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Abstract. Sampling in the space of controls or actions igedl-established method for
ensuring feasible local motion plans. Howevennabile robots advance in performance
and competence in complex outdoor environmentss thassical motion planning
technique ceases to be effective. When envirormheonhstraints severely limit the space
of acceptable motions or when global motion plagnéxpresses strong preferences, a
state space sampling strategy is more effectivédiléNthis has been clear for some time,
the practical question is how to achieve it whilsoasatisfying the severe constraints of
vehicle dynamic feasibility. This paper presentseffective algorithm for state space
sampling based on a model-based trajectory georrapproach. This method enables
high-speed navigation in highly constrained angértially known environments such as
trails, roadways, and dense off-road obstacledield

1 Introduction

Outdoor mobile robot navigation is a challenginglpem because environments
are often complex and only partially known, dynasnian be difficult to predict
accurately, and both planning time and computaticesurces are limited.

The dynamics of a vehicle can be modeled by a neaiti differential
equation of the form;

x =f(x,u,t) (1)
whereu is called the input or control vector ards the state vector and both are
time-varying points in input and state spaces retspgdy. The complexity of
such accurate models of mobility combined with sitale of outdoor mobile
robot navigation leads to a difficult tradeoff been the computational demands
of perceptive intelligence at the local level arailwerative intelligence at the
global level. It is difficult to be both smart afast when computation is limited.

A common approach to this problem is to use a ANl motion planning
strategy to generate behavior that is both intefitgand responsive. A large-scale
motion plan is generated infrequently based on Kiieg dynamic models and
coarse representations of the environment. Thisaglplanner is deliberative and
it understands the gross topology of the environm@énfiner-scale plan is
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generated more frequently by a local planner ttiizes higher fidelity dynamic
models and finer resolution representations of ¢heironment. The local
planner provides obstacle avoidance and ensuremgrfeasibility in the near-
term while the global planner provides high-levelidance (e.g. waypoint
navigation). This paper deals with generating llooation planning search
spaces which satisfy feasibility and environmewrtahstraints while exploiting
global guidance.

1.1 Motivation

This paper will address a difficult issue that esisn the context of the above
two-tiered architecture, and indeed in differetyi@lonstrained motion planning
in general. The formulation of the local planninglgem involves constraints
and utilities that are most conveniently expresedd/o spaces:

e State Space: Those arising from the environment
« Control Space: Those arising from vehicle mobility

Traditional approaches to local motion planning oire searching
alternatives expressed in control space becaude aternatives are inherently
feasible. Feasibility matters because commandifeasgible actions will lead to
collisions or inability to execute other criticalameuvers. When most feasible
motions are likely to satisfy environmental conistis, control space sampling is
an effective approach. However, if the environmiemposes severe limits on
acceptable motions, this traditional approach cda¢svork well.

Global guidance is expressed fundamentally in tesfresutility or constraint
field over state space. For example, a global pathpecified and minimum
deviation is desirable, or a road lane is specifeed its edges cannot be
breached except in lane change maneuvers. Alteehatia navigation function
might associate with every point in state spacexsected cost to the goal and
its gradient specifies the preferred vehicle od&aoh at that point. Such
guidance is highly valuable because the global patless likely to contain
obstacles, it is often an optimal global soluti@séd on a coarse but informative
map, and it may pass through narrow safe regiorssavitraversal is critical to
reaching the goal.

Figure 1 illustrates how sampling in control spé&e very poor approach
under such conditions whereas state space saniplidgal.
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Fig. 1: Motion Planning in Constrained EnvironmentSearch spaces generated by samplir
control space vs. state space are shown in enventsrthat are highlgonstrained (e.g. roz
networks). Virtually all options generated by sdimp in control space leave the laoe are
oriented to do so eventuallywhereas those generated by sampling in state spagn within the
road network.

A second consideration is path sampling efficienéyl. approaches to
planning fundamentally consider a finite numbealérnatives and pick the best
one, but some sets of alternatives are better dlizgrs are. Separation matters
because nearly identical paths will likely intertsée same obstacles and waste
computation. We define a well-separated set oéttayies to be one that covers
a majority of the state space with a minimum ofrag When a global path is
specified, it would be useful to control the distiion of trajectory end states to
ensure that they are both near and oriented alanglobal path.

