N

HAL

open science

Monitoring Scheduling for Home Gateways

Stéphane Frénot, Yvan Royon, Pierre Parrend, Denis Beras

» To cite this version:

Stéphane Frénot, Yvan Royon, Pierre Parrend, Denis Beras. Monitoring Scheduling for Home Gate-
ways. IEEE/IFP network operations and management symposium, Apr 2008, Salvador de Bahia,

Brazil. pp.411-416, 10.1109/NOMS.2008.4575162 . inria-00270941

HAL 1d: inria-00270941
https://inria.hal.science/inria-00270941
Submitted on 7 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00270941
https://hal.archives-ouvertes.fr

Monitoring Scheduling for Home Gateways

Stéphane Frénot, Yvan Royon, Pierre Parrend and Denis Beras
INRIA ARES / CITI, INSA-Lyon, F-69621, France
tel. +334 72 43 64 22 - fax. +334 72 43 62 27
{firstname.lastname } @insa-lyon.fr

Abstract—In simple and monolithic systems such as our

current home gateways, monitoring is often overlooked: the home
user can only reboot the gateway when there is a problem. In
next-generation home gateways, more services will be available
(pay-per-view TV, games...) and different actors will provide
them. When one service fails, it will be impossible to reboot the
gateway without disturbing the other services.
We propose a management framework that monitors remote
gateways. The framework tests response times for various
management activities on the gateway, and provides reference
time/performance ratios. The values can be used to establish a
management schedule that balances the rate at which queries can
be performed with the resulting load that the query will induce
locally on the gateway. This allows the manager to tune the ratio
between the reactivity of monitoring and its intrusiveness on
performance.

I. INTRODUCTION

During the last years, the Home Gateway market has
evolved at a very fast pace. The business model has evolved
from plain IP connectivity to triple play (voice, video and
data). These 3 services are provided by a single entity: the
internet access provider. In the close future, the business model
will move to multi-play [1], and enable the management of
smart homes [2]. The idea is that different sets of services,
such as TV on demand, games, or home security, can be
developed and deployed by various business entities other than
the access provider. To push this idea further, different services
will be delivered by various providers depending on the home
user’s choices.

Such a business model has a strong impact on their under-
lying technical infrastructures. Indeed, each service provider
should be able to manage his own services. For instance, if
the service is to monitor a pacemaker for an elder person, the
hospital (or whoever is providing the service) should access the
pacemaker’s data as directly as possible. It is not acceptable
that monitoring data is lost because the grandchildren are
watching TV.

From the network point of view, the solution is to grant
a certain Quality of Service to each provider, or even to
each service. However, we must also look at the system point
of view: home gateways have limited processing power, and
management activities do have an impact on CPU utilization.
Simply put, the more often a manager sends requests, the more
accurate management data he will get. However, the CPU load
will increase, until a threshold where services will not be able
to run correctly.

We propose a management framework for home gateways
that determines this threshold. It is implemented on top of

Java/OSGi, using JMX. Section III gives a quick overview of
JMX and OSGi. In section IV, we show how we can evaluate
the cost of a getAttribute () request, namely a request to
get the CPU usage on a gateway. Finally, section V describes
a way to schedule management activities so that their cost in
processing power are under control. Section VI concludes this
work. !

II. RELATEDWORKS

We now present the state of the art in management of
Java-based systems. An overview of the existing solutions
is provided, and the JMX management opportunities, that
emerges as one versatile solution for java applications. Until
recently, the principal management technology has been the
SNMP protocol. It brings with it a complete management
framework, in particular data handling facilities with the MIB
(Management Information Base). SNMP can also be used
in home systems [3], as JMX is. However, no real integra-
tion with applications is provided, which makes the latter
approach more relevant when high-level software systems
must be managed. However, application management must be
performed carefully, so as not to impair the system functions
with management-related performance overhead. This question
has been studied in the context of Web Services [4], and for
EJBs [5], or with a focus on Operating System management
[6]. The performance question for OSGi management will be
discussed in detail in this paper. IMX is the Java Management
Extension [7]. It is meant for managing and monitoring Java-
based systems, through a so-called Agent that supervises
probes. The probes are accessed through MBean interfaces.
JMX is part of the Sun Java project, and is the subject of
two complementary specifications: the SUN JSR 3, ‘JavaTM
Management Extensions (JMXTM) Specification’ 2, and the
‘SUN JSR 160: JavaTM Management Extensions (JMX) Re-
mote API’ 3. Several tools have been developed to exploit the
JMX functionalities. The JConsole [8] is the sun monitoring
and management tool. MX4J 4, which is an Open Source
implementation of JMX, also provides a set of JMX-related
tools. So as to provide a full control over the managed systems,
which is often built out of several elements, IMX must be
integrated in a suitable framework. Jasmine5 is such a man-
agement framework for enterprise applications, developed in
the frame of the ObjectWeb Consortium. It aims at managing

