
HAL Id: inria-00271646
https://hal.inria.fr/inria-00271646

Submitted on 9 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Path-equivalent developments in acyclic weighted
automata

Mathieu Giraud, Philippe Veber, Dominique Lavenier

To cite this version:
Mathieu Giraud, Philippe Veber, Dominique Lavenier. Path-equivalent developments in acyclic
weighted automata. International Journal of Foundations of Computer Science, World Scientific Pub-
lishing, 2007, 18 (4), pp.799-812. <10.1142/S012905410700498X>. <inria-00271646>

https://hal.inria.fr/inria-00271646
https://hal.archives-ouvertes.fr

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

PATH-EQUIVALENT DEVELOPMENTS

IN ACYCLIC WEIGHTED AUTOMATA

MATHIEU GIRAUD∗

Bioinfo/Sequoia, LIFL, CNRS, INRIA Futurs, Université Lille 1
59650 Villeneuve d’Ascq, France

and

PHILLIPE VEBER

Symbiose, IRISA, INRIA, Campus de Beaulieu
35042 Rennes cedex, France

and

DOMINIQUE LAVENIER

Symbiose, IRISA, CNRS, Campus de Beaulieu
35042 Rennes cedex, France

Received (received date)
Revised (revised date)

Communicated by Editor’s name

ABSTRACT

Weighted finite automata (WFA) are used with FPGA accelerating hardware to scan
large genomic banks. Hardwiring such automata raises surface area and clock frequency
constraints, requiring efficient ε-transitions-removal techniques. In this paper, we present
bounds on the number of new transitions for the development of acyclic WFA, which
is a special case of the ε-transitions-removal problem. We introduce a new problem, a
partial removal of ε-transitions while accepting short chains of ε-transitions.

Keywords: Removal of ε-transitions, partial removal, weighted finite automaton, hard-
ware acceleration, chains of ε-transitions

1. Introduction

Weighted Finite Automata (WFA) are used to find occurrences of biological

patterns in genomic databases containing tens of gigabytes of data. Biological

patterns can be seen as regular or weighted expressions over the 20-letter amino

acid alphabet. They may represent the signature of a protein family, the features

∗giraud@lifl.fr

1

of a domain or the specific location of an active site. The usual length ranges of the

patterns are from a few amino acids to a few tens.

Today, with the exponential growth of genomic data, a pure software imple-

mentation of WFA is inefficient when dealing with large databanks. WFA can

be efficiently hardwired onto reconfigurable architectures (FPGA components) to

speed up the search of biological patterns, reducing computational time from hours

to minutes [3]. Hardware speed comes from the ability to compute all WFA states

simultaneously. Actually, genomic data (input string) are processed on-the-fly, and

the performance of a hardwired WFA is mainly determined by the input data rate.

Thus, the processing time becomes independent of the WFA size, and is only dic-

tated by the time for accessing all the items of the database.

1.1. WFA on Field Programmable Gate Arrays

FPGA (Field Programmable Gate Array) technology aims to bridge the gap be-

tween ASIC (Application Specific Integrated Circuit) components and conventional

microprocessors [5]. Any function or algorithm can be hardwired in a few millisec-

onds into such a programmable support. Compared to a Von Neumann machine,

which requires several programming steps, the result can be computed in a single

cycle. Compared to an ASIC of which implementation is definitive, its programma-

bility allows users to use a large number of different hardware configurations.

Basically, an FPGA is a matrix of Look-Up Tables (LUTs) with a flexible in-

terconnection (Fig. 1). Each LUT is a 2n-bit memory, which can be configured

to compute any 〈n 7→1〉 function (n binary inputs, 1 binary output). This LUT is

often tightly coupled with a 1-bit register. Recent FPGAs (2006) can hold up to

200,000 LUTs with 6 inputs.

abcd a ^ (b _ c)LUT
Fig. 1. Structure of an FPGA. On the left, the global structure. On the right,
detail of a 16-bit Look-Up Table (LUT) generating a 〈4 7→1〉 function.

The hardware implementation of WFA is a linear encoding scheme that maps

each state and each transition to a given logic cell. The limitations of such an

implementation are in the surface area of the circuit (related to the number of

transitions of the WFA and their bit width) and the clock frequency (related to the

critical path, see below).

