Joint Estimation of Shape and Reflectance using Multiple Images with Known Illumination Conditions

Kuk-Jin Yoon 1 Emmanuel Prados 1 Peter Sturm 1
1 PERCEPTION - Interpretation and Modelling of Images and Videos
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : We propose a generative model based method for recovering both the shape and the reflectance of the surface(s) of a scene from multiple images, assuming that illumination conditions and cameras calibration are known in advance. Based on a variational framework and via gradient descents, the algorithm minimizes simultaneously and consistently a global cost functional with respect to both shape and reflectance. Contrary to previous work which considers and specializes in a specific scenario, our method applies indiscriminately with a number of classical scenarios; in particular it works for classical stereovision, multiview photometric stereo and multiview shape from shading. Moreover, unlike most previous methods dealing with only Lambertian surfaces, the proposed method considers general dichromatic surfaces. We verify the method using synthetic and real data sets containing specular reflection.
Type de document :
Article dans une revue
International Journal of Computer Vision, Springer Verlag, 2010, 86 (2-3), pp.192-210. 〈http://springerlink.metapress.com/content/m82880786g283vhr/〉. 〈10.1007/s11263-009-0222-4〉
Liste complète des métadonnées

Littérature citée [43 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00266293
Contributeur : Emmanuel Prados <>
Soumis le : vendredi 21 mars 2008 - 15:31:44
Dernière modification le : mercredi 30 mai 2018 - 12:21:58
Document(s) archivé(s) le : vendredi 28 septembre 2012 - 11:40:25

Fichier

ijcv_mvstereo.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Kuk-Jin Yoon, Emmanuel Prados, Peter Sturm. Joint Estimation of Shape and Reflectance using Multiple Images with Known Illumination Conditions. International Journal of Computer Vision, Springer Verlag, 2010, 86 (2-3), pp.192-210. 〈http://springerlink.metapress.com/content/m82880786g283vhr/〉. 〈10.1007/s11263-009-0222-4〉. 〈inria-00266293〉

Partager

Métriques

Consultations de la notice

395

Téléchargements de fichiers

345