This work is partially supported by the IST-6thFP-507295 MUSE Euro-
pean Project

the various parts of N-Tiers systems ,such as Java EE, Message
oriented Middleware, and Services Oriented Architectures).
The intensive use of JMX for management brings scalability
questions. This problem has been studied by [9], and will be
further discussed in this paper. The specific instrumentation
of OSGi platforms with JMX management facilities is more
recent, and few powerful solutions exist. The Jasmine Project
provides its own OSGi Console, which is rather simple,
since it only lists OSGi Gateways and installed bundles. We
developed a complete JMX Management Framework for the
OSGi platform. The principle of our approach is presented
in [10], and the core functionalities are shown is [11]. The
current work introduces additional functionalities, and discuses
performance optimization of JMX-based Management.

III. A MANAGEMENT ARCHITECTURE FOR HOME
GATEWAYS

In previous works, we have designed a JMX-based frame-
work for home gateways [12]. It comprises a remote console,
and software that runs locally on each gateway. In JMX, such
software is:

o JMX agent: a singleton application that registers Java
management interfaces called MBeans;

+ MBeans: Java objects registered whithin the agent, and
accessible by a public Java interface. Standard MBeans
can provide 3 kinds of methods: get the value of attribute,
set it to a new value, and invoke a method;

o Connectors: handled by the agent, they allow to access
MBeans remotely, in our case using HTTP or RMI;

e Probes: feed management data to MBeans when perform-
ing get or set queries. Probes are implementation-specific,
and are hidden by the MBean interface.

The role of the MBean is to provide information from the
managed system to the remote manager. The information can
be provided in two ways: through a solicitation from the
manager (Response/Request), or through a notification from
the MBean itself (Notification). The JMX specification enables
various kinds of MBean (standard, dynamic, models and open)
and various kinds of MBean behaviors (thresholds, relations,
measurements); this study focuses on standard MBeans with
get / set / invoke methods.

We have implemented these software parts as OSGi plug-
ins (called bundles). The OSGi [13], [14] specifications define
a framework that manages the life cycle of applications.
These applications can be downloaded from a remote location,
started, stopped, updated, removed. Finally, applications can
also express dependencies towards other applications. The
framework automatically checks that dependencies are met,
and refuses to launch an application otherwise. The OSGi
specifications do not specify any management architecture to
control gateways. We have developed a JMX framework that
enables the remote monitoring of OSGi based home gateways.
The framework uses a JMX agent located on the framework,
and an RMI (or HTTP) connector that enables the connection
between an agent and a manager. We have also developed
our own management console that connects to the agent. The

entire framework is available in Apache Felix [15], an open
source OSGi implementation. The management subproject is
called MOSGi.

When managing a remote gateway, two interaction schemes
are available: request/reply and notifications. With request/re-
ply interactions, the manager periodically polls the gateway for
values (memory, bandwidth. . .). With notfications, the gateway
sends messages either on a timer basis or on a threshold basis.
In both interaction schemes, management activities do have
a cost in terms of processing power. This load corresponds
to the various probes running on different threads and to the
agent that maintains remote connections and a registry of
current MBeans. Our concern is that the remote gateway has
limited resources. These resources are shared between both
user services (TV, voice, games) and management activities.
This paper tries to elaborate a way to determine the volume of
management activities that can be imposed on a home gateway
without disrupting user services.

IV. MANAGEMENT COST EVALUATION

Managing home gateways has to cope with 2 opposite
visions. When something goes wrong the gateway operator
should be warned as early as possible. But in order to
achieve this, the gateway needs to handle an extra management
activity that burdens the gateway. The question is simple:
supposing that a figure under 5% of resource consumption
is not intrusive, how often can a manager query management
data? The quantity is expressed as the number of requests per
second (or minutes) that can be sent. This measure reflects the
response time an administrator can expect on a remote device.
A similar question has been addressed in [16] for managing
networking equipment.

A. CPU measurement

As a first approach we are working in request/response
mode. Figure 1 shows the CPU consumption that is induced
when querying the CPU utilization ratio.

