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Abstract We propose a generative model based method for recovering both the shape and

the reflectance of the surface(s) of a scene from multiple images, assuming that illumination

conditions and cameras calibration are known in advance. Based on a variational frame-

work and via gradient descents, the algorithm minimizes simultaneously and consistently a

global cost functional with respect to both shape and reflectance. Contrary to previous work

which considers and specializes in a specific scenario, our method applies indiscriminately

with a number of classical scenarios; in particular it works for classical stereovision, mul-

tiview photometric stereo and multiview shape from shading. Moreover, unlike most previ-

ous methods dealing with only Lambertian surfaces, the proposed method considers general

dichromatic surfaces. We verify the method using synthetic and real data sets containing

specular reflection.

Keywords 3D reconstruction · Reflectance estimation · Multiview stereo · Photometric

stereo · Multiview shape from shading

1 Introduction and Related Work

Recovering the three-dimensional surface shape using multiple images is one of the

major research topics in computer vision. Many methods have been proposed to solve the
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problem during these last two decades; refer to Seitz et al (2006) for an evaluation of var-

ious recent methods. On the other hand, for a long time, the estimation of the surface ra-

diance/reflectance properties was somewhat secondary and was mainly of use to set up

the shape reconstruction task (Faugeras and Keriven (1998); Zickler (2006); Zickler et al

(2002)). Even some very recent work such as the ones of Goesele et al (2006); Kolev et al

(2007a,b); Pons et al (2005, 2007); Tran and Davis (2006); Zach et al (2006) compute the

3D shape without considering radiance estimation. However, the radiance/reflectance esti-

mation has become a concern in multiview reconstruction scenarios in the last decade. For

example, Jin, Soatto et al. estimate conjointly the 3D shape and radiance (tensors) (see Jin

et al (2003, 2005); Soatto et al (2003); Yezzi and Soatto (2003)), or the 3D shape and the

(piecewise constant) albedo of a Lambertian surface (Jin et al (2008)).

Roughly speaking, the radiance is the combination of the lighting, the reflectance, and

the geometry of the scene. For example, radiance contains shading and shadows and, from

raw radiance, it is impossible to correct them when changing the lighting. Therefore, recov-

ering reflectance properties is required for realistic relighting, which is also fundamental, for

example, in virtual reality as well as augmented reality where the lighting conditions when

capturing the object are different from the ones where one resynthesizes it. In this paper,

we propose a method for jointly estimating the geometrical shape and the full reflectance of

the surfaces of a scene from multiple images. This can be also understood as a separation of

geometry, reflectance, and illumination from the radiance.

In real life applications, perfect Lambertian surfaces do not exist. For that reason, mul-

tiview stereo algorithms have to be robust to specularities. A number of ideas have been

exploited to improve the robustness of the algorithms, also being exhaustive is clearly im-

possible. A widespread idea consists in using some similarity measures, see for example

Faugeras and Keriven (1998); Jin et al (2002); Kim et al (2003); Pons et al (2005, 2007);

Yang et al (2003); Yoon and Kweon (2006). The weakness being then the similarity mea-

sures proposed are not generally valid under the general lighting conditions and/or not phys-

ically motivated. Another common strategy consists in modifying the input images in or-

der to remove highlights as if the original surface was purely lambertian; see Mallick et al

(2005); Yoon and Kweon (2006); Zickler et al (2008). These methods are based on the well

known Neutral Interface Reflection (NIR) assumption (Lee et al (1990)) which supposes

that the spectral energy distribution of the specular reflection component is similar to the

spectral energy distribution of the incident light. Nevertheless, these methods are strongly

limited by the specific lighting configuration. Also, Yoon and Kweon (2006) is valid only

for single (uniformly) colored illumination conditions, and, although Zickler et al (2008)

recently showed that it is always possible to represent an image with (M −N) specularity-

independent color channels, where M is the number of color channels of an image and N is

the number of different illuminant colors, their image representation may work with up to

two different illuminant colors the because images have three color channels in general. In

addition, this approach is only valid when ambient light also has the same color. Similarly,

some authors do not consider the image pixels where potentially there are highlights; in a

sense they consider these points as outliers. As an example, Hernandez Esteban et al (2008)

applies such a strategy. In such an approach, the idea is then to work only on data one is

able to well model (and so to ignore what is too complicated to model). The authors have

then to increase data (i.e. the number of input images) in order to compensate for the loss

of information. For example, this last strategy cannot apply to stereo (with two cameras).

On the other hand, Bhat and Nayar (1998) analyzed the physics of specular reflection and
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the geometry of stereopsis to reduce errors due to non-Lambertian surfaces, which leads

to a relationship between stereo vergence, surface roughness, and the likelihood of a cor-

rect match. Zickler et al (2002) presented the Helmholtz stereopsis to overcome the specular

reflection problem. However, these two approaches require specialized camera/lighting con-

figurations. Concerning the robustness to the non-Lambertian effects, it also worth to cite the

work of Jin et al. (Jin et al (2005)) which considers radiance tensor and then does not need

similarity measures. However, when some similarity measures such as normalized cross

correlation (Faugeras and Keriven (1998); Pons et al (2005, 2007)) could help to be robust

to some changes of illumination, the radiance tensor as presented in Jin et al (2005) is not

appropriated when the database contains images of the scene lighted by several conditions.

In this paper, our goal is to provide a shape and reflectance estimation method that is

global1 and completely model based. The method we propose is robust to non-Lambertian

effects by directly incorporating a specular reflectance model in the mathematical formu-

lation of the problem. By incorporating a complete photometric image formation model, it

also exploits prolifically all the photometric phenomena, as it is explicitly done in photo-

metric stereo methods. Also, it thus allows to naturally deal with a set of images taken under

several lighting conditions.

