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Abstract: The complexity of dynamical laws governing 3D atmospheric flows
associated with incomplete and noisy observations makes the recovery of at-
mospheric dynamics from satellite images sequences very difficult. In this re-
port, we face the challenging problem of estimating physical sound and time-
consistent horizontal motion fields at various atmospheric depths for a whole
image sequence. Based on a vertical decomposition of the atmosphere, we pro-
pose two dynamically consistent atmospheric motion estimators relying on dif-
ferent multi-layer dynamical models. Both estimators use a framework derived
from data assimilation and are applied on noisy and incomplete pressure dif-
ference observations derived from satellite images. In the first model, dense
pressure difference maps are reconstructed according to a shallow-water model
on each cloud layer. While performing this reconstruction, the variational pro-
cess estimates the average horizontal wind fields of the multi-layer model. The
second model relies on a simplified vorticity-divergence form of the previous
multi-layer shallow-water model. In this case, average horizontal motion fields
are estimated for each layer without reconstructing pressure maps. While the
simplified model is not as precise as the exact shallow-water model, the latter
estimator exploits finer spatio-temporal image structures and succeeds in char-
acterizing motion at smaller spatial scales. The performance of both methods is
assessed on synthetic examples and on real world meteorological satellite image
sequences.
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‡ CEMAGREF - Avenue de Cucillé- 35044 Rennes cedex -France
§ CEFIMAS, Avenida Santa Fe 1145 C1059ABF - Buenos Aires, Argentina
¶ Fac. de Ing. de la Univ. Buenos-Aires, Av. Paseo Colón 850, C1063ACV Buenos Aires,

Argentina
‖ UPF/Passeig de Circumvallació, 8 08003 Barcelona



Assimilation d’images de pression pour

l’estimation de mouvements atmosphériques

Résumé : La complexité des lois dynamiques régissant les flux atmosphériques
3D, associée à des observations bruitées et incomplètes issues d’images satelli-
tales, rend difficile l’estimation de paramètres liés à la dynamique de l’atmosphère.
Dans ce rapport, nous nous concentrons sur le difficile problème d’estimation
consistante dans le temps de mouvements horizontaux à différentes altitudes de
l’atmosphère à partir d’une séquence d’images. Sur la base d’une décomposition
verticale de l’atmosphère, nous proposons deux estimateurs de mouvements
consistants temporellement et s’appuyant sur différents modèles dynamiques
multicouches. Les deux estimateurs utilisent un cadre théorique dérivé de
l’assimilation de données et sont appliqués à des observations bruitées et in-
complètes d’images de différence de pression obtenues à partir de données satel-
litaires. Dans le premier modèle, des cartes denses de différence de pression sont
reconstruites selon un modèle shallow-water exact sur chaque couche nuageuse.
En sus de cette reconstruction, le processus variationnel estime les champs de
vents horizontaux moyens liés au modèle multi-couche utilisé. Le second modèle
repose sur un modèle simplifié du précédent et est formulé en termes de vorti-
cité-divergence. Dans ce cas, les champs moyens horizontaux sont estimés dans
chaque couche sans reconstruction des cartes de pression. Bien que le modèle
simplifié ne soit pas aussi précis que le modèle exact shallow-water, il extrait
des structures spatio-temporelles plus fines et est en mesure de caractériser le
mouvement à petites échelles spatiales. La performance et la comparaison des
deux méthodes est évaluée sur des exemples synthétiques et réels issus d’images
satellites météorologiques.