100 Y —
95

S 6 7 & 9 10 11 12 13 1& 15 16 17 18 13 20 21 22 23
s

Fig. 1. Cpu Monitoring

In this example the polling is made every 9 seconds and
the probe returns its value in 3 seconds. If the gateway does
nothing else than reacting to this query, it should present a
load of 33%. It is easy to understand that the load average is
directly related to the execution time (in CPU cycles) of the

getCpu method. In the Unix world, the /proc/stat file
holds data needed by the getCPU probe. The generic pseudo-
algorithm of the probe is the following:

public int getCPU(){
open (/ proc/stat);
int currentldleValue=readldleValue ();
int cpu=(currentldleValue—oldIdleValue)/ Duration;
oldIdleValue=currentldleValue;
close (/proc/stat);
return cpu;

Listing 1. Pseudo-code for the getCPU probe

B. Determining the cost of the CPU probe

In order to manage a remote device, we need to know at
which rate we can request data from it, and which quantity
of data we can get in each request. The more requests by
minutes, the fastest we can identify a fault, but the more load
we put on the remote device. The theoretical curve obtained
is shown in figure 2 (smooth curve). This is a direct way of
obtaining the request rate the manager can apply. According
to these estimations, if the manager asks for the cpu every
250ms he will generate a cpu load of 17%. If he asks every
2s the rate drops down to 2%. Of course if the observation is
made every 2s, the system cannot identify the failure and the
end-user can feel a service disruption.

The next section is a proposal to automatically obtain this
curve. Knowing this curve, a manager can elaborate a manage-
ment schedule among the various equipment available. This
management planning should enable a fast decision making
without disrupting the user’s services.

V. A FRAMEWORK FOR MANAGEMENT SCHEDULING
A. Determining the cost of a management probe

As was presented in the previous section, we want to find a
way to establish the consumption curve. The curve establishes
the CPU rate involved by the management system. We have
developed two approaches: the first one is empirical, and tries
various requests rates; the second one is theoretical and finds
significant points that allow to deduce the curve.

In the empirical approach, we define a series of rates at
which the remote equipment is solicited. After setting these
rates, the management console triggers a value request for each
of them. This test, run on a LinkSys NLSU2 equipment, gives
the second curve (not smooth) on figure 2. The values start at
97% which means that whatever the manager does, he will not
be able to load the remote system more than 97%. We also
see that there is an asymptote at about 0.5% which represents
the average load without any activity. This load is achieved
for a probing period of approximately 2s. So if we want not
to disrupt the load of the managed system, we can make one
request every 2s. A more important information is that we can
see that the curve has the & + 8 form. Below we try to find
the theoretical curve in a faster way, in order to determine the
probing period that match 5% of system load (which can be
considered as negligible) efficiently.

%+ is a trivial curve. The (3 parameter represents the load
without activity and the o parameter represents the peek load
that the management system can put on the remote equipment.
For instance, if the period is 1s for a 100% load, it is trivial that
for a 2s period the load should be 1/2 which correspond to 50%
load (with the § parameter approximation). So the problem
is to find a way to extract the « and (3 parameters of this
curve. We have build an application that makes two measures
and extrapolates the curve. For the first point, the application
sends requests as fast as possible and for the second point, the
application tries a long period of requests.

Figure 2 compares the two curves previously presented.

s S ~—————
——
250 st 750 L0 150 50 1750 200
ms

Fig. 2. Estimated load curve and empirical results

The smooth curve is the one deduced from the significant
points. The other one represents the empirical measurements.
We see that testing all values or taking only two measures lead
to similar results. The next step is to choose the 2 points that
allow to quickly calculate the estimated curve.

B. A management tool for evaluating the cost of a probe

We have integrated the tool to make these evaluation in
our management architecture. It relies on a management agent
residing on the remote equipment which reacts to requests
from the management console. The management console has
the following user interfaces:

Fig. 3. Management Console: Empirical tab

The left part of the user interface (figure 3) enables the
selection of the remote equipment. The right top part of the
interface enables the input of parameters. In the sample the

user wants to test request periods from 1500ms to 10ms of
delay with a step of 50ms. When he validates the value, a se-
ries of testing periods is provided (the top Java TextArea). The
minimal probing period is an important value, it tantamounts
to the maximal rate of information retrieval by the manager.
If periods are too short, tests are biased with the time the
probe needs to perform the calculation. One bias is linked
to the access to /proc/stat: the delay can interfere with
measurements. The other bias is linked to management timers:
Linux cannot provide precise data if the querying is too fast.
In order to absorb these two bias we define the Minimal period
time for a CPU calculation value, which force the request/reply
cycles at least to this value. The value corresponds to the
minimum delay at which the system will be loaded for a period
of time. Finally if the user clicks on the ’Launch empiric’
button it will generate a series of queries for each period, and
provide the corresponding curve.

