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Summary. Autonomous robots in unknown and unstructured environments must
be able to distinguish safe and unsafe terrain in order to navigate effectively. Stereo
depth data is effective in the near field, but agents should also be able to observe
and learn perceptual models for identifying traversable surfaces and obstacles in the
far field. As the robot passes through the environment however, the appearance of
ground plane and obstacles may vary, for example in open fields versus tree cover
or paved versus gravel or dirt tracks. In this paper we describe a working robot
navigation system based primarily on colour imaging, which learns sets of fast,
efficient density-based models online. As the robot moves through the environment
the system chooses whether to apply current models, discard inappropriate models
or acquire new ones. These models operate on complex natural images and are
acquired and used in real time as the robot navigates.

1 Introduction

The system described in this paper operates on an autonomous wheeled ve-
hicle designed for the DARPA Learning Applied to Ground Robots (LAGR)
program (Fig. 1). The goal of the program is to apply Machine Learning
techniques to autonomous navigation in unknown, unstructured terrains [8].

Fig. 1. DARPA LAGR platform.

The LAGR platform is equipped with Stereo camera systems, but cam-
era resolutions and geometry constrain the resolution and discrimination of
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stereo depth data making it useful to about 10m. As a result considerable
effort by program participants has been devoted to using image colour and
texture for classification of “traversable terrain” and obstacles in the far field.
Frequently a standard Learning approach such as Neural Nets, SVM or De-
cision Trees [5, 7, 1] is applied to build a single model for the terrain at a
particular test site. This approach has several drawbacks. First the models
are large and difficult to adapt online when terrain appearance changes: a
single model cannot capture the diversity of terrain necessary for far field
navigation. The models require examples of traversable and non-traversable
terrain, where often one may only be able to confidently identify traversable
regions. Finally, models are blindly applied across the image, even in regions
sufficiently dissimilar to the training set to make their results meaningless. The
models offer no means to identify where their classifications can be applied
with high confidence.

Extensive work has been done on autonomous driving in structured envi-
ronments such as highway settings [4]. The work described here instead deals
with autonomous navigation in natural outdoor environments where paths
and traversable surfaces are not distinctively marked. In contrast with sys-
tems which depend on detailed reconstruction of a rover’s environment [2],
our system exploits reliable Stereo depth readings in the near field to identify
the image properties associated with obstacles and traversable surfaces. These
image samples are used to learn single class density models which respond to
obstacle or traversable regions in the far field. Our approach builds a set of
models as it traverses a new environment. At each frame the current set of
models is applied to the image, and if none explains the data a new model is
constructed and added to the set. This allows the robot to pass across varied
surfaces avoiding obstacles which differ from one area to the next, as when
moving from a rocky open field to a path with tree cover. Because we construct
separate single class density-based models for traversable and non-traversable
terrain, models respond only to terrain that is similar to the training data
from which they were constructed.

Online learning of multiple models has not yet been used extensively in
Robotics. Bredeche et al. [3] describe an object identification system which
learns to label 3 kinds of objects in images based on a human operator’s la-
beling of an initial image set. Rule-based classifiers are built for HSV image
features over a range of scales and structures. As the robot runs the model
outcomes are combined based on weights determined by their performance on
the validation set. After a fixed number of frames, new models are constructed
and the old models evaluated, and possibly replaced, based on their perfor-
mance over the sequence. Our system uses only Stereo readings to provide
learning and validation data for modeling the appearance of obstacles and
traversable terrain. New models are constructed whenever existing models
fail to agree with near-field Stereo data.

This notion of concept drift, where a target (such as the appearance of
traversable surfaces) varies over time has been more extensively examined
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in the Machine Learning community [9, 6, 11]. Most of this work addresses
theoretical issues of bounds on performance based on assumptions about issues
such as the rate of drift. They do not however offer a structured approach to
questions such as which models to apply to the current sample, when to add
new models or discard old ones.

The main questions when maintaining a set of models for a changing en-
vironment are: how to determine when the current models are no longer ef-
fective, and thus when to construct new models; and for large numbers of
models, how to choose which to evaluate at a particular instant.

2 System Overview

The LAGR platform has two “eye” computers each devoted to a separate
Stereo rig and associated image processing. A third computer handles planning
and control functions. The main issues for our work are how to construct the
image costmaps which classify near and far field regions as traversable and
non-traversable, and how these are used to plan appropriate behaviour.