Let us note that actually there already exist recent works that provide solutions in this

direction. In particular Yu et al (2004, 2007) propose a model-based method for recovering

the 3D shape and the reflectance properties of a non-Lambertian object. Nevertheless, in this

last paper, the authors constrain the object to be made by a single textureless material; that

is to say that the parameters of the reflectance (in particular the albedo) are the same for

all the points of the object surface. So, the method in Yu et al (2004, 2007) is a “Multiview

Shape From Shading” method, similarly as the one proposed by Jin et al (2004, 2008) who

focuses on the Lambertian case. To our knowledge, the limitation to surfaces with single

textureless material is in fact common to (almost) all the work going in same direction as

ours; in particular this is the case for the photometric stereo methods proposed by Georghi-

ades (2003); Vogiatzis et al (2005) and for the multiview photometric stereo work of Lu

and Little (1995). To our knowledge, only two previous similar works are able to recover

scenes with varying albedo: Birkbeck et al (2006) and Hernandez Esteban et al (2008). But

in Birkbeck et al (2006); Hernandez Esteban et al (2008), they tried to filter out specular

highlights by using a simple thresholding. As a result, they used only diffuse components

to estimate the shape. Hernandez Esteban et al (2008) also used a thresholding to detect

shadowed pixels that are not visible from light sources, which is however not working under

multiple light sources. On the other hand, in Birkbeck et al (2006), the authors computed

the light visibility using the surface normal and the light direction. Finally, let us emphasize

that the method of Hernandez Esteban et al (2008) is specifically a (multiview) photometric

stereo method (which needs several different lighting configurations); also their algorithm

cannot perform classical stereo-vision.

In our work, we do not want to restrain ourself to a single textureless material: in other

words, the reflectance properties of the object can spatially and strongly change. In effect,

now a day, more and more objects are now printed and so it is fundamental to be able to

recover textured and patterned objects. In return, of course, we will not be able to recover

lighting conditions as done in Jin et al (2008), and we have to use a parallel process which

1 in the sense that it simultaneously and consistently optimizes the shape and reflectance.
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return them. In this work, we assume that lighting conditions are known in advance. Practi-

cally, we can use spherical objects with the reference white color to capture the directions

and the colors of light sources (Powell et al (2001); Zhou and Kambhamettu (2002)).

More generally, one of the goal of this paper is to show that the joint computation of

the shape and the reflectance is benefit from several point of views. In addition to provide

the reflectance of the scene (which is necessary e.g. for realistic re-lighting), this allows to

naturally introduce specular models in the mathematical formulation of the multiview recon-

struction problem; and thus this allows the method to be robust to the highlights. Without

any additional effort, this allows also to deal with a set of images lighted by several different

conditions (which is not possible with radiance only). Moreover in such a case, the method

allows to completely exploit the variations of the radiance according to the the changes of

illumination, as in photometric stereo. Finally, this allows to easily incorporate some con-

straints on the reflectance and so in particular this allows to exploit naturally the shading

effects in textureless regions (and thus even if the number of different lighting conditions

does not allow to do photometric stereo; e.g. if all images are taken under the same illumi-

nation).

Finally, let us emphasize that, contrary to previous works that consider a specific scenario,

the method we propose here can be applied indiscriminately to a number of classical sce-

narios; in particular it works for classical stereovision, multiview photometric stereo and

multiview shape from shading.

The paper is organized as follows. In section 2 we describe the modeling assumptions

and we specify the notations. In section 3 we formulate the problem in the Bayesian frame-

work; we then detail the asssociated cost functions in section 4. In section 5 we precisely

explain how we are minimizing the global energy. We show some experimental results on

synthetic and real images data sets in section 6. We conclude after a discussion about diffi-

culties and future work (section 7).

2 Modeling Assumptions and Notations

We assume here that the scene can be decomposed into two entities: the foreground,

which corresponds to the objects of interest, and the background; these are defined more

precisely below. The foreground is composed by a set of (bounded and closed) 2D manifolds

of R
3. These surfaces are represented by S.

2.1 Cameras, Image Data, and Visibility

Image data are generated by nc pinhole cameras. The perspective projection, from world

to image coordinates, performed by the ith camera, is represented by Πi : R
3 → R

2. πi ⊂ R
2

is the image domain of the ith camera (i.e. the area covered by the pixels). It is split into

two parts: the pixels corresponding to the foreground, πiF = πi ∩Πi(S), and the other points

πiB = πi \ πiF (associated to the background). Ii : πi → R
c is the image of the true scene,

captured by the ith camera (c = 1 for a gray-scale image, and c = 3 for a color image). We

denote I the set of input images: I = {I1, I2, · · · , Inc}; IiF and IiB are the restrictions of the

function Ii to πiF and πiB, respectively. In other respects, we consider the visibility function

vi
S : R

3 → R defined by: vi
S(X) = 1 if X is visible from the ith camera and vi

S(X) = 0 if it
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is occluded by the foreground object from the same camera. Si denotes the part of S that is

visible from the ith camera and Π−1
i,S is the back-projection from the ith camera onto Si: i.e.

for all points x ∈ πiF , Π−1
i,S (x) is the closest point on S along the ray joining X to the optical

center of the ith camera.

2.2 Lighting Conditions

We assume that the scene is illuminated by a finite number of distant point light sources.

We complete them by adding an ambient light term (which partially accounts for other com-

plex phenomena), with constant energy radiated isotropically in all directions. Note that,

based on Wiener’s theorems, Vedaldi and Soatto (2006) shows that such a light distribution

can approximate arbitrarily well any positive distribution on the sphere. Let nil be the num-

ber of illuminants corresponding to the ith camera and li j ∈ S
2 and Li j ∈ R

c be the direction

and the intensity2 of the jth illuminant of the ith camera, respectively. Similarly, Lia ∈ R
c is

the intensity2 of the ambient illumination of the ith camera. As mentioned before, we can

manage the set of images taken under several lighting conditions, while some cases with

special lighting conditions will be also discussed later.

