Straight lines have to be straight: automatic calibration and removal of distortion from scenes of structured enviroments

Frédéric Devernay 1, * Olivier Faugeras 1
* Auteur correspondant
1 ROBOTVIS - Computer Vision and Robotics
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Most algorithms in 3D computer vision rely on the pinhole camera model because of its simplicity, whereas video optics, especially low-cost wide-angle or fish-eye lenses, generate a lot of non-linear distortion which can be critical. To find the distortion parameters of a camera, we use the following fundamental property: a camera follows the pinhole model if and only if the projection of every line in space onto the camera is a line. Consequently, if we find the transformation on the video image so that every line in space is viewed in the transformed image as a line, then we know how to remove the distortion from the image. The algorithm consists of first doing edge extraction on a possibly distorted video sequence, then doing polygonal approximation with a large tolerance on these edges to extract possible lines from the sequence, and then finding the parameters of our distortion model that best transform these edges to segments. Results are presented on real video images, compared with distortion calibration obtained by a full camera calibration method which uses a calibration grid.
Type de document :
Article dans une revue
Machine Vision and Applications, Springer Verlag, 2001, 13 (1), pp.14-24. <10.1007/PL00013269>
Liste complète des métadonnées

https://hal.inria.fr/inria-00267247
Contributeur : Frédéric Devernay <>
Soumis le : mercredi 26 mars 2008 - 18:05:55
Dernière modification le : vendredi 10 mai 2013 - 11:27:54
Document(s) archivé(s) le : jeudi 20 mai 2010 - 22:33:23

Fichier

distcalib.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Frédéric Devernay, Olivier Faugeras. Straight lines have to be straight: automatic calibration and removal of distortion from scenes of structured enviroments. Machine Vision and Applications, Springer Verlag, 2001, 13 (1), pp.14-24. <10.1007/PL00013269>. <inria-00267247>

Partager

Métriques

Consultations de
la notice

406

Téléchargements du document

7277