]. R. References1, ]. Adams, L. Alpay, J. Baratchart, and . Leblond, Sobolev spaces Some extremal problems linked with identification from partial frequency data. Analysis and optimization of systems: state and frequency domain approaches for infinite-dimensional systems, Lecture Notes in Control and Inform. Sci, vol.185, issue.2, pp.563-573, 1975.

N. Arcozzi, Riesz transforms on compact Lie groups, spheres and Gauss space, Arkiv f??r Matematik, vol.36, issue.2, pp.201-231, 1998.
DOI : 10.1007/BF02384766

N. Arcozzi and X. Li, Riesz transforms on spheres, Mathematical Research Letters, vol.4, issue.3, pp.401-412, 1997.
DOI : 10.4310/MRL.1997.v4.n3.a9

S. Axler, P. Bourdon, and W. Ramey, Harmonic Function Theory, 2001.
DOI : 10.1007/978-1-4757-8137-3

L. Baratchart and J. Leblond, Hardy Approximation to $L^$ Functions on Subsets of the Circle, Constructive Approximation, vol.12, issue.3, pp.41-56, 1998.
DOI : 10.1007/s003659900022

URL : https://hal.archives-ouvertes.fr/inria-00074299

L. Baratchart, J. Leblond, and J. Marmorat, Inverse source problem in a 3D ball from best meromorphic approximation on 2D slices, Elec. Trans. Num. Anal, pp.25-41, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00504716

L. Baratchart, J. Leblond, and J. R. Partington, Hardy Approximation to $L^$ Functions on Subsets of the Circle, Constructive Approximation, vol.12, issue.3, pp.423-436, 1996.
DOI : 10.1007/s003659900022

URL : https://hal.archives-ouvertes.fr/inria-00074299

L. Bers, F. John, and M. Schechter, Partial differential equations, Lectures in Applied Mathematics , 3A, 1979.

J. Bourgain and T. Wolff, A remark on gradients of harmonic functions in dimension d ? 3, Colloq. Math, vol.60, pp.61-253, 1990.

I. Chalendar, J. Leblond, and J. R. Partington, Approximation problems in some holomorphic spaces, with applications. Systems, approximation, singular integral operators, and related topics, Oper. Theory Adv. Appl, vol.129, pp.143-168, 2001.

I. Chalendar and J. R. Partington, Constrained approximation and invariant subspaces, Journal of Mathematical Analysis and Applications, vol.280, issue.1, pp.176-187, 2003.
DOI : 10.1016/S0022-247X(03)00099-4

I. Chalendar, J. R. Partington, and M. Smith, Approximation in reflexive Banach spaces and applications to the invariant subspace problem, Proceedings of the American Mathematical Society, vol.132, issue.04, pp.1133-1142, 2004.
DOI : 10.1090/S0002-9939-03-07152-1

R. Dautray and J. Lions, Mathematical analysis and numerical methods for science and technology, 1990.

M. Hämäläinen, R. Hari, J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, Magnetoencephalography ? theory, instrumentation, and applications to noninvasive studies of the working human brain, Reviews of Modern Physics, issue.2, pp.65-413, 1993.

V. Isakov, Inverse source problems, Mathematical Surveys and Monographs, vol.34, 1990.
DOI : 10.1090/surv/034

J. Kybic, M. Clerc, T. Abboud, O. Faugeras, R. Keriven et al., A common formalism for the Integral formulations of the forward EEG problem, IEEE Transactions on Medical Imaging, vol.24, issue.1, pp.24-36, 2005.
DOI : 10.1109/TMI.2004.837363

J. Leblond, M. Mahjoub, and J. R. Partington, Analytic extensions and Cauchy-type inverse problems on annular domains: stability results, Journal of Inverse and Ill-posed Problems, vol.14, issue.2, pp.189-204, 2006.
DOI : 10.1515/156939406777571049

URL : https://hal.archives-ouvertes.fr/inria-00070601

J. Leblond and J. R. Partington, Constrained Approximation and Interpolation in Hilbert Function Spaces, Journal of Mathematical Analysis and Applications, vol.234, issue.2, pp.500-513, 1999.
DOI : 10.1006/jmaa.1999.6358

G. G. Lorentz, Approximation of functions, 1986.

J. R. Partington, Interpolation, identification, and sampling, 1997.

J. Rauch, Partial differential equations, Graduate Texts in Mathematics, vol.128, 1991.
DOI : 10.1007/978-1-4612-0953-9

M. Smith, The Spectral Theory of Toeplitz Operators Applied to Approximation Problems in Hilbert Spaces, Constructive Approximation, vol.22, issue.1, pp.47-65, 2005.
DOI : 10.1007/s00365-004-0591-4

E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, issue.30, 1970.

E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals . Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III, 1993.

E. M. Stein and G. Weiss, Introduction to Fourier analysis on euclidean spaces, 1971.

A. Torchinsky, Real-variable Methods in Harmonic Analysis, 1986.

W. Wang, A remark on gradients of harmonic functions, Revista Matem??tica Iberoamericana, vol.11, issue.2, pp.227-245, 1995.
DOI : 10.4171/RMI/171

T. Wolff, Counterexamples with harmonic gradients in R 3 Essays on Fourier analysis in honor of, Math. Ser, vol.42, pp.321-384, 1991.

W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Mathematics, vol.120, 1989.
DOI : 10.1007/978-1-4612-1015-3