N
N

N

HAL

open science

Multiservice Home Gateways: Business Model,
Execution Environment, Management Infrastructure

Yvan Royon, Stéphane Frénot

» To cite this version:

Yvan Royon, Stéphane Frénot. Multiservice Home Gateways: Business Model, Execution Envi-
ronment, Management Infrastructure. IEEE Communications Magazine, 2007, 45 (10), pp.122-128.

10.1109/MCOM.2007.4342834 . inria-00270938

HAL Id: inria-00270938
https://inria.hal.science/inria-00270938
Submitted on 7 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00270938
https://hal.archives-ouvertes.fr

ROYON LAYOUT 9/7/07

5:36 PM Page 2

—p—

ToPICS IN NETWORK AND SERVICE MANAGEMENT

Multiservice Home Gateways:
Business Model, Execution Environment,
Management Infrastructure

Yvan Royon and Stéphane Frénot, INRIA Ares/CITI, INSA-Lyon

1 See the MUSE Euro-
pean Project, IST-FP6-
507295, which partially
supports this work: http://
WWw.ist-muse.org

ABSTRACT

The home gateway market is undergoing
deep changes. On one side, home networks are
evolving, getting dynamic and federating more
and more devices. On the WAN side, new actors
appear, such as multimedia content providers.
From both sides emerge new features and new
management needs. In this article we highlight
challenges and benefits of moving more intelli-
gence to the home gateway, making it more than
a simple interconnection device. We argue that
we need a full-fledged execution environment on
gateways to address the evolution of business
models. We present this evolution and summa-
rize existing solutions for execution environ-
ments and management for home gateways.
Then we propose two improvements that reflect
the new requirements. The first improvement is
a high-level virtualization of service gateways,
and the second one recommends an end-to-end
dynamic multiprovider management system.

INTRODUCTION

During the last few years, the home gateway
market has evolved at a very fast pace. For a
time, it only consisted of bringing IP connectivity
to the home. Available services were common
application-level programs, such as Web or
email clients. Today, operators are moving to
integrate value-added services. Multicast TV and
voice over IP services are widely advertised;
their integration with data transport is referred
to as triple play. These three network-enabled
services are provided through either the same
connectivity box (the modem) or a dedicated
set-top box.

In the near future, operators plan to open the
service delivery chain.! The roles currently
assumed by the Internet access provider will be
split between connectivity provisioning and ser-
vice provisioning. Instead of being tied to a sin-
gle service provider for television and phone
over IP, the end user will have a variety of choic-
es and will gain from competition in both price
and diversity. This business model is referred to
as multiplay.

A model with multiple actors outlines new

challenges. The home gateway hosts a set of
configurable services, which can be operated,
controlled, or monitored by different service
providers. However, these important issues are
not sufficient to get the full picture. Indeed,
voice and video are not the only services that
can be of interest for home users: domotics,
entertainment, home security, and health care
are also potential markets. For a long time these
other services have been considered individually,
with separate networks, devices, and user con-
trol. By integrating them with the home network,
new use cases are possible.

As an example, a network-enabled white
good (e.g., an oven or a dishwasher) can be
monitored by its manufacturer. In case of failure
(e.g., if the temperature in a fridge rises above a
certain threshold), an alarm would be raised to
the home user and the nearest repairman. The
contents of a fridge or wine cellar can also be
monitored using sensors. The home user would
input preferences, or orders would be sent to the
nearest retailer. Many current projects focus on
providing help for seniors and the disabled at
home; these issues are known as quality of life.
For instance, the home gateway would monitor a
pacemaker or similar medical appliances, and
alarms would be forwarded to family members
and the nearest hospital.

All these examples show that the definition of
service must be broadened. It should not be lim-
ited to network multimedia flows, but also
include management facilities for in-home
devices (configuration, preferences, monitoring),
human-machine interfaces, and any kind of
application the home gateway may host. This
article refers to this extension as multiservice. We
keep this definition open so that future ideas
and applications can be seamlessly integrated.

