) holds. We distin-
guish two cases.
• If e′ = MayBeNull, then it contradicts Γ,L ` e : τ . So e′ 6= MayBeNull,

so safe]
expr(e)C,H],T](m,i),L](m,i) holds.

Lemma 27. If P is LF-typable w.r.t. Γ , then there exists (M],H], T], L]) such
that safe](M],H], T], L]) holds.

Proof. P is LF-typable w.r.t. Γ means that there exists L and F such that
Γ,L, F ` P . We choose (M],H], T], L]) = Conv(Γ,L, F) and we must show
that safe](M],H], T], L]) holds. We make a case analysis on Pm[i].

– If Pm[i] = x← e, we must show that safe]
expr(e)C,H],T](m,i),L](m,i) holds. By

hypothesis, Γ,L ` e : τ , so from Lemma 26 the property holds.
– If Pm[i] = x.f ← e, we must show that L(m, i)(x) 6= MayBeNull and

safe]
expr(e)C,H],T](m,i),L](m,i) hold. By hypothesis, L(m, i)(x) 6= MayBeNull

and Γ,L ` e : τ , so, from (55) and Lemma 26, the property holds.
– If Pm[i] = x ← new (C,α)(e1, . . . , ej), we must show that
∀j, safe]

expr(ej)class(m),H],T](m,i),L](m,i). By hypothesis, (∀i, ∃βi, Γ, L ` ei :
βi), so, from Lemma 26, the property holds.

– If Pm[i] = x.mq(e1, . . . , en), we must show that L](m, i)(x) 6= MayBeNull
and forallj, safe]

expr(ej)class(m),H],T](m,i),L](m,i). By hypothesis, (∀i, Γ, L `
ei : βi) and if Γ [lookup(ms)] = [τ]β → void then Γ,L ` x : if τ ∈
Val] then τ else Raw(super(C ′)) and τ 6= MayBeNull. So, with Lemma 26,
the property holds.

QED.

Theorem 5. If P is LF-typable w.r.t. Γ,L,F, then there exists (M],H], T], L])
such that M],H], T], L] |= P and safe](M],H], T], L]) holds.

Proof. Let (M],H], T], L]) = Conv(Γ,L,F). Forall m and m′, let Γ [m] =
[τ]β → void and Γ [m′] = [τ ′]β′ → void.

– By definition of a FL-typable program, overrides(m,m′) ⇒ β′ v β, so
with (51), M](m′)[args] vM](m)[args] holds.

– By definition of a FL-typable program, overrides(m,m′) ⇒ τ ′ ∈ Val], so
by (52) >class(m) vM](m)[post] holds.

– By (50), >class(m′) vM](m′)[this] holds.
– By (55), (51) and the definition of Γ,m |= P , M](m)[args] v L](m, 0) holds.
– We can conclude directly from Lemma 25 and Lemma 27.

RR n° 6482

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