2.1 Features

An important question in appearance-based terrain classification is what im-
age features should our model construction be based on? We have experi-
mented with a number of colour encodings and local feature descriptors for
classifying traversable and non-traversable terrain in natural outdoor scenes.
Currently Normalized RGB (R/(R+G+B), G/(R+G+B), B/(R+G+B))
has proven to be the best performer in terms of speed of calculation and
classification accuracy. We have also found 1D colour histograms (based on
non-normalized RGB) effective for disambiguating terrain classes, but these
are much slower to compute. We continue to pursue a separate project to
propose and evaluate features for our classification task.

2.2 Combining Cost Maps

The current system generates cost masks based on Stereo and learned appearance-
based terrain classification. Initially these masks are the same size as the im-
age, but are mapped to the robot’s local groundplane grid before they are
passed to the planner.

For each new frame a feature image is constructed and appearance based
classifiers are applied. Two cost masks are constructed, one for obstacles and
the other for traversable surfaces. When classifying regions of ground plane
using a single class classifier we can only be sure that areas that are classified as
in the class are in the ground plane. This doesn’t mean that the non classified
regions are not in the ground plane. A second mask that classifies obstacle
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regions is needed. This creates a check for the non-classified regions in each
mask. If a point in the ground plane mask has a low probability of being in
the ground plane then the decision as to whether that pixel is an obstacle is
left to the obstacle classifier. This is also true for the obstacle mask. Therefore
the assumption that non-classified pixels are obstacles is only made when the
ground plane classification is low and the obstacle classification is high.

The two cost masks must be combined in a meaningful way. We take the
difference between the obstacle mask O and the groundplane mask G, O −G
(scaled from -1 to 1). When the two cost masks disagree, i.e. ground plane
mask equals 1 and obstacle mask equals 1 then a 0 is returned. When the cost
masks agree, i.e. ground plane mask equals 1 and the obstacle mask equals 0
then a -1 is returned. This means that when sent to the planner the cost in
that location will be reduced. When the planner is sent a positive value, the
cost in that location is increased.

2.3 Planning System

The planning system is responsible for accumulating data provided by the
vision system, mapping it to the world frame, and then computing a route
toward some predetermined goal. In our case, the goal is a GPS coordinate
and the route is chosen in order to minimize a specialized cost function.

Our planning system is a modified version of a state-based planner pro-
vided by Daniel Lee at the University of Pennsylvania. Behaviour in each
state St is dictated by events that have occurred during the previous state
St−1, as well as information provided by a global state SGlobal. Information
from SGlobal is usually related to outside sources (bumper hits, human input,
messages from the eyes, etc.), while information from St−1 pertains to tasks
that the planner has scheduled for itself (i.e. the calculation of a new path
or movement of a certain distance). SGlobal also assumes responsibility for
placing cost information into a persistent global cost map MAPGlobal.

MAPGlobal is a 2D bird’s eye view of the area that the robot has previously
sensed and/or can currently perceive. In practice, the map is stored in a 2-
dimensional occupancy grid that maintains the relative spatial location of real-
world cost information. The occupancy grid has a granularity of 0.5 meters,
and contains cost information from the Stereo and appearance-based cost
maps. These two forms of information can be weighted differently depending
on the navigation task defined at runtime (i.e. learned models will be more
useful than stereo data if the task involves water avoidance or navigation
through tall grass). The costs in the occupancy grid always fall on a spectrum
of belief about the navigability of their associated regions in the real-world.
High cost means that an area is less navigable than low cost.

Most of the planner’s time is spent finding a path through MAPGlobal from
the current location to the goal. It searches for a path using the A∗ search
algorithm, where a path is composed of a set of adjacent grid elements of
MAPGlobal. The cost function should reflect some combination of navigability



Multiple Perceptual Models for Navigation 5

and distance. A principled way to optimize over these two variables is to
represent low navigability as a force that the robot must overcome; and then
minimize the amount of work that the robot must do in order to reach the
goal. Thus, the cost function to minimize is given by:

Navigable Work = C1D1 + C2D2 + ... + CgoalDgoal

Where Ci and Di represent the cost and length of path segment i, respectively.
In practice Ci values are normalized between 1 and 10 to accommodate A*.
Once a path to the goal has been found, the planner interacts with the robot’s
low level motors and servos to navigate through the real-world until there is
a change in state or until a predetermined amount of time has passed. In the
latter case, the planner reenters StatePlan and the process repeats itself.

3 The Learning Framework

3.1 Fast Density Models

The approach taken to far field terrain identification is to build two types of
density models - one for identifying traversable terrain and the second for non-
traversable terrain. The traversable terrain density models are constructed
by sampling image regions that are associated with traversable terrain, and
similarly for non-traversable terrain density models.