Moreover, this implementation is valid as long as the WFA fits into FPGA com-

ponents. Unfortunately, biological patterns may require consequent reconfigurable

2

resources, particularly when insertion/deletion errors are considered. In that case,

insertions are modeled by cyclic transitions and deletions by ε-transitions. Re-

sulting WFA are thus much larger in terms of the number of transitions. From a

hardware point of view, the resources are directly related to the number of transi-

tions to hardwire. Hence, finding equivalent automata with less transitions is highly

beneficial.

Besides the automaton size, a direct hardware implementation of ε-transitions is

not realistic. Fig. 2 exemplifies the hardware mapping of a WFA with ε-transitions.

Paths with ε-transitions are represented by dotted lines: they systematically bypass

state registers. The main consequence is that a long critical path (dashed line) is

created from the input to the output. The critical path is defined as the longest path

between two registers, and determines the maximum clock frequency of the circuit.

The longer the path, the lower the frequency. Hence, to keep a reasonable working

frequency, the critical path needs to be broken into smaller parts by removing some

ε-transitions.

max+ + +
+"� "� "�

"� "�+ +
max

max

21 ac
b; c

5maxb c
3
4

critical path
0 > 0 ?a; b

Fig. 2. Hardwiring a WFA [4] with 5 regular transitions doubled with ε-transi-
tions. A critical path runs through the whole automaton.

1.2. Removals of ε-transitions

The classical method for removing ε-transitions in automata uses the ε-closure

of every state [1, 14]. Mohri proposed for WFA a generic algorithm with a smallest

distance method [10]. A certain condition must be checked to ensure that the

weights are well-defined in cycles.

These algorithms can raise the number of transitions from n to O
(

n2
)

. The

resulting automaton can be minimized [11], but for large automata, such a limit

makes the hardware implementation impossible. As an example, in [12], we expe-

rienced an 80-state automaton for discovering olfactory receptor genes in the dog

genome. On this automaton, the classical ε-transitions-removal algorithms produce

more than 3100 new transitions. This number reaches the limit of today’s FPGA

technology and prevents larger automata from being hardwired.

3

Hromkovic proposed a study for ε-transitions in finite automata [7]. There are

rational expressions of size O(n) such that every ε-free recognizing automaton has a

size Ω(n log n). Lifshits raised this bound to Ω(n log2 n/ log log n) [9], then Schnigter

raised it to Ω(n log2 |Σ|) [13]. The same paper provided a O(n logn log |Σ|) upper

bound. Other works optimized the creation time of those automata [6]. In [8], it is

shown that there are some languages recognized by NFA with O(n logn) transitions,

but such that every ε-free recognizing NFA has Ω(n2) transitions.

In this paper we study the development of WFA: we double every transition of a

WFA with an ε-transition, and we study the number of new transitions created by

removing the ε-transitions. Here a transition is a function assigning a value to each

letter of Σ. We previously proposed a first study for linear-shaped automata: in

this case, we designed an optimal method that produces automata with Θ(n log n)

new transitions, without a minimization phase [4].

The rest of the paper is organized as follows. Section 2 provides WFA back-

ground. Then, in Section 3, we study the development of WFA for acyclic automata.

Section 4 presents a new problem driven by the hardware constraints: the removal

while accepting short ε-chains.

2. Background

2.1. WFA and Pattern Matching

We consider automata with weights on the transitions. The weights are in the

set {−∞, . . . ,−1, 0, 1, . . .}.

Definition 1 A Weighted Finite Automaton (WFA) is a 5-tuple A = (Q, Σ, ∆,

I, F), where Q is a finite set of states, Σ a finite alphabet, ∆ ⊂ Q × Q × (δ :

Σ∪ {ε} 7→ Z∪ {−∞}) a finite transition table, I ⊆ Q and F ⊆ Q the sets of initial

and final states.