The home gateway must undergo changes so
that the multiservice model can be implemented.
Indeed, home users should be able to use in-
home devices and set preferences regardless of
the status of the access provider’s network. This
means that most home-related settings should be
hosted inside the home. In the triple play model,
the home gateway already hosts or uses informa-
tion and configuration from both home users
(e.g., WiFi access point settings) and the access

0163-6804/07/$20.00 © 2007 IEEE

o

IEEE Communications Magazine ¢ October 2007

ROYON LAYOUT

9/7/07 5:36 PM Page 3

provider (e.g., last mile settings). Therefore, it
seems a natural choice to enhance home gate-
ways to be multiservice ready.

Our goal in this article is to provide mecha-
nisms for multiservice enhancements, which tar-
get both the OS layer and the management
plane. Figure 1 shows a management perspective
of the multiservice home environment. Three
realms interact around home gateways. The
access realm is the usual access provider, who
provides layer 1-4 connectivity to the gateway.
The user realm contains all interactions the end
user and local devices may have with the home
gateway. Third, the service provider realm repre-
sents the interactions between a service provider
and a service hosted on the gateway.

From an execution layer point of view, these
multiple realms and entities also coexist on the
gateway. This means that some level of software
isolation must be defined. The article is struc-
tured as follows. Each section focuses on both
the management layer and the execution envi-
ronment. We present existing solutions related
to home gateways. We define new requirements
that result from the multiservice model and the
enhancements that must be made to existing
solutions. We describe our testbed implementa-
tion of a multiservice gateway; results are
detailed later. Finally, we conclude the article.

OVERVIEW OF EXISTING HOME
GATEWAY ENVIRONMENTS

New business models bring new technical
requirements. With the connectivity-only model,
an auto-configuration sserver (ACS) provides
layer 1-4 parameters to the home gateway (e.g.,
Dynamic Host Configuration Protocol, DHCP).
There is only one ACS, hosted by the access
provider. With the triple play model, the ACS
must store additional intelligence and parame-
ters related to voice and video subscriptions.
Moreover, it manages not only the home gate-
way, but also other customer premises equip-
ment (CPE), such as set-top boxes for TV.

With the multiplay model, there might be
more than one ACS. Coherence and aggregation
of management activities from different service
providers to one particular home gateway
become a problem. With the multiservice model
described above, it is clear that more intelligence
must be put inside the home gateway, making it
a pivotal device in the home network. In this
section we first summarize existing management
solutions that evolve around the home gateway.
Then we present a panel of execution environ-
ments applicable to this particular device.

MANAGEMENT SOLUTIONS

With the triple play model, home users configure
their gateway and their services through the
Access Provider’s Web site. However, with the
multi-service model, there can be more than one
service provider; the home user may also interact
with in-home devices, whether the Internet access
is active or not. As a result, a single management
server, located outside of the home, is no longer
desirable. The solutions that exist for this prob-
lem can be categorized in two groups: wide area

User management Service management

]

& . Sets
e preferences

@ the gateway

Access management

M Figure 1. Management realms.

network (WAN) management protocols and
application/service management protocols.

WAN management protocols are network-
centric solutions that follow a three-tier architec-
ture: the manager (e.g., an ACS), the agent (on
the managed device), and the connector (for
translation between the former two). Existing
management technologies answer three ques-
tions: how the data is structured, which data is
available, and how the agent and connector
interact. Common examples are TR-069 from
the Digital Subscriber Line (DSL) Forum,
CIM/WBEM from the Internet Engineering
Task Force (IETF), and Simple Network Man-
agement Protocol (SNMP).

Application management protocols focus on
home device management, such as service dis-
covery and autonomous service description.
Examples are JMX in the Java world and UPnP.

An implementation of the multiservice model
can make use of several of these WAN and
application management solutions. The other
side of the story is that the home gateway must
support the management agent, but also other
applications, configuration facilities, and so on.
Such support is provided by the execution envi-
ronment.