For example, consider the search space illustrate&figure 2. It was
generated by uniformly sampling in control spacedifferent initial conditions.
Notice that the trajectories are denser in thective opposite to the initial
curvature ko) because the vehicle’s maximum turning rate/dtj leads to the
same output for several distinct inputs. Samplimgstate space permits direct
control over the spacing of the endpoints of thesectories.

Ky = 0.00 Ky = 0.25 Ky = 0,50

0502k, =0.50 0502k = 0.50 0508k, ,=0.50

Fig. 2: Irregular Mapping from Control Space tot8t8pace. Accurate dynamic simulations of i

of vehicle controls (constant curvature arcs unifgrsampled between +0.50 radians/meteg) ar
shown for different initial vehicle curvatures. Thesponses to the controls are not unifor
separated despite the uniform separation of theasn

1.2 Related Work

Some of the earliest work in outdoor model-basetilaaobot motion planning
appears in [1], where the local motion planningraeaspace is generated by
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sampling in the control space of curvature. Eaghtrol is passed through a
vehicle dynamics model to estimate the responsthefvehicle to the control.
The shape of the response is highly dependent env¢hicle model and the
initial vehicle state (curvatures and velocities).

Similar approaches have been adapted in a variaither mobile robots [5].
The method presented in [2] samples trajectoriesrat the arc that reacquires a
target path, where “nudges” and “swerves” represenéll and large lateral
offsets (adjustments of the solution trajectongpextively. Another method for
generating local motion planning search space @geghs [7]. This approach
generates a well-separated dynamically feasibleesespace for a limited set of
initial vehicle states offline.

1.3 Technical Approach

An effective local planning search space would ligdze optimal, efficient, and
robust. The search space would be optimal if il¢anaximally exploit global
guidance, efficient if it could control path sepaa, and robust if it searched
only feasible motions. Recent advances in real-tinedel-based trajectory
generation have provided the capability to makegmss towards achieving
these goals. In [3] a general method is presertatl domputes control inputs
that satisfy a pair of boundary states subjechéwvehicle dynamics model, and
in [4] we apply it to the problem of path followirig the absence of obstacles.

This paper improves on [4] by generating a set edsible actions by
sampling in the surrounding state space. By utiiegmodel-based trajectory
generation algorithm to generate motions betweerctiirent vehicle state and a
set of terminal states on the boundary of the lowation planning search space,
the state space sampling technique is superids iafficiency (mean separation
of trajectories) and robustness to initial condifiothan its control space
sampling counterparts. The approach in this pdiféars from all of the prior
work in its capacity to generate more expressiwallanotion planning search
spaces.

2 Adaptive Search Spaces

The algorithm in [3] creates an opportunity to progl end state sample
distributions that satisfy environmental, separaticand path following
constraints while also being able to produce fdagiotions that achieve these
states. Section 2.1 outlines our general approadirticturing the search space
adaptation algorithm while Section 2.2 discussesntythe feasible set shape
parameters for real vehicle applications.
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2.1 Adaptive Search Space Design

A general description of state space sampling fgcles is to generate a set of
actions by solving for trajectories between n b@updstate pairsxg). The first
state in each pair is the initial or current staftéhe vehicle X;) while the second
state is the terminal state)which is reached at the end of each trajectory.

Xio Xiz - Xjp T
X, =| i " | wherex =|x k v .. 2
P |:Xf,0 Xfa - Xf,n:| [ v ] @

Note that this definition is independent of the hoet of generating the
search space. We will utilize the model-basecettajy generation algorithm
presented in [3] because of its ability to genertgasible actions between
boundary state pairs in real-time, although otkehniques could be substituted.
Our approach is based on designing rules and péeesrtbat define the shape of
the outline of the trajetories and adjust the temhistates based on global
guidance and initial vehicle state information.

For example, consider the example search spacesraged using this
approach shown in Figure 3. Here, terminal stabsitipns are selected
uniformly at a horizon (constant radius) of 5.0 emstfrom the center of the
robot betweerr45 degrees from the forward central axis of theicleh Three
headings at each terminal state position are cereid one aligned with the ray
cast from the vehicle to the terminal state positimd two others offset at a
terminal heading adjustment anglelb degrees).

(a) ) (©)

Fig. 3: Uniform Terminal State Sampling for Adapgti8earch Space Generatiwith Varied Initial
States. The ability to control the shape of therae space for three initial statés) turning left, (b
straight, and (c) turning right. Notice the samglia more uniformly distributed than in Figure 2.