The number of transitions of the WFA is |∆|. For each transition τ = (q, q′, δ) ∈

∆, we denote by i[τ] = q its initial state, f[τ] = q′ its final state, and δ[τ] = δ its

weight function. A WFA without ε-transitions is a WFA such that δ(ε) = −∞ for

every transition (q, q′, δ). Now we define paths as consecutive labeled transitions:

Definition 2 A path π = (τ1, α1) . . . (τk, αk) ∈ (∆ × (Σ ∪ {ε}))∗ in a WFA A is

a succession of pairs of transitions and characters where the transitions τ1, . . . , τk

are consecutive transitions, that is f[τi] = i[τi+1] for i = 1 . . . k − 1, and where the

characters αi are in Σ ∪ {ε}. The label of π is the word α1 . . . αk.

The weight function δ can be extended to paths: for a path π = (τ1, α1) . . . (τk, αk),

we define δ(π) = δ[τ1](α1) + . . . + δ[τk](αk). Weights on words are computed as

weights on paths between some initial and final states. For pattern matching appli-

cations, those weights are compared to a fixed threshold.

2.2. Path-equivalence

4

Now we give a definition of our ε-transition-removal problem. We define it as

finding a new automaton with a special kind of equivalence, the path-equivalence,

which requires that some paths (the closed paths, see below) have a superior path

in the corresponding automaton.

Definition 3 One path π is superior to another one π′ if both paths have the same

label, the same initial state and the same final state, and if δ(π) ≥ δ(π′).

Definition 4 A path π = (τ1, α1) . . . (τk, αk) is left-closed if it begins with an initial

state (i[τ1] ∈ I) or if its first character α1 is different than ε. Similarly, a path is

right-closed if f[τk] ∈ F or αk 6= ε. A path is closed if it is closed at both sides.

Definition 5 Two WFA A = (Q, Σ, ∆, I, F) and A′ = (Q, Σ, ∆′, I, F) are path-

equivalent if every closed path in A labeled by a word w 6= ε has a superior path in

A′ and reciprocally.

Basically, the path-equivalence states that the two automata simulate each other

through their paths. Usual algorithms that remove the ε-transitions such as [14] or

[10] produce path-equivalent automata.

2.3. Development of an Automaton

Given a WFA without ε-transitions A = (Q, Σ, ∆, I, F) and a deletion cost cε,

we define Aε as the WFA in which all transitions of A are doubled by ε-transitions.

More precisely, every transition (q, q′, δ) ∈ ∆ is updated with δ(ε) = cε.

Definition 6 Given a WFA A, any WFA A′ is a development of A if A′ is path-

equivalent to Aε and has no ε-transitions. We say that A′ is developed from A if

A′ is a development of A.

To be efficiently hardwired, a WFA needs to be developed with as few new tran-

sitions as we can. In the general case, the ε-transitions-removal from an automaton

with n transitions gives an automaton with O
(

n2
)

new transitions. Depending on

the topology of the automaton, the optimal number of new transitions is in the

range from O(1) to Ω(n2) (Fig. 3).

In [4], we studied the case of automata with a simple topology. A linear-shaped

WFA is a WFA A = (Q, Σ, ∆, I, F) whose states can be ordered in a way that

Q = {qo, q1, . . . qn}, I = {q0}, F = {qn}, and its transitions are exactly the n

transitions (qi−1, qi, δi) for i = 1, 2, . . . n. We designed an optimal method that

produces automata with Θ(n log n) new transitions, without a minimization phase.

3. Removal in Acyclic Automata

Here we use the results on linear-shaped WFA to analyze the number of new

transitions in the developments of some more generic automata. To ensure that

the weights are well defined, automata with cycles require special constraints [10].

The section 3.1 considers acyclic automata with n states : we give an upper bound

to develop such automata. The section 3.2 extends the result to automata with

cycles, but with no cycles on ε-transitions. Such automata are common in biological

5

i

1

2

...

...

n

f

i1

i2

...

...

ip

f1

f2

...

...

fp

Fig. 3. When n = 2p + 1, both automata have n + 2 states. The left one can
be developed with one new transition (qi, qf , δ), whereas the right one must
have not less than the (n− 1)2/4 new transitions (ia, fb, δa,b) to be developed.

applications (Fig. 4).

3.1. Acyclic Automata

Definition 7 A WFA A = (Q, Σ, ∆, I, F) is acyclic if its graph has no cycle.