EXECUTION ENVIRONMENTS FOR THE
HOME GATEWAY

With triple play and multiplay business models,
home gateways are becoming more than just
modems: they are resource-constrained comput-
ers. Their task is not only to transport network
packets, but also to filter them, support multi-
cast, be upgradeable, host application services,
and support user interaction. Two kinds of exe-
cution environments are popular in academia
and industry: GNU/Linux and OSGi.

Linux — The obvious trend at the moment is
that constructors are abandoning proprietary
operating systems that used to power their
modems in favor of Linux variants. There are
several strong advantages:

IEEE Communications Magazine * October 2007

o

ROYON LAYOUT 9/7/07 5:36 PM Page 4 $
I * Linux exists in different flavors, such as based on the OSGi specifications. They operate
Integrating uCLinux, which makes it adaptable to new on three levels. The first one is software man-

applications from
different providers,
making them work
together and
ensuring their correct
behavior, is time
consuming. One
possible answer is to
use type-safe
languages and
sandboxing
techniques.

2 hitp://www.osgi.org

architectures [1], including resource-con-
strained environments.

Source code is open and mainstream, and
so is tested by lots of users.
The programming model is standard C or

C++. Finding able developers is very easy.

It is then trivial to reuse existing applica-
tions for networking (firewalls), multimedia

(codecs), or management (agents for vari-
ous protocols, e.g., SNMP).

Current operating systems still suffer draw-
backs in multiservice environments. Integrating
applications from different providers, making
them work together and ensuring their correct
behavior, is time consuming. One possible
answer is to use type-safe languages and sand-
boxing techniques. The mobile phone industry
went this way with Java. The home gateway
industry is following the same path with OSGi.

0SGi Technology — In its early stages, OSGi
was designed specifically for open service gate-
ways.2 The OSGi service platform is a container
built on top of a Java virtual machine. It hosts
deployment units called bundles, which contain
code, other resources (pictures, files), and a spe-
cific start method. A descriptor file expresses
dependencies on other software pieces, among
other meta-data.

The OSGi platform automatically checks and
resolves dependencies among bundles. It also
dynamically controls bundles’ life cycles, and
enables hot deployment and update. This simpli-
fies the administrator’s work and improves sta-
bility.

The programming model is service-oriented
programming (SOP) [2], which is derived from
object-oriented programming (OOP). The driv-
ing motivation is to minimize coupling among
pieces of software. A service is an interface, or a
contract, that describes what a piece of software
does. How it is implemented is hidden internally.

The OSGi specifications keep the manage-
ment layer open, in the sense that it does not
impose a specific management protocol or tech-
nology. In real-life situations, several technolo-
gies can be combined to provide an end-to-end
management solution [3].

OSGi is becoming popular in academic com-
munities, but more so in industry. For instance,
some BMW cars use OSGi for noncritical tools.
Another example is the Eclipse development Kkit,
which rebuilt its whole plug-in architecture
around an OSGi framework, and most J2EE
implementations, which are or plan to be
redesigned as OSGi bundles. Actors interested
in home gateways are also adopting OSGi,
through the Home Gateway Initiative (HGI), a
telco-driven consortium.

HGI — The home gateway performs various
tasks, from protocol translation to quality of ser-
vice (QoS) enforcement to remote access. Since
most of these tasks are dynamic, configurable,
manageable, and can change over time, they
should be implemented by updateable software.
HGI [4] has defined operating system require-
ments for home gateways, which are largely

agement. It includes:
e Configuration of software pieces called
modules
* Management of their life cycles: install,
update, uninstall
* Dynamicity and security enforcement: mod-
ules registered and verified; their depen-
dencies resolved, then linked
* Resets for default configuration parameters,
and for firmware debug in case of low-level
failures
The second level is performance management
and diagnostics, which include:
* Remote diagnostic tests for hardware and
software elements
e Performance monitoring
* Support for events sent by the gateway.
The third and last level gathers definitions of
users in presence:
e A super-user (the ACS), in control of every-
thing that is manageable
* A local administrator, in control of local
management (e.g., firewall, users)
* End users, with permissions set by the local
administrator
Current projects on home gateways are led by
the HGI specifications, the OSGi platform, and
management technologies. However, they lack
the integration of the multiservice business
model. They still focus on models with a single
access and service provider hosting a single ACS.
Our goal is to enable the multiservice model,
from both the management layer and execution
environment points of view. The next section
lists the requirements for these two issues.