A number of powerful techniques have been proposed in the Machine
Learning and Statistics communities for density estimation [10]. Although
these techniques can be effective in high dimensional spaces (such as those
addressed in this paper), invariably they are too computationally intensive to
be applied to real-time robot navigation. In this paper, we present an efficient
framework for density estimation that is suitable for real-time terrain clas-
sification. Our framework builds many small, fast density models, which are
combined to produce a final density model for the entire image.

Assume a set of N examples, each of dimension d, extracted from an image
region that is known to be traversable. We symbolize these as {x1, ...,xN},
where each xi ∈ <d for all i ∈ {1, ..., N} is a column vector representing a set of
features extracted from an image. Next, the NULL space and the Basis space
(i.e. the Principle Components ordered according to relevance) of this data
are computed using Singular Value Decomposition. We symbolize the NULL
space and Basis space matrices as Ntr and Btr respectively (the subscript tr
indicates that a traversable model is being constructed). Note that Ntr has d
rows and m columns, Btr has d rows and k columns, where k + m = d (note
that k and d are determined in a standard way based on the floating point
precision of the CPU). The NULL space is used to identify when new sensor
readings do NOT fall within the scope of the model (i.e. if any new feature
vector falls in the null space of the model, the model outputs 0). Therefore,
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given some new feature vector x, the model outputs 0 if ‖N
′

trx‖ < ε, where ε
is determined by the floating point of the CPU.

Next the remaining data is projected into the Basis space Btr, giving
bi = B

′

trxi, for all i = 1, ..., N , where each bi ∈ <k. This data is divided
into two approximately equal parts - one set is the training set {bt

1
, ...,bt

Nt
},

and the other is the validation set {bv
1
, ...,bv

Nv
}, where t refers to training

data, v refers to the validation data, Nt refers to the number in the training
set, and Nv refers to the number in the validation set (note that Nv + Nt =
N). A linear function is then defined gtr (x) = p

′

x, where p is the first
column of the Basis space Btr, corresponding to the largest eigenvalue of
the data PCA space, and thus the coordinate which contains the greatest
data range (ie. gtr is the first component of the projected data bi). Next
gtr (x) is converted to a density model using a one dimensional histogram
model called htr(gtr (x)). This histogram density model is constructed by
choosing the bin size that maximizes the negative log likelihood of the first
dimensions of the validation set {bv

1
, ...,bv

Nv
}. By maximizing the negative log

likelihood on the validation data, we ensure that the resulting density model
is most representative of the training data. A typical histogram density model
is depicted in Figure 2(a). The remaining k − 1 dimensions are used to find
the minimum and maximum values that {bt

1
, ...,bt

Nt
}, and {bv

1
, ...,bv

Nv
} have

along these coordinates - any new image samples falling outside these ranges
result in the model outputting 0. Finally, if training data is available from
the non-traversable class, it is used to adjust the density model htr(gtr (x))
such that the traversable training data is always more probable than the non-
traversable data in each bin of the histogram. This ensures that the models
are as selective as possible in predicting traversable regions. This algorithm
constitutes an efficient and effective framework for bounded density estimation
for robotics applications.

The same procedure is used to construct density models for non-traversable
terrain, giving gntr (x) and hntr(gntr).

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25
Histogram Density Model

g(x)

h(
g)

: D
en

si
ty

(a) Histogram Density Model

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Scaled Histogram Density Model

g(x)

hsc
al

ed
(g

)

(b) Scaled Histogram Density
Model for Image Segmentation

Fig. 2. Producing Density Models For Image Classification.
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3.2 Converting a Density Model to a Segmented Image

Every model hntr(gntr) is used to identify nontraversable terrain in images,
and similarly, every model htr(gtr) is used to identify traversable terrain in
images. This is done by scaling the density models to range between 0 and 1
as in Figure 2(b), which is obtained by taking the density model in Figure 2(a)
and dividing by its maximum value. Once this is done, every segment of the
image can be classified as shown in Figure 3. Figure 3(a) shows the original
image, Figure 3(b) shows the resulting segmentation after passing the feature
image through the traversable terrain scaled histogram model htr(gtr), and
Figure 3(c) shows the resulting segmentation after passing the image through
the non-traversable terrain scaled histogram model hntr(gntr). A key property
of these scaled density models is that, in every region where the image is dark,
the density models have no opinion on whether the region is traversable or
non-traversable. This implies that the model is able to predict when image
regions are too dissimilar from the data used to construct it, and therefore no
predictions can be made using it. As discussed below, this property gives a
formal framework for deciding when new models must be added, which models
are most appropriate for a given image, and for combining multiple models.
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Fig. 3. Using the Scaled Density Models to segment traversable and non-traversable
image regions. Image brightness is proportional to confidence in segmentation. Train-
ing data was obtained using Stereo in the near range.