The states of an acyclic WFA can be numbered q1, q2, . . . qn such than there is no

backward transition (qi, qj , δi,j) with i ≥ j.

We call such a WFA a numbered automaton. The algorithm 1 develops a num-

bered automaton with n states from the development of two sub-automatons ob-

tained by cutting the automaton at a state qz.

In the algorithm for linear-shaped WFA (Algorithm 1 in [4]), initial and fi-

nal states of both sub-automata guarantee that the paths are closed. Here some

transitions are cut over qz (Fig. 5). All the paths are closed if one adds to each

sub-automaton a set of states Z that touches the cut transitions, that is a set Z

such that any cut transition starts or ends in Z. Each state in Z is a final state for

the left sub-automaton and an initial state for the right one : the sub-automata are

overlapping. We have the following property:

Property 1 The algorithm 1 builds an automaton which is path-equivalent to the

initial automaton.

Proof. We just give the sketch of the proof, which is similar to the case of

linear-shaped WFA (Lemma 3 in [4]).

A 7→ A′ Each closed path of A not labeled by ε and not completely included

in A1 or in A2 can be written as π1π2, where π1 and π2 are closed paths in A1 and

A2. Any such decomposition leads to a superior closed path in A′.

A′ 7→ A Reciprocally, any closed path of A′ either goes through a state q ∈

{qz}∪Z, or jumps over such a state. In both cases, a superior closed path of A can

6

Algorithm 1 Development of a numbered WFA

Input: a numbered WFA with n states A = (Q,Σ, ∆, I, F), an integer z ∈ [2, n − 1], a cost

cε

Let C be the set of all cut transitions (qi, qj , δi,j) with i < z < j

Let Z be a set of states touching C, with |Z| ≤ |C|

Let A1 = (Q1 = {q1 . . . qz} ∪ Z, Σ, ∆1, I, {qz} ∪ Z)
and A2 = (Q2 = {qz . . . qn} ∪ Z, Σ, ∆2, {qz} ∪ Z, F)

where the transition tables ∆1 and ∆2 are the restrictions of ∆ on Q1 and Q2

Let A′
1 and A′

2 recursively be two developments of A1 and A2

Let A′ be the concatenation of A′
1 and A′

2 : A′ = (Q, Σ, ∆′, I, F), ∆′ = ∆′
1 ∪ ∆′

2

For all qi in Q1

Add to ∆′ the transition (qi, q, δ
′
i) for all final states q ∈ F

with δ′i(α) = maxi+1≤k≤n [(n − i − 1)cε + δk(α)]

For all qi in Q2

Add to ∆′ the transition (q, qi, δ
′′
i) for all initial states q ∈ I

with δ′′i (α) = max1≤k≤i [(i − 1)cε + δk(α)]

Output: the WFA A′ = (Q, Σ, ∆′, I, F)

Fig. 4. Detail of a genomic automaton recognizing MIP membrane proteins
[2]. The complete automaton has more than 300 transitions. Except for some
insertion transitions (X), this automaton is acyclic.

be reconstructed. �

Each step of the algorithm adds no more than |Q1| · |F | + |Q2| · |I| transitions.

To bound this value, we need a bound on |Z|.

Definition 8 Let there be a numbered WFA with states {q1, q2 . . . qn}, and qz a

state. The width κz is the number of transitions (qa, qb, δ) with a < z < b.

The maximal width is K = maxi κi. It can be seen as the maximal number of

branches in the WFA, except the main branch. We always have K ≤ n. On the

automaton depicted on Fig. 4, we have K = 1 for all numberings. In the general

case, the widths depend on the chosen numbering.

At each step, the set Z has no more than K elements. When applying recursively

algorithm 1, the sets I and F will always have no more than K+ 1 elements. Then

one step of the algorithm adds no more than (|Q1|+|Q2|)·(K+1) ≤ (n+K+1)·(K+1)

transitions. We thus have the following consequence of Property 1:

Property 2 Any numbered WFA with a maximal width K can be developed with

7

1

2

4

z

1′

2′

3′

6′

... ...

x

(z states) (n − z + 1 states)

A (n states)

1

2

4

z

1′

2′

3′

6′

... ...

x

Fig. 5. Algorithm developing a numbered WFA with n states. A state qz is
chosen to split the automaton into two parts with z and n − z + 1 states. The
two cut transitions are shown in double lines. The set Z = {x, 6′} touches every
cut transition. This set Z is added to the two parts to give the sub-automata
A1 and A2. Final states of A1 (and initial states of A2) are {z} ∪ Z. At the
bottom, we add to the developments of the two sub-automata transitions from
initial states of A1 to all states of A2. With the symmetrical operation, no
more than |Q1| · |F | + |Q2| · |I| transitions are created.