REQUIREMENTS FOR
MULTISERVICE HOME GATEWAYS

A multiservice home gateway hosts various ser-
vices, applications, and so on from several ser-
vice providers. The fact that these service
providers can be separate entities has an impact
on both the management layer and the execution
environment.

MANAGEMENT REQUIREMENTS

Figure 1 shows that the actors around the home
gateway use the management layer for different
purposes. In the multiservice model, manage-
ment should not be classified according to net-
work span (LAN, WAN) or open systems
interconnection (OSI) layer (IP, TCP), but
according to the goals and features of each
actor.

For example, a home user will set preferences
and configure devices using UPnP technologies,
flash interfaces, or proprietary solutions. An
access provider will configure layer 1-4 parame-
ters and manage QoS using TR-069. Service pro-
viders may prefer JMX or SNMP to monitor
their services.

With these examples in mind, we can express
management requirements as follows:

* Each actor around the gateway (home user,
access provider, and each service provider)
can use its own dedicated management

o

IEEE Communications Magazine ¢ October 2007

ROYON LAYOUT

9/7/07 5:36 PM Page 5

—p—

agent.

* Technologies used for management agents
are heterogeneous.

These two points allow management activities
to be isolated from different actors in terms of
network flows. We must also address separation
local to the gateway in terms of runtime execu-
tion.

OS REQUIREMENTS

HGI requirements work well in a single-provider
scenario with a single ACS. However, they fall
short on several points in the case of an open
multitier environment. Indeed, different service
providers, potentially competitors, may deploy
modules on the same home gateway. These mod-
ules may contain business-critical code or data,
or simply give away information on the client
base, configurations, or implementation perfor-
mance. They may also contain malicious or
buggy code, which could endanger all modules
present.

Therefore, the need for isolation among
actors present at the software level dictates the
following additional requirements:
¢ Definition of users:

—Service or software providers can be seen
as users on the home gateway, similar to
multi-user execution environments. These
users need a secure authentication phase
and a secure session for all activities on the
gateway, such as module deployment.

—A root user controls users allowed on the
system. S/he also checks overall resource
consumption, and may take coercive mea-
sures against users that threaten to starve
resources.

Isolation and sharing of modules:

—Modules from different providers (users)
must be isolated by default; that is, a user
can only see and interact with its own mod-
ules.

—A single instance of some modules may be
shared among all users on the home gate-
way. This is useful for libraries (e.g., codecs)
or common modules (e.g., a Web server).
Remote access for management features.
Preferences and configuration can be stored
locally if they represent private information
or are not related to an ACS.

Now that we have described the changes mul-
tiservice gateways must undergo, the next section
shows how we implemented these changes using
OSGi.

A FRAMEWORK IMPLEMENTATION FOR
MULTISERVICE HOME GATEWAYS

OSGi offers important features for home gate-
ways: service-oriented programming, dynamic
life cycle management, and dependency check-
ing. Unfortunately, it lacks concepts for the mul-
tiservice business model. To enable this model,
we propose improvements on two levels. At the
runtime level we implement a virtualization of
the OSGi framework [5]; at the management
level we provide an end-to-end JMX-based solu-
tion.

Common services Vendor-specific services

/-
UL

A\
000, o X

Virtual service
gateway

Virtual service
gateway

i

Service

M provider

|0'*Ma=wa§es 1 %

| Core service gateway

JVM

| Gateway

operator

M Figure 2. Multiservice, multiprovider home gateway.

OSGI VIRTUALIZATION

Software elements that belong to different pro-
viders must be separated. In other words, we
need some level of runtime isolation. Various
work already exists on this topic, such as BSD
jails, Xen, VServer or VMware. They propose
different levels of enforcement in terms of
resource isolation and namespace isolation,
which are a trade-off with performance.