The second tab ”"CPU attribute test” of this user interface
drives to the ¢ + (3 curve production. Figure 4 shows this
interface. The upper zone enables the user to choose the tested

Fig. 4. Management Console: % + 3 tab

probe and the time duration of the test. When he presses the
launch button, the system chooses automatically two periods
to test and determines the o and [parameters from a curve
extrapolation.

We implement some heuristics in order to choose these two
periods:

o The second result should be at least 70% lower than the
first one. If the first value generates 97% of CPU load,
the second point should be evaluated somewhere where
the result is lower than 29%.

o The same number of requests must be executed for the
points determination. This balances the garbage collect
activity.

o The system should control that the activity without man-
agement is stable during the tests. This means that before,
between and after the tests, the activity is stable.

As a conclusion, our approach enables a fast evaluation of
the management cost of the CPU probe. The curve can be
determined with two significant points. In the next section,
we extend this to the evaluation of all available probes.

C. A generalisation of scheduling for any management probe

In the previous section we showed that we could evaluate
the cost of the CPU probe for a low end system. Since the
remote equipment is managed in a multi-service environment
we think that not only the CPU cost should be evaluated. In
many business scenario the CPU load is not relevant and many
other values can be more important. Significant values can be
either “classical” ones, like available memory or bandwidth,
but it can also be more specific ones such as “how many
services are deployed” (platform management data) or "how
many beers are in the fridge” (application level data). Provided
we have the corresponding MBean , the framework is are able
to evaluate the cost for any probe. We automate the process
of evaluating any remote probe. Figure 4 shows the associated
user interface. The service manager selects the probes he wants

0SGi GUI Remote Manager

—_— . R
| Attribute tester] Bundles List | Al wer \VOSGi Platform | Attribute accessor

M ute

‘ Refresh || Save H Save on H Load H Load from

MEBean object name
TabUlname = Altribute¥iewsrProbe
TabUl name = Aitribute¥iewerProbe
TabUlname =AnributeYiswerFrobe
TabUlname = Altribute¥iewerProbe
TabUl narme = Aitribute¥iewsrProbe
TabUlname = AttributeiewerProbe
TabUlname = Altribute¥iewerProbe
TabUlnarne = Altribute¥iewsrProbe
TabUlname = Aitribute¥iewerProbe
TabUlnarme =Attribute¥iewerProbe

Artribute name
OsrmemT olal 0.0
ThreadCount
TEST_LoagerDecrease 0.0
BundleMame

£05T {rns)

Mothing 0.0
TEST _LoggerToString 0.0
OSmemBuffers
OSmemtCached

ERES =E

28 525
2

ol o

Wi~y) b

R 5O
n

[1»

TE‘F-_Eventhgger 0.0
UsedCpuandinitialize 0.0

TabUl nare = Altribute¥iewsrProbe IyAMtConc 0.0

TabUlname = Aitribute¥iewerProbe OSmermFree 44221

TakUknarme = Attriaueyiswerfrobe OsfreetemnOnT otalMert 0.0

TabUlname = Altribute¥iewsrProbe Work100ms 0.0 =
TabUlname = Attribute¥iewsrProbe RunGc 0.0

TahUlname=AributeT esterProbe Cpudndinitialize
TabUliname = AltributeTesterProbe Cpu

TabUl nare = AitributeTesterProbe BundleMame 0.0
TahUlname=AtributeT esterProbe Gt 0.0 -
TabUliname = AltributeAccessor BundleMame 0.0 =

=

Fig. 5. Attribute CostResult

to evaluate. For each probe the framework evaluates the delay
(minimal time between each probe request) that corresponds
to an increase of 100% of the remote equipment load.

Figure 5 shows results for some tested probes. For ex-
ample the OSmemFree probe costs 44.221ms which means
that requesting OSmemFree probe every 44ms will increase
gateway CPU activity by 100%. So If we want a 5% load,
the corresponding period is i.e. 884ms. The 0.0 values just
indicates that probes are not tested yet.