O((K + 1) · n logn) transitions.

This coarse bound guarantees that automata with a small maximum width are

developed with very few new transitions (Tab. 1). This is sufficient for real-life

genomic automata representing biological features. Such automata, hand-crafted

or computed by state-merging techniques [2], are compounds of a few linear-shaped

parts (Fig. 4).

For the lower bound, the generic argument on linear-shaped WFA can be applied

to the longest path in the WFA. If this longest path has a size ℓ ≤ n, we have a

bound of Ω(ℓ log ℓ). In fact, the maximal cut K is not a good metric for the lower

bound. On the Fig. 3, the left automaton has, for any numbering, a maximal cut

of n − 1, but is developed with only one new transition.

8

3.2. ε-acyclic Automata

Given a WFA without ε-transitions A = (Q, Σ, ∆, I, F), but with cycles, how

can we extend the previous bounds ? We can consider a slightly modified automaton

in the development. We choose an acyclic sub-automaton A1 = (Q, Σ, ∆1, I, F)

with ∆1 ⊂ ∆, then we develop A1 by the algorithm 1 and we add the remaining

transitions.

Concretly, by doubling some transitions of A by ε-transitions, we obtain an ε-

acyclic automaton, that is an automaton without cycles of ε-transitions (Fig. 6).

As an ε-acyclic automaton has a numbering with no backward ε-transition, the

algorithm 1 can still be used while ignoring the backward regular transitions. The

same bound of O((K + 1) · n logn) is obtained (each width κi is now the number of

ε-transitions cut by the state qi).

1

2

4

z

1′

2′

3′

6′

... ...
y

Fig. 6. Unlike the automaton on Fig. 5, this numbered automaton has a
backward transition (6′, y, δ). However, that transition is not doubled with an
ε-transition.

In real applications, if we have an automaton A without ε-transitions, we add

some ε-transitions while keeping the automaton ε-acyclic. This construction is

justified when the automaton represents biological structures made of similar units.

Those units are separated by sequences that cannot be deleted, as for instance in

the case of exon recognition.

4. Removal with Short ε-Chains

To further lower the number of new transitions, we proposed in [4] to only

approximate the chains of ε-transitions by restricting the number of consecutive ε-

transitions to be followed. Here we propose to apply this idea only on the hardware

with a partial removal of ε-transitions. This time, the resulting automaton will be

path-equivalent to the initial one, without approximation.

The key idea of this section is the remark that short ε-chains (that is, chains of

successive ε-transitions) can be actually hardwired with a reasonable critical path

(Fig. 8). Thus, we propose to extend the ε-transitions-removal problem to allow

short chains of successive ε-transitions. The following is a generalization of Def. 6.

Definition 9 Given a WFA A and an integer nε ∈ N, any WFA A′′ is a develop-

9

Table 1. Number of new transitions produced while removing ε-transitions
on various automata. Data presented here depend only of the topology on
the WFA, and not of the actual values of the transitions. For the quadratical
algorithms (without further minimization) and the linear-shaped WFA, the
results depend only of the number of states n. For acyclic WFA, we give
some bounds (see Fig. 7 for examples of topologies). In the case of “separate
branches”, only the first cut has the maximal width K; the following cuts
consider linear-shaped parts. Even in the worst-case situation, when the WFA
is branching at every state, genomic WFA with 80 states and K = 2 can be
efficiently hardwired with less than 1300 new transitions.

