Mixing Geometric and Radiometric Features for Change Classification

Alexandre Fournier 1 Xavier Descombes 1 Josiane Zerubia 1
1 ARIANA - Inverse problems in earth monitoring
CRISAM - Inria Sophia Antipolis - Méditerranée , SIS - Signal, Images et Systèmes
Abstract : Most basic change detection algorithms use a pixel-based approach. Whereas such approach is quite well defined for monitoring important area changes (such as urban growth monitoring) in low resolution images, an object based approach seems more relevant when the change detection is specifically aimed toward targets (such as small buildings and vehicles). In this paper, we present an approach that mixes radiometric and geometric features to qualify the changed zones. The goal is to establish bounds (appearance, disappearance, substitution ...) between the detected changes and the underlying objects. We proceed by first clustering the change map (containing each pixel bitemporal radiosity) in different classes using the entropy-kmeans algorithm. Assuming that most man-made objects have a polygonal shape, a polygonal approximation algorithm is then used in order to characterize the resulting zone shapes. Hence allowing us to refine the primary rough classification, by integrating the polygon orientations in the state space. Tests are currently conducted on Quickbird data.
Type de document :
Communication dans un congrès
SPIE, Electronic Imaging, Jan 2008, San Jose, United States. 2008
Liste complète des métadonnées

https://hal.inria.fr/inria-00269853
Contributeur : Alexandre Fournier <>
Soumis le : jeudi 3 avril 2008 - 10:05:07
Dernière modification le : jeudi 3 avril 2008 - 11:15:16
Document(s) archivé(s) le : vendredi 21 mai 2010 - 01:16:15

Fichier

inria-00269853.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00269853, version 1

Collections

Citation

Alexandre Fournier, Xavier Descombes, Josiane Zerubia. Mixing Geometric and Radiometric Features for Change Classification. SPIE, Electronic Imaging, Jan 2008, San Jose, United States. 2008. <inria-00269853>

Partager

Métriques

Consultations de
la notice

189

Téléchargements du document

82