For instance, Xen [6] runs separate copies of
a whole operating system for each isolated envi-
ronment. VServer [7] does not duplicate the ker-
nel, but still duplicates inodes on the file system
for each isolated environment. A BSD jail dupli-
cates only a portion of the file system, but does
not provide strong resource isolation.

In our case, following the multiservice model,
the chosen level of isolation must still allow to
share services on demand among different ser-
vice providers. This means that isolation should
be permissive. Moreover, we focus our imple-
mentation on Java/OSGi environments. As a
consequence, sharing applies to OSGi services
(which are Java interfaces). For scalability rea-
sons, duplicating a whole JVM for each isolated
environment seems overkill. Last, a home gate-
way has limited resources; typically 16 Mbytes of
permanent storage and 64 Mbytes of RAM.
These reasons led us to opt for a weaker but
lighter level of isolation than Xen’s or VServer’s.

Our approach is to embed OSGi as an OSGi
bundle. A “core” OSGi instance runs multiple
OSGi instances, all sharing the same Java virtual
Machine (JVM). Then the scalability factor is
only the price of virtualizing (or embedding)
OSGi.

The aim here is to give each service provider
a separate execution environment, as depicted in
Fig. 2. A virtual gateway is operated by one ser-
vice provider, who sees it as a standard OSGi
service platform.

The core service gateway is responsible for
launching virtual gateways. It is managed by a
gateway operator, who can also be the owner of
the gateway or the access provider. Operations
related to virtual gateway life cycle are subject to
contracts between a service provider and a gate-
way operator.

We now have an execution environment
where each actor around the home gateway gets
a little privacy. Service providers are only aware
of services running in their own virtual gateway.
The gateway operator ensures that allowed virtu-

IEEE Communications Magazine * October 2007

o

ROYON LAYOUT 9/7/07 5:36 PM Page 6 $
|
Our default ¢ OAGH U1 Brwewis: iiaget T St £5 v L
))] Sererm ' Gomiewoy Miuey | Rewswie Biwils (i Semvey uvege (R Liniss
implementation uses Y BIrEL T
" INE AT] PR LT 1 [
IJMX. For scalability TR T s 11011 e .
| Eal Tl
reasons, each JMX i . ATwE , o i I A
(TWE el Tervws
agent needs to be : Al hmmo
. . . | ACTME L e
lightweight in terms H S ot L
of memo ATHE JRin <o Agai Cavsii 1
“ ' acTH T W r
consumption. 2 s e

We use a modified

, iy g Tl REwERY A
version of MX4J that =
we stripped down Bermwir agger | Hemuie (48
and split using i T =

Service-Oriented
Programming.

PSP TR ST

M Figure 3. Monitoring console.

al gateways are up and running, but cannot
access their contents.

After ensuring isolation, we need to add a
controlled way to share code and services. Two
cases are considered. The first is services com-
mon to all actors on the home gateway. This
could be useful for an embedded Web server or
a generic fault logger. These common services
are hosted by the core gateway, and explicitly
exported to all virtual gateways. When a virtual
gateway is launched, it adds this collection of
shared services to its internal service registry.
The second scenario is for sharing code, such as
libraries. For example, a single instance of multi-
media codecs can be hosted by the core gateway
and shared with all virtual gateways. It is similar
to the previous case, except for the import/export
mechanism in OSGi (Java package vs. OSGi ser-
vice).

So far, we have described an execution envi-
ronment that supports the multiservice model.
The following describes the management frame-
work that runs on top of it.

AN END-TO-END
JMX-BASED M ANAGEMENT SYSTEM

Multiparty access to a gateway can be handled
using different approaches. One is to create a
specific entity naming scheme for each provider.
This means that each provider may access only a
subset of the whole management data. We chose
to define a virtual execution environment for
each service provider; thus, a service provider
sees a gateway as if it was the only one using it.
Each virtual gateway hosts its own management
agent, with the technology the service provider
chooses.