These data can be used to elaborate a management plan.
This plan indicates which and when each management probe
can be requested. For instance if the manager asks the OSmem-
Free value every 884ms and the Cpu probe value every 820ms
we will have an increased CPU load of 10%. This management
plan is a fundamental concept where the manager needs to find
the right balance between the reaction time he wants and the
load put on the remote equipment. The more reactive he wants
to be, the more load he puts on the remote site. Establishing
the plan a-priori can lead to a better anticipation of the system
evolution.

D. Results

We validate our framework on three classes of systems: 1)
an Intel dual core running a desktop environment, 2) an EPTIA

1000Mhz simulating a high-end multimedia home gateway,
and 3) a LinkSys NLSU2 representing a lightweight home
gateway.

All these system runs Gentoo Linux with the JamVM virtual
machine and Felix/MOSGi as the management system?. The
first question to answer is : is the theoretical curve compliant
with empirical tests”. Figures 6, 7 and 8 represent these two
curves for the 3 test environments. The curve with square
points represent the “empirical” approach the curve with round
points is the curve deduced from « and /3 parameter measures.

I —————

IS e e e s8-8
it

%

ms

|-n- "10:emp_thread -»-"18 resn\ve_equatinn_thread|

Fig. 6. Dual Core CPU cost

20
ms

25

[=-"4-emp_thread -s-"10-resolve_equation_thread]

Fig. 7. Via Epia 1000 CPU cost

The empirical approach for the dual core figure stops at 12%
load. This means that the manager cannot stress the remote
equipment to a big load. This is due to the fact that the dual
core is too powerful for the manager to be loaded. For the three
figures we see that the empirical and the « / 3 approaches
produce the same results. The latter is far faster since all the
curves are produced from two reference measures.

E. Monitoring

Once the service provider has determined which data he
wants to monitor and at which rate he wants to get information,
he sets these values on the monitoring management panel.
Figure 9 shows an example of remote monitoring panel. In this

ZAll the code is available as opensource

at
http://cwiki.apache.org/FELIX/index.html, and http://mosgi.gforge.inria.fr/

i
o
(T T—
W

D

T ———

500 750 1,000 1,250

ms

1,500 1,750 2,000 2,250 2,500

|--- "0:emp_thread -e-"6:resolve_equation_thread ‘

Fig. 8. LinkSys NLSU2 CPU cost

example the panel is targeted to a human administrator but it
can be aimed at an automated system based on thresholds and
alarms.

The monitoring console shows 2 periods (PI, PII). They
display monitoring curves for 4 probes (cl, c2, c3, c4). From
upper to lower curve :

o The cl curve is the OSmemFree probe,

e The c2 curve is the OSmemBuffer probe,

e The c¢3 curve is he Cpu probe,

¢ The c4 curve is the OSmemCached probe.

* G| et s et e e 4 4 4 4 4 4 4 4 4
I
s Pl PIl
to
5
c2
H
45 T
L0 | F
15 | |
[A—
& |
Ty | I
1 nrft -l
2 el T ol .
\
& 70
10 | Fx
x T n -
| AR R AR R I . o
Ycd A RS 0
0 2 . : = "
0000 <0000 ENIEE GLOO0 7GO3 80304 0LX0D LGWa0D (w00 -200) 30C00 JeCCN LSCOCC

ws

Fig. 9. Slug monitoring platform

In PI all probes request periods are set to 1s. So our
framework predicts a CPU load for cl to c4 respectively of
4.4%, 4.2%, 4.6% and 4.1%. We can see that the Cpu probe
returns an average value of about 17.5% which is about the
sum of the cl to c4 probes cost. In PII we want to specify a
request period for Cpu probe (c3) of 3s and for OSmemFree
(cl) of 2s which, according to our framework, generates a
CPU load of 3.6% total. So if we do not want to generate
more than 5% CPU load with our management plan, we set
request periods for the 2 remaining probes in order to generate
a maximum of 1.4% CPU load. In the figure we choose i.e
0.7% for c2 and 0.7% for c4 the system calculates a resulting
delay of 6069ms for c2 and 6623ms for c4.

A last use case of our system is to make benchmarking
between systems. We use our system both on a Felix OSGi

framework and on a Concierge OSGi framework. We observed
that the mean response time of most probes are slightly faster
on Concierge implementation than on Felix which confirms
that Concierge is optimized for small environments. These
benchmarking issues are rather easy to set up and the results
are directly observable with the monitoring platform.