2.3 Modeling the Foreground Surface

In this work, we model the foreground object(s) by its shape S and its reflectance R. We

denote Ω = (S,R).
Contrary to most previous stereovision methods, we want to go beyond the Lamber-

tian model. In order to get a solvable minimization problem without too many unknown

variables, we chose to represent the reflectance by a parametric model. Of course the chosen

model directly depends on the applications aimed at; as an example, we consider the popular

Blinn-Phong shading model. In this context, and assuming that Ii(x) is equal to the radiance

of the surface S at point X = Π−1
i,S (x) in the direction of the ith camera, the images Ii are then

decomposed as

Ii = Iid + Iis + Iia, (1)

where Iid , Iis, and Iia are images with the diffuse, specular, and ambient reflection component

of Ii, respectively.

Diffuse reflection is caused by the subsurface scattering of light and it is independent of

viewing direction. By using the cosine law, this image component is described as

Iid(x) =
nil

∑
j=1

vLi j
(X)
(

ρd(X)Li j

(

n(X) · li j

)

)

, (2)

where ρd(X) ∈ R
c is the diffuse albedo2 at point X, n(X) is the normal vector to the surface

S at X and vLi j
represents the light visibility function: SLi j

being the part of S visible from

the jth illuminant of the ith camera, we define vLi j
(X) = 1 if X ∈ SLi j

, vLi j
(X) = 0 otherwise.

Specular reflection is caused by the surface reflection, as with a mirror. This component

is expressed as

Iis(x) =
nil

∑
j=1

vLi j
(X)

(

ρs(X)Li j

(

n(X) ·hi j(X)
)αs(X)

)

, (3)

2 Non-normalized color vector, if c = 3.
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where hi j(X) is the bisector of the angle between the view of the ith camera and the jth

illuminant at X, ρs(X) ∈ R
c and αs(X) ∈ R

+ are the specular albedo and the shininess

parameter at point X.

The ambient illumination is assumed to be uniform in the scene and modeled as

Iia(x) = ρd(X)Lia, (4)

where La is defined above.

By combining the diffuse, specular, and ambient reflection, we get the image formation

equation as

Ii(x) =
nil

∑
j=1

vLi j
(X)Li j(X,n(X))+ρd(X)Lia, (5)

where
Li j(X,n(X)) = L

d
i j(X,n(X))+L

s
i j(X,n(X))

= Li jρd(X)
(

n(X) · li j

)

+Li jρs(X)
(

n(X) ·hi j(X)
)αs(X)

.

(6)

In the sequel, in order to simplify the notations, we denote R = (Rd ,Rs), where Rd = ρd and

Rs = (ρs,αs).

2.4 Modeling the Background

As suggested by Yezzi and Soatto (2003), to be sure that the estimated foreground sur-

face does not shrink to an empty set (which is indeed the global optimum for most cost

functionals used in other works) it is crucial to define and characterize the background. The

choice of model is dictated by the scenario and the applications. For example, in Jin et al

(2004); Yezzi and Soatto (2003), the background is characterized by its radiance which is

constrained to be constant or strongly regular. At the opposite extreme, when the background

is quite irregular, one can assume that one has at his disposal the background images, i.e. the

images of the scene captured by the same cameras without foreground objects. In this work,

we deal with the latter scenario. Therefore, in addition to the images I, we assume that we

detain the background images Ĩ = {Ĩ1, · · · , Ĩnc}. Finally, we define ĨiF and ĨiB analogously to

IiF and IiB.

3 Bayesian Formulation of the Problem

From a probabilistic point of view, the goal of this work is to estimate the shape S and

the reflectance R of a scene surface Ω , that maximize P(Ω |I) for given I. By Bayes’ rule,

the problem is then formulated as

P(Ω |I) =
P(I|Ω) P(Ω)

P(I)
∝ P(I|Ω) P(Ω)

= P(I|S,R) P(S,R)

= P(I|S,R) P(S) P(R)

(7)

under the assumption that S and R are independent. Here, P(I|Ω) = P(I|S,R) is a likelihood

and P(S) and P(R) are priors on the shape and reflectance respectively.
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3.1 Likelihood

If Πi and illumination conditions are given, we can produce a synthetic image Īi(Ω)
corresponding to an input image Ii by using the current estimation of Ω . Here, the correct

estimation of Ω will produce the same images as the input images under the given illu-

mination conditions (modulo noise of course). This allows us to measure the validity of

the current estimation by comparing input images with generated ones. When assuming an

independent identical distribution (i.i.d) of observations, the likelihood can be expressed as

P(I|Ω) ∝

nc

∏
i=1

exp
(

−ξi(Ω)
)

=
nc

∏
i=1

exp
(

−ξ (Ii, Īi(Ω))
)

, (8)

where ξi(Ω) = ξ (Ii, Īi(Ω)) is a function of Ω , measuring the dissimilarity between two

images Ii and Īi.

3.2 Prior on Surface Shape S

A typical and reasonable prior for the surface shape S is about the area3 or about the

smoothness of a surface. When using the surface area for the prior on S, it is expressed as

P(S) ∝ exp
(

−ψ(S)
)

. (9)

Here, ψ(S) is the monotonic increasing function of the surface area
∫

S dσ where dσ is the

Euclidean surface measure.

3.3 Prior on Reflectance R

R is composed of two components, R = (Rd ,Rs). We express our prior as P(R) =
P(Rd)P(Rs) under the assumption that Rd and Rs are independent. Here, P(Rd) and P(Rs)
can be assumed uniform in general so that P(R) is constant. However, unfortunately, es-

timating reliable specular reflectance for all surface points with the uniform prior is very

difficult unless there are enough observations exhibiting specular reflection at every surface

point. For that reason, we need some specific prior on specular reflectance to be able to

infer it in spite of the lack of observations4. It is physically valid to assume that specular

reflectance varies smoothly within each homogeneous material surface patch. It is, however,

also very difficult to partition Ω according to the types of materials. Instead, we use the

diffuse reflectance of a surface as a soft constraint to partition Ω and define the prior on the

surface reflectance as

P(R) ∝ exp
(

−ω(R)
)

, (10)

where ω(R) is a function of the intrinsic gradient of the diffuse and specular reflectance of

a surface. This function will be defined below.