Our default implementation uses JMX. For
scalability reasons, each JMX agent needs to be
lightweight in terms of memory consumption.
We use a modified version of MX4]J that we
stripped down and split using SOP. Management
data in JMX is represented through MBeans,

which are Java interfaces. They follow the Java-

Beans model: get an attribute, set an attribute,

execute a method. Queries on an MBean are

redirected to a set of probes; we have imple-

mented probes that give access to:

¢ The OSGi framework: version number, cur-
rent running profile, and so on

* Bundles life cycle: start, stop, update, and
list bundles inside the current gateway

* OBR, the Bundle Repository: allows trig-
gering installation of a bundle on a remote
gateway

* Memory usage inside the JVM

* The underlying OS metrics: global CPU,
memory, swap, and disk usage

Core gateways also have an MBean to start,

stop, and list running virtual gateways.

Any bundle can come with its own MBean,
for instance, to represent management data for a
specific device or OSGi application. In this case
the MBean registers itself to the OSGi frame-
work as an OSGi service. The JMX agent, listen-
ing to service-related activities, automatically
registers the MBean; this effortless approach is
called the whiteboard pattern [8].

Finally, a remote logger implements the OSGi
Log service. It notifies a remote manager of
each event that occurs on the gateway.

The JMX agent and all MBeans are located
on the gateway. For remote interactions, queries
on MBeans are sent through connectors. In our
cas RMI and XML/HTTP are used.

We have developed a monitoring console
(Fig. 3) that dynamically discovers the list of
bundles on a gateway. Their associated MBeans
are gathered following the visitor design pattern
[9], then displayed in graphical tabs. This allows
management to be specialized depending on the
user’s service subscriptions, and reuse of the
console for each of the three realms presented
in Fig. 1.

o

IEEE Communications Magazine ¢ October 2007

ROYON LAYOUT

9/7/07 5:36 PM Page 7

—p—

RESuLTS
MEMORY PERFORMANCE

Figure 4 shows the amount of memory used on
our test system,? cumulatively by the OS, Java,
OSGi, and applications. On the x axis, we run
sample services that each allocate 1 Mbyte of
memory.* On the first curve, all services run in
the same gateway (single-user mode). The other
curves run each service in a separate virtual
gateway, with and without separate management
agents.

Our current implementation, which is not yet
optimized for size, shows a 3 MB memory over-
head per service provider using OSGi virtualiza-
tion and a JMX agent. There are no significant
CPU and disk overheads.

The memory overhead is not negligible, so
there is still room for improvement. However,
the advantage of this proposal is to enable
OSGi’s service-oriented programming between
multiple virtual gateways, without modifying the
underlying OS and JVM. Other options suffer
from either scalability, programming model or
availability. The first alternative is to launch one
JVM per user; scalability is one order of magni-
tude worse than OSGi virtualization, and the
OSGi framework would need heavy modifica-
tions to support SOP between JVMs. The sec-
ond alternative is to use a multi-task JVM. This
is the best compromise between scalability and
resource isolation; however, the only implemen-
tation that we know of [10] runs only on big
SPARC/Solaris systems. A last alternative is to
use lower-level isolation such as Xen. This offers
the best resource isolation available; however,
service oriented programming between Xen
instances is yet to be achieved. With current
implementations, we would need to run one
JVM per Xen instance, with the downsides cited
above.

MANAGEMENT PERFORMANCE

The management layer is evaluated by measur-
ing response times. On Fig. 5, the thin black
curve is the pseudotheoretical load induced by a
simple probe: getCPU(). Its shape isy = o/x +
B. o can be seen aty = 100 percent CPU; it is
the response time for getCPU () with zero net-
work delay. B is the residual load when the gate-
way is not running any particular application;
this is also called system noise. The curve is
obtained by measuring two arbitrary points, e.g.,
at 100 and 400 ms period.

The thick green curve is the experimental
load. It calls the getCPU () probe at various
periods, ranging from every 1000 ms to every 10
ms. The peaks on the curve correspond to
garbage collections on the system under scrutiny.

The figure shows that, if we allow the man-
agement system to use no more than 5 percent
CPU time, the getCPU () probe can be polled
every 500 ms. With around 10 users on the gate-
way, each Service Provider can poll a simple
probe every 5 seconds without encumbering the
CPU.