Another use case we examined is to evaluate the quality
of probe implementations. Our system can compare CPU
consumption of similar probes in order to compare their
performance.

VI. CONCLUSION

We present in this article a monitoring framework that aims
at finding the balance between the frequency of remote queries
and the resulting CPU load on the managed equipment. The
monitoring process starts with an evaluation period where
monitored system probes are queried in order to establish their
characteristics. A probe characteristics is modeled with a curve

that represent the induced load in function of the query pace.
6]

The curve has an ¢ + (3 shape.

After having evaluated the curve a manager can elaborate
a query plan. This plan fixes for each probe the query pace
thus anticipating the resulting load induced by the management
layers on the managed system. The overload is then due to
other running applications. Of course one goal of the system
is to guarantee that the management layers do not cost too
much and that they stay below a certain limit.

This framework is aimed at home gateways; these run
services and applications that should be remotely managed.
Since those devices have quite limited resources, the man-
agement overload needs to be carefully tuned. The faster the
management queries are made the faster the service provider
can react to a perturbation, but the highest load he puts on the
gateway.

REFERENCES

[11 MUSE Project, “IST-507295 FP6,” http://www.ist-muse.org/, 2004.

[2] Baskar Sridharan and Aditya Mathur, “Infrastructure for the Manage-
ment of SmartHomes,” Software Engineering Research Center Tech
Report SERC-TR-177-P, January 2002.

[3] Radu State, Olivier Festor, and Isabelle Chrisment, “Context-Driven
Access Control to SNMP MIB Objects in Multi-homed Environments,”
in DSOM 2003, Self-Managing Distributed Systems, vol. LNCS 2867,
2003.

[4] R. Levy, J. Nagarajarao, G. Pacifici, A. Spreitzer, A. Tantawi, and
A. Youssef, “Performance management for cluster based web services,”
in IFIP/IEEE Eighth International Symposium on Integrated Network
Management, 2003.

[5] Markus Debusmann, M. Schmid, and M. Kroger, “Generic Performance
Instrumentation of EJB Applications for Service-Level Management,” in
NOMS 2002, Florence, Italy, ser. Lecture Notes in Computer Science,
M. Brunner and A. Keller, Eds. Springer, April 2002.

[6] Sujay Parekh, Kevin Rose, Joseph Hellerstein, Sam Lightstone,
Matthew Huras, and Victor Chang, “Managing the Perfomance
Impact of Administrative Utilities,” in DSOM 2003, Self-
Managing Distributed Systems, vol. LNCS 2867, 2003,
http://www.research.ibm.com/PM/RC22864.pdf. [Online]. Available:
http://www.research.ibm.com/PM/

[71 H. Kreger, “Java management extensions for application management,”
IBM Systems Journal, vol. 40, no. 1, pp. 104-129, 2001.

[8] M. Chung, “Using jconsole to monitor applications,”
Sun Whitepaper, = December 2004. [Online]. Available:
http://java.sun.com/developer/technical Articles/J2SE/jconsole.html

[9]

(10]

(11]

[12]

[13]
[14]

[15]

[16]

Abdelkader Lahmadi, Laurent Andrey, and Olivier Festor, “Perfor-
mances et resistance au facteur d’échelle d’un agent de supervision basé
sur JMX : Méthodologie et premiers résultats,” in GRES, 2005.

Eric Fleury and Stéphane Frénot, “Building a JMX management inter-
face inside OSGi,” Inria RR-5025, Tech. Rep., 2003.

Yvan Royon, Stéphane Frénot, and Frédéric Le Mouél, “Virtualization of
Service Gateways in Multi-provider Environments,” Component-Based
Software Engineering, 2006.

Yvan Royon and Stéphane Frénot, “Multiservice home gateways: Busi-
ness model, execution environment, management infrastructure,” /EEE
Communications Magazine, vol. 45, pp. 122-128, October, 2007.
OSGi Alliance, “http://www.osgi.org/.”

Dave Marples and Peter Kriens, “The Open Services Gateway Initiative:
an Introductory Overview,” IEEE Communications Magazine, December
2001.

Apache Software Foundation, “Felix OSGi R4 Service
Platform implementation,” http://felix.apache.org/. [Online]. Available:
http://svn.apache.org/repos/asf/incubator/felix/

P. Moghe and M. Evangelista, “grap - rate adaptive polling for network
management applications,” in NOMS 98, pp. 395-399.

