On the inverse scattering of star-shape LC-networks

Abstract : The study of the scattering data for a star-shape network of LC-transmission lines is transformed into the scattering analysis of a Schr¨odinger operator on the same graph. The boundary conditions coming from the Kirchhoff rules ensure the existence of a unique self-adjoint extension of the mentioned Schr¨odinger operator. While the graph consists of a number of infinite branches and a number finite ones, all joining at a central node, we provide a construction of the scattering solutions. Under non-degenerate circumstances (different wave travelling times for finite branches), we show that the study of the reflection coefficient in the high-frequency regime must provide us with the number of the infinite branches as well as the the wave travelling times for finite ones.
Liste complète des métadonnées

Contributeur : Mazyar Mirrahimi <>
Soumis le : mercredi 26 mars 2008 - 15:48:17
Dernière modification le : vendredi 25 mai 2018 - 12:02:05
Document(s) archivé(s) le : vendredi 21 mai 2010 - 00:54:22


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00267163, version 1



Filippo Visco Comandini, Mazyar Mirrahimi, Michel Sorine. On the inverse scattering of star-shape LC-networks. 2008. 〈inria-00267163〉



Consultations de la notice


Téléchargements de fichiers