D. Perkins, D. Pappin, D. Creasy, and J. Cottrel, Probability-based protein identification by searching sequence databases using mass spectrometry data, Electrophoresis, vol.447, issue.18, pp.3551-3567, 1999.
DOI : 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2

R. Gras, M. Müller, E. Gasteiger, P. B. Gay, W. Bienvenut et al., Improving protein identification from peptide mass fingerprinting through a parameterized multi-level scoring algorithm and an optimized peak detection, Electrophoresis, vol.157, issue.18, pp.3535-3550, 1999.
DOI : 10.1002/(SICI)1522-2683(19991201)20:18<3535::AID-ELPS3535>3.0.CO;2-J

F. Monigatti and P. Berndt, Algorithm for accurate similarity measurements of peptide mass fingerprints and its application, Journal of the American Society for Mass Spectrometry, vol.1, issue.1, pp.13-21, 2005.
DOI : 10.1016/j.jasms.2004.09.013

V. Bafna and N. Edwards, SCOPE: a probabilistic model for scoring tandem mass spectra against a peptide database, Bioinformatics, vol.17, issue.Suppl 1, pp.1-9, 2001.
DOI : 10.1093/bioinformatics/17.suppl_1.S13

J. Magnin, A. Masselot, C. Menzel, and J. Colinge, OLAV-PMF:?? A Novel Scoring Scheme for High-Throughput Peptide Mass Fingerprinting, Journal of Proteome Research, vol.3, issue.1, pp.55-60, 2004.
DOI : 10.1021/pr034055m

V. Dancik, T. Addon, and K. Clauser, De novo peptide sequencing via tandem mass spectrometry, Journal of Computational Biology, vol.64, issue.3, pp.327-342, 1999.

A. Frank and P. Pevzner, PepNovo:?? De Novo Peptide Sequencing via Probabilistic Network Modeling, Analytical Chemistry, vol.77, issue.4, pp.964-973, 2005.
DOI : 10.1021/ac048788h

J. Marlard, A. Heredia-langner, D. B. Jarman, and W. Cannon, Constrained de novo peptide identification via multi-objective optimization, International Parallel and Distributed Processing Symposium, p.191, 2004.

B. Searle, S. Dasari, M. Turner, A. Reddy, D. Choi et al., High-Throughput Identification of Proteins and Unanticipated Sequence Modifications Using a Mass-Based Alignment Algorithm for MS/MS de Novo Sequencing Results, Analytical Chemistry, vol.76, issue.8, pp.2220-2230, 2004.
DOI : 10.1021/ac035258x

A. Heredia-langner, W. Cannon, K. Jarman, and K. Jarman, Sequence optimization as an alternative to de novo analysis of tandem mass spectrometry data, Bioinformatics, vol.20, issue.14, pp.2296-2304, 2004.
DOI : 10.1093/bioinformatics/bth242

J. Holland, Adaptation in Natural and Artificial Systems, 1975.

A. Rockwood, S. V. Orden, and R. Smith, Rapid Calculation of Isotope Distribtion, Analytical Chemistry, vol.67, issue.15, pp.2698-2704, 1995.

S. Henikoff and J. Henikoff, Amino acid substitution matrices from protein blocks., Proceedings of the National Academy of Sciences, pp.10-915, 1992.
DOI : 10.1073/pnas.89.22.10915

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC50453/pdf

L. Davis, Adapting operator probabilities in genetic algorithms, Third International Conference on Genetic Algorithms, pp.61-69, 1989.

B. A. Julstrom, What have you done for me lately? adapting operator probabilities in a steady-state genetic algorithm, Proceedings of the sixth International Conference on Genetic Algorithms, pp.81-87, 1995.

M. Herrera, F. Lozano, J. L. Herrera, T. P. Verdegay, H. Hong et al., Adaptation of genetic algorithm parameters based on fuzzy logic controllers Heidelberg: Physica-Verlag Simultaneosly applying multiple mutation operators in genetic algorithms, Genetic Algorithms and Soft Computing, pp.95-125, 1996.

S. Cahon, N. Melab, and E. Talbi, ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics, Journal of Heuristics, vol.10, issue.3, pp.357-380, 2004.
DOI : 10.1023/B:HEUR.0000026900.92269.ec