3 In this case, a minimal surface that may be characterized as the surface of minimal surface area for given

boundary conditions will be sought.
4 We will discuss some special cases that do not need any specific prior on the surface reflectance in section

5.3.3.
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4 Description of the Cost Functions

Based on the derivations in section 3, the problem is formulated as

P(Ω |I) ∝ P(I|Ω)P(Ω)

= P(I|S,R) P(S,R)

= P(I|S,R) P(S) P(R)

∝

nc

∏
i=1

exp
(

−ξi(Ω)
)

×
(

exp
(

−ψ(S)
)

)

×
(

exp
(

−ω(R)
)

)

,

(11)

and it can be expressed in terms of cost functions as

Etotal(Ω) = Edata(Ω)+Eshape(S)+Ere f l(R)

=
nc

∑
i=1

ξi(Ω)+ψ(S)+ω(R).
(12)

This shows that maximizing the probability (Eq. (11)) is equal to minimizing the total cost

(Eq. (12)).

4.1 Data Cost Function

The current estimation of Ω gives a segmentation of the input image Ii into foreground

IiF and background IiB and we can synthesize ĪiF according to the above image formation

model. As for ĪiB, it is generated according to the available background model. In this paper,

as mentioned in section 2.4, we use actual background images, i.e. ĪiB=ĨiB. Also, as suggested

by Yezzi and Soatto (2003), ξi(Ω) = ξ (Ii, Īi) is then rewritten as

ξ (Ii, Īi) = ξF(IiF , ĪiF)+ξB(IiB, ĪiB)

= ξF(IiF , ĪiF)+ξB(IiB, ĨiB)

= ξF(IiF , ĪiF)−ξF(IiF , ĨiF)+ξF(IiF , ĨiF)+ξ (IiB, Ĩi)

= ξ̂F(IiF , ĪiF)+ξ (Ii, Ĩi),

(13)

where ξ̂F(IiF , ĪiF) = ξF(IiF , ĪiF)−ξF(IiF , ĨiF)5. Since ξ (Ii, Ĩi) is independent of Ω , the data

cost function is written as

Edata(Ω) =
nc

∑
i=1

ξ̂F(IiF , ĪiF)+C, (14)

where C = ∑
nc
i=1 Ci = ∑

nc
i=1 ξ (Ii, Ĩi) is constant.

5 Note that Eq. (13) is valid only when ξ (Ii, Īi) can be expressed as Eq. (15).
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4.1.1 Similarity Measure

When computing ξ , any statistical correlation among color or intensity patterns such as

the sum of squared differences (SSD), cross correlation (CC), and mutual information (MI)

can be used6. In any case, ξ can be expressed as the integral over the image plane as

ξ (Ii, Īi) =
∫

πi

ei(x)dσi, (15)

where dσi is the surface measure and ei(x) is the contribution at x to ξi. The data cost

function is then given as

Edata(Ω) =
nc

∑
i=1

∫

πiF

êi(x)dσi +C, (16)

where êi(x) = ei

(

Ii(x), Īi(x)
)

− ei

(

Ii(x), Ĩi(x)
)

. We adopt the derivations proposed in Pons

et al (2005) for ξi, ei, and ∂2ei.

4.1.2 Decoupling Appearance from Surface Normal

As shown in Eq. (5), surface appearance (i.e., the data cost function) is dependent on

both the surface normal and position, and this makes the problem hard to solve and unstable.

To resolve this problem, we introduce a photometric unit vector field v satisfying ‖v‖ = 1

as in Jin et al (2004), which is used for the computation of surface appearance. In this case,

Eq. (6) is written in terms of v as

Li j(X,v(X)) =Li jρd(X)
(

v(X) · li j(X)
)

+Li jρs(X)
(

v(X) ·hi j(X)
)αs(X)

,

(17)

which is independent of n(X). To penalize the deviation between the actual normal vector n

and the photometric normal vector v, we add a new term

Edev(Ω) = τ

∫

S
χ(X)dσ =

τ

2

∫

S
‖n(X)−v(X)‖2dσ

= τ

∫

S
(1− (n(X) ·v(X)))dσ ,

(18)

to the cost function, where τ is a control constant.

4.2 Shape Area Cost Function

By using the area of a surface for the prior, the shape area cost function is simply defined

as

Eshape(S) = ψ(S) = λ

∫

S
dσ , (19)

where λ is a control constant.

6 In fact, we do not need to use any sophisticated measure because we also recover the surface reflectance.

Instead, we can use the simple pixel-wise measure.
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4.3 Reflectance Discontinuity Cost Function

Based on the assumption on surface reflectance in section 3.3, we define a discontinuity

cost function of surface reflectance as

Ere f l(R) = ω(R) = β

∫

S
f (X)dσ , (20)

where β is a control constant. f (X) is defined as

f (X) = ζ
(

Rd(X)
)

×η
(

Rs(X)
)

, (21)

where ζ
(

Rd(X)
)

and η
(

Rs(X)
)

are defined in terms of the magnitude of the intrinsic gradi-

ents of diffuse reflectance and specular reflectance respectively as

ζ
(

Rd(X)
)

=

(

1−
‖∇SRd(X)‖2

M

)

, (22)

η
(

Rs(X)
)

=
(

‖∇Sρs(X)‖2 + γ‖∇Sαs(X)‖2
)

(23)

with a pre-defined constant M7. ∇S denotes the intrinsic gradient defined on S.