Memory usage (Mbytes)

0 1 1 1 1

—e—Single user ;(__ e L _‘L
60 -©-Multiple users / @___e___e___g——{)"
- x—Multiple users with management| /

0 2 4 6 8

12 14

Number of services (1 Mbyte each)

M Figure 4. Memory performance on a 64 MB machine.

100

92 |
80 |-
70 |
60
50
40 |-
30
20 |
10 |-
0 1 1 1 1 1

Percentage

{

0 100 200 300 400 500 600
ms

[Polling period vs. CPU load |

800 900 1000

M Figure 5. Load induced by management probes on a 133 MHz machine.

lier, we have addressed some of them, and left
others open. Here is the status of what works
and what needs improvement.

Technical Definition of Users — Users (i.e.,
service providers) are defined as managers of
virtual gateways. Each user has its own manage-
ment agent and management data in its own vir-
tual gateway accessible via its own port number.
Thus, users are isolated from a management
point of view. Moreover, each user chooses its
own technology; we use JMX, but SNMP bun-
dles are available on the OSGi Bundle Reposito-
ry (http://www2.0sgi.org/Repository).

We have not yet addressed user authentica-
tion and secure session. We plan to use SSL-
enhanced connectors for this.

The last requirement in this category is that
the root user be able to take coercive measures
against users that use too much resources. This
needs further work, since resource control for
Java-based embedded systems is still a hot topic.
We plan to use a feature similar to Linux’s Out-
Of-Memory OOM)-killer: when too much mem-
ory (or CPU) is used system-wide, the root

3 An average home gate-
way has a processor
around 266 MHz, 64
Mbytes of memory, and
16 Mbytes of storage. We
have run performance
tests on an Epia (1 GHz
Nehemiah CPU, 64
Mbytes of RAM) running
a Sun JDK 1.5 with
default parameters, with
the Felix OSGi implemen-
tation.

4 1 Mbyte is enough to
host, say, several small
games, embedded appli-
cations, and tiny Web
servers. Our own
UPnP/audio-video control

SUMMARY locates the most consuming thread and Kills its point uses 600 kbytes of
Looking back at the requirements expressed ear- virtual gateway. If the thread belongs to the memory.
IEEE Communications Magazine * October 2007 7

o

ROYON LAYOUT 9/7/07 5:36 PM Page 8 $
I oo, the related bundle should be killed. on the order of 10 times per minute without hin-
We propose a dering the CPU.
st Isolation and Sharing of Modules — We

OSGi-level isolation
of the execution
environment, where
we launch “virtual”
gateways (one per
Service Provider)
inside a “core”
gateway (controlled
by the operator).
Each core and virtual
gateway runs a
separate
management agent.

enforce namespace isolation between software
modules (OSGi bundles) that belong to different
service providers. This is weaker than resource
isolation, but has the advantage of being OS-
and JVM-independent, and it is production-
ready.

Service sharing has been implemented stati-
cally. When the root user creates a new virtual
gateway, the core gateway declares a list of ser-
vices to export. In the future we plan to export
this list dynamically.

Remote Access for Management —QOur man-
agement bundles contain connectors for RMI
and HTTP. Connectors for other remoting pro-
tocols are possible.

Local Storage for Preferences and Configu-
ration — We use a straightforward scheme to
isolate local storage among users. The Felix
OSGi implementation uses profiles to cache
bundles and data related to bundles. Each virtu-
al gateway has its own profile, with its own cache
directory. Bundles usually access files via the
bundleContext.getDataFile () OSGi primi-
tive, which only allows them to reach this private
directory. We still need to stop malicious bun-
dles that try to open FileInputStreams on
other users’ cache; Java permissions allow this.

Our code is available under open source
licenses. Management-related projects are inte-
grated within the Apache Felix project [11], dis-
tributed under the ASL license. The code for
OSGi virtualization is also written for Felix, and
can be obtained on demand under the CeCILL
license.