The result of this approach is a set of sophigtainaneuvers that are
roughly equidistant, making this an efficient (n@wtundant) search space.
Notice that even in the face of varied initial v&histates, the search space shape
adapts to the dynamic constraints of the vehiche fFajectories reach the same
set of well-separated terminal states, in conttadhe results of control space
sampling techniques (Figure 2).



6 T.M. Howard, C.J. Green, and A. Kelly
2.2 Utilizing Global Guidance Infor mation

On the assumption than deviation from global guigais less likely to lead the
goal, a local motion planning search space willriomed if it biases its search to
be most consistent with global guidance. We typjcake a global planner
which continuously provides a navigation functia@ogt from any point to the
goal) to the local planner. Given such informatibiis better to sample terminal
states at a higher density in lower global costoregyand at a lower density in
higher cost regions, as shown in Figure 4. Somepkes are retained in higher
cost regions because the low cost regions prodhgettie global planner may
not reflect actual dynamic constraints of the vighiand the global planner may
not be able to react quickly to perceived obstacles

minonm sampled
globul cost =>4

decrea
global cost

mm
j ] sampled —
= global cost

decreasing
global cost

il
-

(a) (b

Fig. 4: Focused Terminal State Sampling for Adapt8earch Space Generatiofhe ability tc
exploit global guidance via state space samplinmgegges local motion planning search spaces that
are denser in the direction of minimum global qestd therefore more likely to be obstafriee).
Examples ) and (b) shows the same setup from Figure 3duuiskd in the direction of minimt
global cost.

2.3 Model-Based Trajectory Generation

To generate each motion, the real-time model-basagkctory generation

algorithm in [3] is called for each boundary stasr in x,. A model-based

approach is used to determine the actual commanuireel to complete the
necessary motion. The vehicle model is importaaialse the mobile robot will
execute these commands directly. The model isf itstladeoff between speed
(dynamics are computed tens of thousands of tirmesgrond) and fidelity (how
well it can accurately predict the response toitipaits). We have found first-
order models of linear and angular velocity respoiasbe an effective tradeoff
that encodes the major constraints of motion félégib

In general, model-based trajectory generation teci®s can be used to solve
for motions for arbitrary vehicle state constrainpositions, headings,
curvatures, rates of curvatures, velocities, etc.Hgre, the trajectory generator
is only required to meet terminal position and he@dconstraints since the
vehicle will likely never execute the entire motsohetween replanning cycles.
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In contrast to terminal state, the full initial vele state X;) is necessary to
initialize the vehicle dynamic model used by thgoaithm.

2.4 Adaptive Search Envelope Deter mination

The envelope of the adaptive search space depermiglyh of the dynamic
limitations of the mobile robot. The horizon oktlsearch space shape should
adapt to the current speed because of brakingndistand obstacle avoidance
limitations. Likewise, the range of feasible teraliheading angles can vary
heavily for vehicles with small curvature or angwdaceleration limits.

An effective way to determine envelope is simplexthaustively sample control
space and record the extremes achieved in state.sgdis method would have
to be employed off-line and it could not be used ¥ehicles whose models
adjust over time. Another approach is to evalsateeral aggressive maneuvers
(such as max-turn right and left) to form rough sl on reachable positions
and headings at the horizon. This approach islsinf@st, and it can be used for
adaptive vehicle models so we have preferred it thee off-line method.

3 Experiments & Experimental Results

In order to evaluate the performance of our apgrotie adaptive search space
algorithm presented in Section 2 has been tested daries of simulation and

field experiments. The simulation experiments eoenparisons against arc-

based (uniform sampling in control space) localiomoplanner search spaces in
a series of randomized worlds. The field experimeonsisted of a series of
long distance missions. Sections 3.1, 3.2, 3.8, &4 discuss the vehicle test
platform, simulation setup, simulation results, disld experiment results and

observations respectively.

3.1 Vehicle Test Platform

The vehicle used for this series .
simulation and field experiments was.

steered mobile robot that is the curre
platform for the DARPA UGVC-Percepto
Integrated (UPI) project. The simulation .
uses the same simplified dynamic model @

delays and the linear and angulal b
acceleration limits) as the one used by t . 5 Crusher. The current platform

planning ~ system, so execution  Ofne pARPA UGCVPerceptOR Integrate
commands is nearly ideal. The fidelity ofup) program.
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the model is reduced in the field experiments, flects such as wheel slip and
sliding are not predicted as well on the vehicléhay are in simulation.