Number of states of the initial automaton (n) 20 80 200
Quadratical ε-transitions-removal algorithms 190 3160 19900
Linear-shaped WFA [4] 69 433 1345
Linear-shaped WFA, development with short ε-chains (section 4)

ε-chains of length ≤ nε = 3 42 310 1022
ε-chains of length ≤ nε = 5 30 250 890

(ε-)acyclic WFA (section 3)
K = 1, two separate branches 96 522 1555
K = 1, worst-case 141 925 2835
K = 2, three separate branches 124 612 1766
K = 2, worst-case 176 1292 4096

. . .

(a) K = 1, two separate branches

. . .

.

(b) K = 1, branching at every state

. . .

. . .

(c) K = 2, branching at every state

. . .

Fig. 7. Example of different WFA topologies reflecting best-case and wort-
case of the Tab. 1. Complexity range from best-case ((a): only one additional
branch through the whole WFA) to the worst-case ((b) and (c): each cut has
a maximal width: the automaton is constantly branching).

ment with short ε-chains of A if A′′ is path-equivalent to Aε and if all ε-chains of

10

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

ns

Length of epsilon-chains

Critical path (ns)
25 MHz / 40 ns

Fig. 8. Critical path for ε-chains with 8-bit weights and a 40 ns (25 MHz)

constraint on a WFA with 20 regular transitions and different lengths of ε-
chains. Chains of 3 ε-transitions can be hardwired. With smaller bit weights
or newer FPGA, this number can be increased to 10 successive ε-transitions.
The FPGA being half-filled (between 48% and 51%), the hardware compiler
has a moderate pressure on the different optimisation phases. The critical path
should be linear to the length of ε-chains, but the hardware compiler does not
further minimize it as soon as it meets the constraint.

A′′ have a length ≤ nε.

Given a linear-shaped WFA with n states, we can split it into nε parts of size

O(n/nε), develop each sub-automaton with O(n/nε · log(n/nε)) transitions, and

finally add an ε-transition that covers each sub-automaton.

Thus we have the following property:

Property 3 A linear-shaped WFA with n states can be developed with short ε-

chains with O(n log(n/nε)) new transitions.

Furthermore, if we restrict that all remaining ε-transitions are original, that is,

they were in the automaton before the removal, we have a lower bound:

Property 4 Given nε, any development with short original ε-chains of a linear-

shaped WFA with n states has Ω(n/nε · log(n/nε)) new transitions.

The proof uses a similar technique to the proof of Lemma 6 in [4], but additional

work is done to handle the short ε-chains. The proof, given in the next paragraph,

enumerates some sets in which at least one transition must appear in the automaton.

The span of a transition (qi, qj , δ) is |j − i|.

Proof. Let A be a linear-shaped WFA with n states, and A′′ a development

with short original ε-chains of A. Let π = (τa+1, αA)(τa+2, ε) . . . (τb−1, ε)(τb, αB)

be a closed path in A, where αA and αB are two characters different from ε. This

path has a superior path π′ in A′′ that can be written as π′ = (π′

1, ε) (τA, αA) (π′

2, ε)

(τB , αB) (π′

3, ε).

11

As the three paths π′

1, π′

2 and π′

3 are original ε-chains, any of them has a span

not greater than nε transitions, that is 3nε globally. Therefore, at least one of the

two transitions τA and τB has a span included in {
⌈

k−3nε

2

⌉

, . . . , k−1} with k = b−a

(Fig. 9).

If we consider all n − k + 1 pairs (a, b) with the same k = b − a, then the WFA

A′′ has no less than (n − k + 1)/2(nε + 1) transitions of span included in the set

Sk = {
⌈

k−3nε

2

⌉

, . . . , k − 1}.

Let (ki) be a sequence defined by ki+1 = 2ki + 3nε and k0 = 1. We have

ki = 2i(1 + 3nε) − 3nε. We consider several ks taking the values of (ki) from i = 1

to the last i such that ki ≤ n, that is if =
⌊

log n+3nε

1+3nε

⌋

= Θ(log(n/nε)).

As the sets of spans Ski
and Skj

are disjoint as soon as i 6= j, the WFA A′′ has

not less than Σ
if

i=1
(n − ki + 1)/2(nε + 1) = Θ(n/nε · log(n/nε)) transitions. �

a bαA

τa+1

αB

τb

ε
τa+2

ε
τa+3

ε
τb−1

k

a b
τA

αA

τB

αB

π′

1

ε

π′

2

ε

π′

3

ε

Fig. 9. Proof of the property 4. At least one of the transitions τA and τB has

a span included in {
l

k−3nε

2

m

, . . . , k − 1}, where k = b − a is the span of the

path (τA, αA)(τB , αB).

