The arithmetic of characteristic 2 Kummer surfaces and of elliptic Kummer lines

Abstract : The purpose of this paper is a description of a model of Kummer surfaces in characteristic 2, together with the associated formulas for the pseudo-group law. Since the classical model has bad reduction, a renormalization of the parameters is required, that can be justified using the theory of algebraic theta functions. The formulas that are obtained are very efficient and may be useful in cryptographic applications. We also show that applying the same strategy to elliptic curves gives Montgomery-like formulas in odd characteristic that are faster than the classical ones, and we recover already known formulas by Stam in characteristic 2.
Type de document :
Article dans une revue
Finite Fields and Their Applications, Elsevier, 2009, 15 (2), pp.246-260. 〈10.1016/j.ffa.2008.12.006〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00266565
Contributeur : Pierrick Gaudry <>
Soumis le : mercredi 20 mai 2009 - 08:40:20
Dernière modification le : samedi 24 mars 2018 - 01:56:36
Document(s) archivé(s) le : mercredi 22 septembre 2010 - 12:49:38

Fichier

c2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Pierrick Gaudry, David Lubicz. The arithmetic of characteristic 2 Kummer surfaces and of elliptic Kummer lines. Finite Fields and Their Applications, Elsevier, 2009, 15 (2), pp.246-260. 〈10.1016/j.ffa.2008.12.006〉. 〈inria-00266565v2〉

Partager

Métriques

Consultations de la notice

367

Téléchargements de fichiers

179