3.2 Simulation Setup

To test the effectiveness of this adaptive segpelees on a statistically significant
number of cases, a series of simulations were peed. The simulation

consists of a rectangular vehicle driving throughaadomly generated world
while trying to reach the goal waypoint on the othigle of the world. As the
vehicle traverses the simulated world the globahpér, Field D* [8], constantly
provides the global path to goal and a field (nati@n function) of path costs
surrounding the vehicle. The cost computed froendbnvolution of the vehicle
body along each trajectory, combined with the Dthpeost at the end of that
trajectory, comprises the score used to selecttréjectory to follow. That

trajectory is then followed during the next plarmicycle, and a new trajectory
selected at the end of that cycle. For simplidhg planner is not allowed to
perform any stopping or backup maneuvers and thachee speed is pre-
computed based on obstacle cost and density.

The simulated worlds used are a set of three, adedeeal-valued obstacle
fields filled with randomly positioned circular dbsles of different densities (a
single example is shown in Figure 6). The targetkesls in the high-, medium-,
and low-density obstacle fields were 1.5 metersfiséc6.0 meters/second, and
9.0 meters/second respectively. The vehicle mod#ie simulator is the same
vehicle model used by the trajectory generator {fier adaptive search space)
and the vehicle motion simulator (for the arc-basedrch space). To ensure a
fair comparison of search spaces in the test, thattadaptive and arc-based sets
are comprised of the same number of trajectori€). (9The arc-based set
forward simulates 99 different constant curvatwbgreas the adaptive set plans
motions to three different headings at each ofi§8rént positions biased by the
minimum D* path cost.

3.3 Simulation Results

One hundred simulated runs were performed for ethe local planner search
spaces. For each pair of runs one simulated vimdeénerated and both the arcs-
based and adaptive search spaces were tested brwahd. One of the
representative simulation runs comparing the twar@gches is shown in Figure
6. In all but one of the simulated worlds the dd@psearch space outperformed
the arc-based search space. On average, the lgqvatfalcost from the start to
the end states was 24.8% lower for the adaptivelsespace, demonstrating that
the improved flexibility and efficiency of the adafe search space provides a
performance advantage over constant curvature-aorgrsions. In the best and
worst cases, the adaptive search space had 79.6% land 20.0% higher
overall path cost respectively. Lower overall patbst directly relates to
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probability of mission success as higher cost megipose threats to vehicle
survival.

= = ADAPTIVE SEARCH SPACE
—— ARC-BASED SEARCH SPACE.

END

e i

COST FIELD
(WHITE = LOW COST, GRAY - HIGH COST)
- AN I J
1.5 M/SEC' SPEED REGION 6.0 NUSEC SPEED REGION 9.0 M'SEC SPEED REGION
Fig. 6: Simulation of arbased vs. adaptive search spaces. Each type odrmuiinning scherr
(arc-based and adaptive search spaces) was evhinaaepresentative simulated environmeint
this particular example, the adaptive search spase 43.0% lower cost along the path.

3.4 Field Experiment Results

Variants of the adaptive search space have beegrated and field tested on
Crusher mobile robot (Figure 5). The algorithm destrated the capability to
dodge obstacles and reacquire paths at speedslZpneters/second in off-road
environments. Figure 7 shows an example of thallptanner utilizing the
adaptive search space from field data. The minirnast trajectory selected is a
swerve maneuver that avoids the high cost reginrié front right and left of
the robot. The new search space so consistentipedarms the older arc-based
one that it has replaced it in all field tests.

4 Conclusionsand Future Work

We have leveraged our own recent work
model-based trajectory generation to create
capacity to navigate effectively in difficul
environments while preserving inhere
feasibility of local motion plans. Key aspect
of the technique include explicit computatio
of the shape of the feasible set, and sampl
strategies that adjust the distribution

samples to exploit global guidance. T
benefits of the adaptive search space have b
demonstrated in simulation and confirmed raart -
off-road navigation. Fig. 7: Field Experiments of

Current and future work of this algorithn DYnamically Adaptive Search Spac

include more extensive field testing and refinenadrthe search space design to
more optimally represent the set of all feasibldioms of the vehicle at different
speeds. Also, a more gradual decay of the fidelftghe dynamic model (as
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opposed to the drop-off between the local and dlotmion planner) will lead to
robots that make better local decisions based wmeulynamic limitations.
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