3.3 Learning Multiple Models

In the proposed framework, we construct a set of traversable terrain mod-
els {h1

tr(g
1

tr), ..., h
Ntr

tr )(gNtr

tr )}, as well as a set of non-traversable models

{h1

ntr(g
1

ntr), ..., h
Nntr

ntr (gNntr

ntr )}. Each model represents a different type of ter-
rain that the robot encounters as it navigates, and all are constructed in real
time. The decision on how many models are needed is made automatically:
whenever the current set of models do not explain the observations made by
Stereo, new models are added. Thus, if the current set of traversable models
do not label a traversable portion of the image as being traversable, a new
traversable model is constructed. Similarly, if a region in the image is identified
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as non-traversable, and the current non-traversable models do not label this
region as such, then a new non-traversable model is constructed to account
for this new terrain type. As the robot traverses a variety of different terrains,
more models are needed, resulting in potentially thousands of models.

3.4 Choosing Model Subsets

Each density model is representative of a particular terrain type, and as the
terrain changes over time, models may not be appropriate for every image. In
particular, if a model outputs zero everywhere in an image, then it was con-
structed from a terrain type that does not appear in the image, and therefore
the model should not be used. Similarly if a traversable model has a non-zero
response in an image region that Stereo designates NOT traversable, then it
should not be used on the current image. An identical argument applies to
non-traversable models. Thus the models that are applied to any image are
sampled from models that are consistent with near field observation in the
image. Even after this selection process, there still may be many hundreds of
models that are consistent with an image. In order to ensure real-time opera-
tion, not all consistent models can be applied to every image. As a result, the
consistent models are ranked according to the magnitude of average response
over small random regions of the image. The models with the highest average
response are most consistent with the image, while the models with the lowest
are least consistent. The first N highest ranked models, where N is dictated
by real time considerations, are applied to the image.

3.5 Traversability from Density Models

Once the subset of models is chosen for application to the image, the final
traversable image classification is done by taking a maximum over all models,
over every region of the image. A similar operation is done for generating the
non-traversable classification. The justification for this max operation is that
the models that are applied to an image are all consistent with its near field
observations. When there is disagreement between the traversable and non-
traversable classifications, then the robot errs on the side of exploration and
labels the inconsistent parts as traversable, leaving Stereo to correct this pos-
sible mislabeling when the robot gets close enough to the region in question.
This type of inconsistency is rare because of the way the models are chosen,
but can nonetheless occur.

4 Experimental Results

The current set of density models are constructed based on image regions
identified as traversable or non-traversable by near-field Stereo. The feature
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vectors used are formed from 7 by 7 patches of normalized RGB pixels. Thus,
the dimension of each density model constructed is 7 × 7 × 3 = 147.

This system has been applied to a wide variety of real tests (under the
DARPA LAGR program) in unstructured outdoor environments. The density
models were able to segment difficult terrain in the far field, well beyond stereo
range, as demonstrated in Figure 4, where the colour difference between the
non traversable vegetation and the ground is difficult to distinguish. In all the
environments tested to date, never more that 47 traversable terrain models,
and 43 non-traversable terrain models were required to model the terrain.
This demonstrates the flexibility of the individual models. In addition, at
each frame up to 20 models where applied (chosen according to the procedure
defined Section 3.4) at a rate of about 5 frames per second. The current
implementation of this system is written in MATLAB, and we anticipate
significant speedups in frame rates when these models are implemented in
C. It is also worth noting that systems which classify terrain beyond stereo
range have consistently outperformed robots that only use stereo. The system
described here also has the benefit of fast online learning and quick adaptation
to new environments.
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Fig. 4. Using Scaled Density Models to identify traversable and non-traversable im-
age regions. Image brightness is proportional to confidence in classification. Training
data was obtained using Stereo in the near range.

5 Conclusion

For autonomous robots traversing unknown terrain, Stereo depth data alone is
too “short sighted”. Considerable effort has been devoted to learning models of
the appearance of traversable terrain to extend near field Stereo observations
of ground plane and obstacles to the far field.

In this paper we describe a successful robot system which learns multiple
models of obstacle and ground plane online as the terrain varies over the
robot’s trajectory. We describe an efficient way of choosing the best subset
of models for each image, out of a set of models, possibly learned over the
robot’s lifetime.
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The models constructed are density-based and thus respond only to inputs
which are sufficiently similar to the data from which they were built. This
allows the system to identify novel terrain when its models stop responding,
thus triggering the construction of new models. Model construction, selection
and evaluation are real-time online operations.

Future efforts include finding optimal image features for terrain classifica-
tion and allowing each model to identify a preferred feature set for the terrain
it encodes.
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