Mixing Geometric and Radiometric Features for Change Classification - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2008

Mixing Geometric and Radiometric Features for Change Classification

(1) , (1) , (1)
Alexandre Fournier
  • Fonction : Auteur
  • PersonId : 848149
Xavier Descombes
Josiane Zerubia
  • Fonction : Auteur
  • PersonId : 833424


Most basic change detection algorithms use a pixel-based approach. Whereas such approach is quite well defined for monitoring important area changes (such as urban growth monitoring) in low resolution images, an object based approach seems more relevant when the change detection is specifically aimed toward targets (such as small buildings and vehicles). In this paper, we present an approach that mixes radiometric and geometric features to qualify the changed zones. The goal is to establish bounds (appearance, disappearance, substitution ...) between the detected changes and the underlying objects. We proceed by first clustering the change map (containing each pixel bitemporal radiosity) in different classes using the entropy-kmeans algorithm. Assuming that most man-made objects have a polygonal shape, a polygonal approximation algorithm is then used in order to characterize the resulting zone shapes. Hence allowing us to refine the primary rough classification, by integrating the polygon orientations in the state space. Tests are currently conducted on Quickbird data.
Fichier principal
Vignette du fichier
inria-00269853.pdf (826.92 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

inria-00269853 , version 1 (03-04-2008)


  • HAL Id : inria-00269853 , version 1


Alexandre Fournier, Xavier Descombes, Josiane Zerubia. Mixing Geometric and Radiometric Features for Change Classification. SPIE, Electronic Imaging, Jan 2008, San Jose, United States. ⟨inria-00269853⟩
122 Consultations
128 Téléchargements


Gmail Facebook Twitter LinkedIn More