Although accepting short chains of ε-transitions is a local change, this technique

lowers the actual number of new transitions (Table 1). The ε-chains can be used in

(ε)-acyclic WFA to obtain O((K + 1) · n log(n/nε)) new transitions.

5. Conclusions and Perspectives

The removal techniques presented in sections 3 and 4 allow larger automata to

be hardwired on a given FPGA. For acyclic automata, the best results for a strict

application of algorithm 1 would require finding the numbering of the states that

minimizes the maximal width K. In fact, for real automata with a small number

of branches as the one in Fig. 4, good solutions are found when cutting at the

branching states.

Other studies could find more precise bounds. For acyclic automata, the initial

number of transitions could be taken into account. Finally, we plan to study ap-

proximated developments of automata, in which the resulting automaton would not

strictly be path-equivalent to the initial one. In real applications, the cost assigned

to deletions prevents sequences with too many ε-transitions from being accepted.

12

References

1. A.V. Aho, R. Sethi and J.D. Ullman, Compilers, Principles, Techniques and Tools,
(Addison Wesley, 1986).

2. F. Coste and G. Kerbellec, “A similar fragments merging approach to learn automata
on proteins,” in 16th European Conference on Machine Learning Machine Learning
(ECML 2005), LNCS 3720 (2005), pp. 522–529.

3. M. Giraud and D. Lavenier, “Linear encoding scheme for weighted finite automata,”
in 9th International Conference on Implementation and Application of Automata
(CIAA 2004), LNCS 3317 (2004), pp. 146–155.

4. M. Giraud and D. Lavenier, “Dealing with hardware space limits when removing
epsilon-transitions in a genomic weighted finite automaton,” Journal of Automata,
Languages and Combinatorics 10 (2005), pp. 265–285.

5. M. B. Gokhale and P. S. Graham, Reconfigurable Computing – Accelerating Com-
putation with Field-Programmable Gate Arrays, (Springer, 2005).

6. C. Hagenah and A. Muscholl, “Computing ε-free NFA from regular expressions in
O

`

n log2(n)
´

time,” Mathematical Foundations of Computer Science (MFCS 1998),
LNCS 1450 (1998), pp. 277–285.

7. J. Hromkovic, S. Seibert and T. Wilke, “Translating regular expressions into small
epsilon-free nondeterministic finite automata,” in 14th Symposium on Theoretical
Aspects of Computer Science (STACS 1997), LNCS 1200 (1997), pp. 55–66.

8. J. Hromkovic and G. Schnitger, “NFAs With and Without ε-Transitions,” in
32nd International Colloquium on Automata, Languages and Programming (ICALP
2005), LNCS 3580 (2005), pp. 385–396.

9. Y. Lifshits, “A lower bound on the size of ε-free NFA corresponding to a regular
expression,” Information Processing Letters 85 (2003), pp. 293–299.

10. M. Mohri, “Generic epsilon-removal and input epsilon-normalization algorithms for
weighted transducers,” International Journal of Foundations of Computer Science
13 (2002), pp. 129–143.

11. M. Mohri, “Finite-State Transducers in Language and Speech Processing”. Com-
putational Linguistics 23 (1997), pp. 269–311.

12. P. Quignon, M. Giraud, M. Rimbault, P. Lavigne, S. Tacher, E. Morin, E. Retout,
A.S. Valin, K. Lindblad-Toh, J. Nicolas and F. Galibert, “The dog and rat olfactory
receptor repertoires,” Genome Biology 6 (2005), R83.

13. G. Schnitger, “Regular Expressions and NFAs Without ε-Transitions,” in 23th
Symposium on Theoretical Aspects of Computer Science (STACS 2006), LNCS 3884
(2006), pp. 432–443.

14. K. Thompson, “Regular expression search algorithm,” Communications of the
ACM, 11 (1968), pp. 419–422.

13