The proposed discontinuity cost function of surface reflectance makes the disconti-

nuities of specular reflectance generally coincide with the discontinuities of diffuse re-

flectance, which is physically valid in general. Accordingly, surface points that do not have

enough specular observations get assigned specular reflectance inferred from the specular

reflectance of neighboring surface points.

4.4 Total Cost Function

By combining the cost functions defined in the previous sections, the total cost function

is given by

Etotal(Ω) = Edata(Ω)+Edev(Ω)+Eshape(S)+Ere f l(R)

= C +
nc

∑
i=1

∫

πiF

êi(x)dσi + τ

∫

S
χ(X)dσ

+λ

∫

S
dσ +β

∫

S
f (X)dσ .

(24)

Here, it is worthy of notice that Edev(Ω), Eshape(S), and Ere f l(R) are defined over the

scene surface while Edata(Ω) is defined as an integral over the image plane. By the change

of variable

dσi = −
di(X) ·n(X)

zi(X)3
dσ , (25)

where n(X) is the outward unit surface-normal vector at X, di(X) is the vector connecting

the center of the ith camera and X and zi(X) is the depth of X relative to the ith camera, we

can replace the integral over the image plane by an integral over the surface:

Edata(Ω) = C−
nc

∑
i=1

∫

Si

(

êi(Πi(X))
di(X) ·n(X)

zi(X)3

)

dσ

= C−
∫

S

(

nc

∑
i=1

vi
S(X)êi(Πi(X))

di(X) ·n(X)

zi(X)3

)

dσ .

(26)

7 Be sure that M ≥ 3 for gray-level images and M ≥ 9 for color images.
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As a result, the total cost function Eq. (24) is expressed as

Etotal(Ω) = C +
∫

S

(

−
nc

∑
i=1

(

vi
Sêi

di ·n

zi
3

)

+ τχ +λ +β f

)

dσ . (27)

When denoting g(X,n(X)) : R
3 ×Ω → R as

g(X,n(X)) =

(

−
nc

∑
i=1

(

vi
Sêi

di ·n

zi
3

)

+ τχ +λ +β f

)

, (28)

Eq. (24) is simply rewritten as

Etotal(Ω) = C +
∫

S
g(X,n(X))dσ . (29)

Here, although the total cost function is an integral over the surface, it does not suffer

from the usual minimal surface bias: most functionals used in multiple stereo have an empty

set as globally optimal surface, since they do not “explain” all pixels in the input images.

Our approach, like Yezzi and Soatto (2003), takes into account all pixels in the cost function,

using both the estimated foreground and the available background information.

5 Scene Recovery

Recently, via graph cuts or convexity, some authors have proposed some global opti-

mization methods for the classical multiview stereovision problem; see Kolev et al (2007a,b);

Paris et al (2006); Snow et al (2000); Vogiatzis et al (2007). Nevertheless, because of the

presence of the normal but also of the visibility in the cost function, the state of the art in

optimization does not allow to compute the global minimum of the energy we have designed

in previous section. Also, here, scene recovery is achieved by minimizing Etotal via gradient

descents. In other respects, S and R being highly coupled, it is very complicated to esti-

mate all unknowns simultaneously. To efficiently solve the problem, we adopt an alternating

scheme, updating S for a fixed R and then R for a fixed S. This procedure is repeated until

Etotal no longer decreases and S and R no longer change. The overall procedure is shown in

Fig. 1.

5.1 Shape Estimation – Surface Evolution

When assuming that R is given, Etotal is a function of S. In this work, we derive the

gradient descent flows corresponding to the cost functions respectively. The final gradient

descent flow is then given by

St =
(

St

∣

∣

data
+St

∣

∣

dev
+St

∣

∣

shape
+St

∣

∣

re f l

)

; (30)

where St

∣

∣

data
, St

∣

∣

dev
, St

∣

∣

shape
and St

∣

∣

re f l
are described below.

For more details about gradient descent flows, we refer the inexperienced reader to Solem

and Overgaard (2005) who nicely details a geometric formulation of gradient descent in

such a context.
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Fig. 1 Overall procedure of the proposed method

Fig. 2 Shape update

X

'X

S O

Fig. 3 Horizon point X and its terminator point X′

5.1.1 Gradient Descent Flow for the Data Cost

As shown in Eq. (26), the data cost is a function of the visibility of a surface point,

which is dependent on the whole surface shape. According to Gargallo et al (2007) which

extends of the work of Solem and Overgaard (2005) and the one of Yezzi and Soatto (2003)

for correctly dealing with the visibility of non-convex objects, St

∣

∣

data
is given by

St

∣

∣

data
=

nc

∑
i=1

(

−
vi

S (êi − ê′i)

z3
i

(

dt
i∇ndt

iδ (di ·n)
)

+
vi

S

z3
i

((∂2êi∇Īi) ·di)
)

, (31)

where δ (·) is the delta function and ê′i is an error computed by using the radiance at point

X′ in the direction of the ith camera, which is the terminator of a horizon point X as shown
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in Fig. 3 (for more details see Gargallo (2008); Gargallo et al (2007)). When a horizon

point has no terminator point on the surface, ê′i = 0 because the terminator point is from the

background. ∇Īi is expressed by using Eq. (5) as

∇Īi =
nil

∑
j=1

{(∇vLi j
)Li j + vLi j

(∇Li j)}+(∇ρa)Lia, (32)

where

∇Li j = ∇L
d
i j +∇L

s
i j, (33)

and

∇L
d
i j = Li j(∇ρd)(v · li j)+Li jρd (∇(v · li j)) , (34)

∇L
s
i j =Li j(∇ρs)(v ·hi j)

αs +Li jρs (∇(v ·hi j)
αs) . (35)

This gradient descent flow includes both the variation related to the camera visibility changes

(the first term in Eq. (31)) and the variation related to the image changes (the second term

in Eq. (31)), which also includes the variation due to the light visibility changes. Here, it

is worthy of notice that the gradient descent flow for the data cost is not dependent on the

image gradient, which is sensitive to image noise, but on the shape/reflectance estimation.