CONCLUSIONS

Business models around home gateways are
evolving, and will inevitably open the door to
new actors and new services. The immediate
conclusion is that the execution environment on
the gateway must be split into isolated areas
dedicated to different service providers, and that
each actor needs autonomy and choice in terms
of management solutions.

We propose a lightweight OSGi-level isola-
tion of the execution environment, where we
launch “virtual” gateways (one per service
provider) inside a “core” gateway (controlled by
the operator). Each core and virtual gateway
runs a separate management agent. This enables
namespace isolation; it is weaker than Xen’s or
VServer’s isolation mechanism, but it scales rea-
sonably on resource-constrained devices and
allows OSGi services to be shared between core
and virtual gateways. On top of this, we provide
an end-to-end management infrastructure
(probes, agent, and monitoring console) that
take virtual gateways and multiservice con-
straints into account.

We show that a simple implementation allows
hosting on the order of 10 service providers on a
typical home gateway, with enough memory to
run, say, a UPnP/audio-video control point.
Each service provider can query simple probes

REFERENCES

[1] N. Fournel, A. Fraboulet, and P. Feautrier, “Booting and
Porting Linux and uClinux on A New Platform,”
Research rep. 206- 08, LIP / ENS Lyon, Feb. 2006.

[2] G. Bieber and J. Carpenter, “Introduction to Service Ori-
ented Programming,” 2001; http://openwings.org/
download/specs/ServiceOrientedIntroduction.pdf

[3] J. C. Duenas, J. L. Ruiz, and M. Santillan, “An End-to-
End Service Provisioning Scenario for the Residential
Environment,” /[EEE Commun. Mag., vol. 43, no. 9,
Sept. 2005, pp. 94-100.

[4] HGI, “Public Deliverable v1.0,” July 2006; http://www.
homegatewayinitiative.org/publis/HGI V1.0.pdf

[5]1 Y. Royon, S. Frénot, and F. Le Mouél, “Virtualization of
Service Gateways in Multi-provider Environments,”
Proc. 9th Int’l. SIGSOFT Symp.Component-Based Soft-
ware Eng., June 2006, LNCS 4063, pp. 385-92.

[6] P. Barham et al., “Xen and the Art of Virtualization,”
Proc. ACM Symp. Op. Sys. Principles, Oct. 2003.

[71 S. Soltesz et al., “Container-based Operating System
Virtualization: A Scalable, High-performance Alternative
to Hypervisors,” Proc. EuroSys Conf., Mar. 2007.

[8] OSGi Alliance, “Listener Pattern Considered Harmful:
The Whiteboard Pattern,” 2nd rev., 2004, http://www.
osgi.org/documents/osgi_technology/whiteboard.pdf

[9] E. Gamma et al., Design Patterns, Elements of Reusable
Object-Oriented Software, Addison Wesley, 1995.

[10] G. Czajkowski, L. Daynés, and B. Titzer, “A Multi-User
Virtual Machine,” Proc. USENIX 2003 Annual Tech.
Conf., pp. 85-98.

[11] Apache Software Foundation, “Felix OSGi R4 Service
Platform Implementation”; http://felix.apache.org/

BIOGRAPHIES

YVAN ROYON (yvan.royon@insa-lyon.fr) received his M.Sc.
and M.Eng. degrees from INSA Lyon, France, in 2004. He is
now a Ph.D. candidate, jointly at the CITI laboratory and
on the INRIA Ares team. He is also a teaching assistant in
the Telecommunications and Networking Department. His
research interests include multi-user middleware, P2P
deployment, and service management in GNU/Linux.

STEPHANE FRENOT (stephane.frenot@insa-lyon.fr) is an associ-
ate professor at INSA Lyon, France, and a researcher at the
CITI laboratory and with the INRIA Ares team. He received
his Ph.D. in computer science in 1998 from the University
of Lyon I, France, on the topic of distributed systems for
medical care. Since then he has worked on several projects
in the areas of application servers management and dis-
tributed middleware. His current research interests include
service-oriented programming, middleware instrumentation
and management, Java-based middleware for resource-
constrained devices, and security in component-based mid-
dleware.

o

IEEE Communications Magazine ¢ October 2007