5.1.2 Gradient Descent Flows for the Normal Deviation Cost and the Shape Area Cost

Similarly as Jin et al (2004, 2008), the gradient descent flows for the normal deviation

cost St

∣

∣

dev
(originating from Edev(Ω)) is

St

∣

∣

dev
= (−2τH + τ(∇ ·v)) . (36)

Also St

∣

∣

shape
(from Eshape(S)) is the mean curvature flow as

St

∣

∣

shape
= −2λH. (37)

5.1.3 Gradient Descent Flow for the Reflectance Discontinuity Cost

Due to the complexity of the discontinuity cost function of surface reflectance, it needs

more attention to derive the gradient descent flow. By using the derivation in Jin et al (2003),

we get the following equation for surface evolution.

St

∣

∣

re f l
= −2β

( 1

M
m(ρd)η(Rs) − (m(ρs)+ γm(αs))ζ (Rd)

)

. (38)

Here,

m(ρs) =
(

II
(

∇Sρs ×n
)

+‖∇Sρs‖
2H
)

, (39)

m(αs) =
(

II
(

∇Sαs ×n
)

+‖∇Sαs‖
2H
)

, (40)

m(ρd) =
(

II
(

∇Sρd ×n
)

+‖∇Sρd‖
2H
)

, (41)

where II(t) is the second fundamental form for a tangent vector t with respect to n.
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Fig. 4 Photometric unit vector update

5.2 Photometric Unit Vector Field Update

The computed gradient descent flows minimize the total cost with respect to given re-

flectance and v. We then update the photometric unit vector field v to minimize the total cost

with respect to given shape and reflectance. The v that minimizes the total cost satisfies the

equation

∂g

∂v
=

(

−
nc

∑
i=1

vi
S∂2êi

∂ Īi

∂v

di ·n

zi
3

)

+(−τn) = 0. (42)

Here, ∂ Īi
∂v

is given as

∂ Īi

∂v
=

nil

∑
j=1

vLi j
Li j

(

ρd li j +ρsαs (v ·hi j)
αs−1

hi j

)

. (43)

We can update v by performing gradient descent using the following PDE:

∂v

∂ t
=

(

−
nc

∑
i=1

vi
S∂2êi

∂ Īi

∂v

di ·n

zi
3

)

+(−τn). (44)

However, because we have to keep ‖v‖ = 1, we can not use Eq. (44) directly. Since v ∈ S
2,

v can be expressed as [cosθv sinφv,sinθv sinφv,cosφv]
T where θv and φv are the coordinates

of v in the spherical coordinates. Therefore, we update θv and φv to update v. As before, the

θv and φv that minimize the total cost satisfy the following two equations by the chain rule .

∂g

∂θv

=
∂g

∂v
·

∂v

∂θv

= 0 (45)

∂g

∂φv

=
∂g

∂v
·

∂v

∂φv

= 0 (46)

Here, ∂v
∂θv

and ∂v
∂φv

are given as

∂v

∂θv

=





−sinθv sinφv

cosθv sinφv

0



 ,
∂v

∂φv

=





cosθv cosφv

sinθv cosφv

−sinφv



 . (47)



15

Fig. 5 Reflectance estimation

So, we update v by updating θv and φv by performing gradient descent using the following

two PDEs:

∂θv

∂ t
=

((

−
nc

∑
i=1

vi
S∂2êi

∂ Īi

∂v

di ·n

zi
3

)

+(−τn)

)

·





−sinθv sinφv

cosθv sinφv

0



 (48)

and

∂φv

∂ t
=

((

−
nc

∑
i=1

vi
S∂2êi

∂ Īi

∂v

di ·n

zi
3

)

+(−τn)

)

·





cosθv cosφv

sinθv cosφv

−sinφv



 . (49)

5.3 Reflectance Estimation

Here, we estimate R for a fixed S, still minimizing the total cost function. Since Edev and

Eshape do not depend on R at all, we seek an optimal R by minimizing (Edata(Ω)+Ere f l(R)).
Here, because it is also complex to estimate diffuse and specular reflectance at the same time

due to the high coupling between them, we alternatively estimate surface reflectance one by

one while assuming that the rest are given. We repeat the procedure until they no longer

change. Fig. 5 shows the whole scheme we have used for the reflectance estimation. Below,

we are detailing the intermediate steps.

5.3.1 Diffuse Reflectance Estimation

For given S and Rs, we estimate ρd that minimizes the cost

Edata +Ere f l =
∫

S

( (

−
nc

∑
i=1

vi
Sêi

di ·n

zi
3

)

+β

(

1−
‖∇Sρd‖

2

M

)

η
(

Rs

)

)

dσ .

(50)
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Here, ρd that minimizes the total cost function will satisfy the Euler-Lagrange equation

given as

−
nc

∑
i=1

vi
S∂2êi

∂ Īi

∂ρd

di ·n

zi
3

+
2β

M
η
(

Rs

)

∆Sρd = 0, (51)

where ∆S denotes the Laplace-Beltrami operator defined on the surface S and ∂ Īi
∂ρd

is given

as

∂ Īi

∂ρd

=
nil

∑
j=1

vLi j
Li j (v · li j)+Lia. (52)

We solve the PDE by performing gradient descent using the following PDE:

∂ρd

∂ t
=

(

−
nc

∑
i=1

vi
S∂2êi

∂ Īi

∂ρd

di ·n

zi
3

)

+

(

2β

M
η
(

Rs

)

)

∆Sρd . (53)

5.3.2 Specular Reflectance Estimation

We then estimate Rs = (ρs,αs) for given S and Rd in the same manner. ρs that minimizes

the total cost function will satisfy the Euler-Lagrange equation given as

(

−
nc

∑
i=1

vi
S∂2êi

∂ Īi

∂ρs

di ·n

zi
3

)

−2β
(

∆Sρs

)

ζ
(

ρd

)

= 0, (54)

where ∂ Īi
∂ρs

is given as

∂ Īi

∂ρs

=
nil

∑
j=1

vLi j
Li j (v ·hi j)

αs . (55)

We again solve the PDE by performing gradient descent using the following PDE to get the

solution of Eq. (54).

∂ρs

∂ t
= −

nc

∑
i=1

(

vi
S∂2êi

∂ Īi

∂ρs

di ·n

zi
3

)

−2β
(

∆Sρs

)

ζ
(

ρd

)

. (56)

αs is also estimated in the same manner by solving the PDE as

∂αs

∂ t
= −

nc

∑
i=1

(

vi
S∂2êi

∂ Īi

∂αs

di ·n

zi
3

)

−2βγ
(

∆Sαs

)

ζ
(

ρd

)

, (57)

where ∂ Īi
∂αs

is given as

∂ Īi

∂αs

=
nil

∑
j=1

vLi j
Li jρs (v ·hi j)

αs ln(v ·hi j) . (58)
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5.3.3 Case of Single-Material Surface

When dealing with a single-material surface that has a single specular reflectance Rs,

it is possible to set ρs(X) = ρs and αs(X) = αs for all surface points. In this case, the

discontinuity cost function of surface reflectance, Ere f l(R), can be excluded because f (X)
in Eq. (21) is zero everywhere on the surface. Hence, the gradient descent flow is then given

by

St =
(

St

∣

∣

data
+St

∣

∣

dev
+St

∣

∣

shape

)

, (59)

and the PDE used for the estimation of ρd , Eq. (53), is simplified as

∂ρd

∂ t
= −

nc

∑
i=1

vi
S∂2êi

∂ Īi

∂ρd

di ·n

zi
3

. (60)

In addition, ρs and αs are computed by performing gradient descent using the following

PDEs.

∂ρs

∂ t
=
∫

S

(

−
nc

∑
i=1

vi
S∂2êi

∂ Īi

∂ρs

di ·n

zi
3

)

dσ (61)

∂αs

∂ t
=
∫

S

(

−
nc

∑
i=1

vi
S∂2êi

∂ Īi

∂αs

di ·n

zi
3

)

dσ (62)

6 Experiments

6.1 Implementation

We have implemented the gradient descent surface evolution in the level set framework

in which the topological changes of surfaces are handled automatically Osher and Fed-

kiw (2002); Osher and Sethian (1988); Sethian (1999). In the level set formulation, hyper-

surfaces are represented as the zeros of a continuous function8.

The proposed method starts with the visual hull obtained by rough silhouette images

to reduce computational time and to avoid local minima, and we also adopt the multi-scale

strategy. 640×480 or 800×600 images were used as inputs and and the simple L2-norm was

used to compute the image similarity, e. The camera and light visibility were computed by

using the OpenGL z-buffering9. In experiments using real images, we detected saturated

pixels by thresholding the intensity as Ii(x) > Ith, where we set Ith = 253, and ignored them.

6.2 Experimental results

Due to the generality of the proposed method, it can be applied to various types of im-

ages sets with different cameras/lights configurations. First, when the images of Lambertian

surfaces were taken under the fixed illumination condition while changing viewpoints, the

proposed method can be applied even without lighting information, assuming that there is

only ambient lighting. Therefore, we do not need to take care of the surface normal and only

8 φ(X, t) > 0 for the outside and φ(X, t) < 0 for the inside.
9 The light visibility is computed by using virtual cameras located at the positions of light sources.
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(a) input images (b) synthesized images (c) estimated shape

Fig. 6 Result for the “dino” image set (16 images) – textureless Lambertian surface case (fixed lighting)

Edata(Ω) and Eshape(S) are computed. In this case, the ICA (intensity conservation assump-

tion) is valid in all images, and the proposed method works as the conventional multiview

stereo methods and estimates the shape and the radiance. The result for the “dino” image

set (16 images) is given in Fig. 6. As shown in Fig. 6, the proposed method successfully

recovers the shape as well as the radiance.

The proposed method can be also applied to images taken under varying illumination

conditions. The results using the simple images of textureless/textured Lambertian surfaces

are shown in Fig. 7 – Fig. 12. Figure 7 shows the ground-truth shape of the “bimba” image

set (18 images) and the estimation result. The surface is with the uniform diffuse reflectance

and input images were taken under different lighting configurations. In this case, the pro-

posed method works as a multiview photometric stereo method and recovers the shape and

the diffuse reflectance of each surface point. Here, the points with black diffuse reflectance

are because they are not visible from any cameras and/or any light sources. On the other

hand, Fig. 8 shows one of 32 textured input images and the synthesized image generated by

using the estimated shape (i.e., shading) and reflectance. Based on this result, we can also

generate the images of a scene with different lighting conditions as shown in Fig. 9. The

result for a more complex object is shown in Fig. 10 and Fig. 11. The images synthesized

by using the estimation closely resemble input images while the shading and the reflectance

are successfully separated, and it is possible to synthesize an image with different lighting

conditions even at a different viewpoint. The proposed method also recovers concave parts

well as shown in Fig. 12.

We then applied our method to the images of textureless/textured non-Lambertian sur-

faces showing specular reflection. Note that, unlike previous methods Birkbeck et al (2006);

Hernandez Esteban et al (2008), we do not use any thresholding to filter out specular high-

light pixels when dealing with images with specular reflection. The result for the smoothed

“bimba” data set is shown in Fig. 13. In this case, the surface is with the uniform dif-

fuse/specular reflectance and each images was taken with different illumination conditions.

Here, we used the method described in section 5.3.3 to estimate the specular reflectance. Al-
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(a) ground-truth model (b) estimated model

Fig. 7 Result for the “bimba” image set (18 images) – textureless Lambertian surface case

(a) input image (b) estimated reflectance (c) estimated shading (d) synthesized image

Fig. 8 Result for the “sphere” image set (32 images) – textured Lambertian surface case

(a) original input image (b) synthesized image

Fig. 9 Scene synthesis under different lighting conditions

though there is high-frequency noise in the estimated shape, the proposed method estimates

the specular reflectance well — the ground-truth specular reflectance is (ρs=0.7, αs=50)

while the estimated is (ρs=0.61, αs=41.8)10.

We also used the real image sets of textured glossy objects, which were taken by using

fixed cameras/light sources with rotating objects as in Birkbeck et al (2006); Hernandez Es-

teban et al (2008) — in this case, each image has different lighting conditions and has

specular reflection. The light position and color were measured by using a white sphere.

Figure 14 shows one image among 59 input images and the initial shape obtained by us-

ing silhouette and the estimation result. Here, we assumed that the single-material surface.

More results using real image sets are also shown in Fig. 15 – Fig. 16. (72×72×72) grids

were used for the “saddog” and “duck” image sets while (64× 64× 64) grids were used

for the “bunny” image set. Although sparse grid volumes were used, the proposed method

10 In fact, the small error of surface normals can cause the large of specular reflectance because of its

sensitivity to surface normals. For instance, 0.7× (0.98)50(= 0.255) ≈ 0.61× (0.979)41.8(= 0.251).
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(a) input image (b) ground-truth reflectance (c) ground-truth shading

(d) synthesized image (e) estimated reflectance (f) estimated shading

Fig. 10 Result for the “dragon” image set (32 images) – textured Lambertian surface case with the same

lighting conditions for all the input images

(a) ground-truth rendered with a

different lighting and from a new

viewpoint

(b) ground-truth reflectance (c) ground-truth shading

(d) reconstructed scene re-

lighted as in (a) and viewed from

the same point of view as (a)

(e) estimated reflectance (f) estimated shading

Fig. 11 Synthesized result with different lighting conditions and viewed from a viewpoint different of all the

input image viewpoint. A comparison with the ground-truth is possible because it is synthetic data

successfully estimated the shape of the glossy object even under specular reflection while

estimating specular reflectance. Here, we can see that, although the estimated specular re-

flectance may not be so accurate because of the inaccuracy of lighting calibration, saturation,

and some unexpected photometric phenomenon such as interreflection that often occurs on

glossy surfaces, it really helps to recover the shape well.
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(a) ground-truth (b) close-up view (c) close-up view of the esti-

mated result

Fig. 12 Close-up view of the concave part of the “dragon” model

(a) ground-truth

model

(b) estimated shape (c) diffuse image (d) specular image (e) synthesized im-

age

Fig. 13 Result for the smoothed “bimba” image set (36 images) - textureless non-Lambertian surface case

7 Discussion and Further Work

As shown in section 6, the proposed method can be applied to various cases thanks

to the generality. This is one of the main contributions of the proposed method. However,

at the same time, the proposed method can become more unstable and inaccurate as the

case gets more complex. For example, the proposed method works very well for diffuse

images taken under fixed illumination conditions, which is the simplest case, because we do

not need to consider the surface normal and the photometric normal of each point. However,

when dealing with non-Lambertian surfaces, the estimations of the shape and the reflectance

are rather less accurate. In some aspect, this is natural because the proposed method deals

with many unknowns and estimates the unknowns alternatively. As described, the proposed

method is consists of many sub-parts, which also have alternative loops in them. Also, it

suffers from local minima and sometimes in practice the alternative scheme fails. In addition,

for non-Lambertian cases, the proposed method may produce inaccuracy results because

specular reflection can be extremely sensitive to the surface normal depending to the surface

shininess.

Another difficulty for non-Lambertian surfaces is the computational time. All sub-loops

should converge at each iteration as shown in Fig. 1, Fig. 2, Fig. 4, and Fig. 5, and the

shape can not evolve much at each iteration because of the stability. Therefore, the proposed

method takes from a few hours to a few days according to the image sets and the initial

conditions— the computational time is in proportion to the number of grids used in the level

set framework, the number of input images, and the number of light sources.
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(a) input image (b) initial shape (c) estimated shape

(d) diffuse re-

flectance

(e) diffuse image (f) specular image (g) synthesized im-

age

Fig. 14 Result for the “saddog” image set (58 images)

In other respects, the proposed method needs several user-specified parameters such as

τ , λ , and β in Eq. (27). These parameters control the contribution rates of cost functions

according to the types of image sets. As a result, the overall performance may be under a

bias toward specific prior according to these parameters.

As a future work, we would like to develop faster and more stable schemes to overcome

these limitations. Also, there is much room for improvement. For example, in this work, we

adopted the Blinn-Phong model to describe the specular reflection, but it should be relevant

to adopt a more realistic model. In addition, we used the simple L2-norm for e, while it is

possible to use other global/robust measures such as cross correlation or mutual information

as in Pons et al (2007). It is finally also possible to change the inner product structure as

propose by Charpiat et al (2007).

8 Conclusion

In this paper, we have presented a variational method that recovers both the shape and the

reflectance of scene surfaces using multiple images, assuming that illumination conditions

and cameras calibration are known in advance. Scene recovery was achieved by minimiz-

ing the global cost functional alternatively. As a result, the proposed method produced the

complete description of a scene surface.

Contrary to any previous work that considers a specific scenario, our method can be ap-

plied indiscriminately to a number of classical scenarios; in particular it works for classical
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(a) input image (b) initial shape (c) estimated shape

(d) diffuse reflectance (e) diffuse image (f) specular image (g) synthesized image

Fig. 15 Result for the “bunny” image set (26 images)

stereovision, (multiview) photometric stereo and multiview shape from shading. Moreover,

unlike most previous methods dealing with only Lambertian surfaces, the proposed method

considers general dichromatic surfaces.
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