Mots-clés : Assimilation variationnelle, estimation du mouvement, mouve-
ments atmosphériques, Images de pression, Modèles shallow-water, Dynamique
atmosphérique
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1 Introduction

1.1 Overview

Geophysical motion characterization and image sequence analysis are crucial
issues for numerous scientific domains involved in the study of climate change,
weather forecasting, climate prediction or biosphere analysis. The use of surface
station, balloon or in-flight aircraft measurements has improved the estimation
of wind fields and has been a subsequent step for a better understanding of mete-
orological phenomena. However, the network’s temporal and spatial resolutions
may be insufficient for the analysis of mesoscale dynamics. Recently, in an effort
to avoid these limitations, high resolution satellites sensors have been designed
to provide image sequences characterized by finer spatial and temporal resolu-
tions. Nevertheless, the analysis of atmospheric motion from image sequences
remains particularly challenging due to the complexity of atmospheric dynamics
observed at such scales. Thus advanced techniques are needed to exploit the
new generation of satellite images.

1.2 Related works

In the context of image-based geophysical motion analysis, standard techniques
from computer vision, originally designed for bi-dimensional quasi-rigid motions
with stable salient features, appear to be not well adapted [22, 18]. The design of
techniques dedicated to fluid flows has been a step forward, towards the constitu-
tion of reliable methods to extract characteristic features of flows [42, 4, 3, 6, 41].
However, for geophysical applications, existing fluid-dedicated methods are all
limited to frame to frame estimation and do not rely on physical conservation
laws.

Geophysical flows are quite well described by appropriate physical models.
As a consequence in such contexts, the inclusion of the law of physical evolution
should be a very powerful means for the motion analyzes of satellite image data,
in comparison to standard variational or statistical generic image based motion
estimation techniques.

Recently, a layered motion estimator based on the shallow water mass conser-
vation equation has been proposed in [14, 13]. In these works, time consistency
is reinforced by the introduction of a frame to frame temporal regularization
based on a simplified vorticity-divergence form of the shallow water momentum
conservation equations.

Variational data assimilation [21, 36], derived from optimal control theory
[23], offers an efficient framework to deal with physical models and different
kind of observations. Since its introduction, the variational assimilation tech-
nique commonly known as 4D-Var has been widely used for global atmospheric
numerical weather forcasting or climate numerical modeling [1, 2, 12, 35]. Dif-
ferent variations of the original principles have been proposed since the last
15 years [1, 5, 20] and this technique is routinely used in several operational
meteorological center.

Although image observations possess very good spatial resolutions compared
to spatial scales of standard data, only very few attempts have been done to date
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4 Corpetti & al.

to consider their use. As a matter of fact, the projection on the image plane of
the three dimensional observed quantity and the complexity of the phenomenon
involved in the image formation make this issue considerably difficult.

Variational data assimilation techniques relying on image data or on features
extracted from image data have been recently proposed. A technique for the
assimilation of a low order dynamical system, obtain from a POD-Galerkin
projection, has been proposed in [7]. This technique makes use of noisy flow
motion measurements estimated from a set of pairs of images of particles. In
[31], an optimal control strategy has been proposed for the recovery of fluid
motion. This approach based on a Stokes flow model remains nevertheless
an estimation technique that works only on two consecutive frames and no
dynamical coherency can be guaranteed. In a different spirit, two different
variational assimilation strategies have been proposed in the computer vision
community for the tracking of curves [30] and the estimation of fluid motion
fields [28]. Both of these methods directly assimilate image data. They do not
depend on pseudo-measurements extracted by external techniques but rather
propose to include directly a differential observation operator issued from image
features estimation methods.

The two techniques proposed in this paper constitute extensions of these
previous approaches to atmospheric motion estimation from satellite image se-
quences.

1.3 Contributions

The two methods proposed in this paper differ significantly from previous works
on motion analysis by satellite imagery. Indeed, as opposed to previous image-
based techniques relying on two consecutive frames, the proposed methods es-
timate dynamically consistent motion fields through a whole image sequence.

For the first method, this is done through a variational approach derived from
the data assimilation principle. It combines a large scale multi-layer shallow wa-
ter dynamical model with filtered pressure difference observations obtained from
satellite images. This first method directly extends the standard variational data
assimilation recipes to pressure images. In the second proposed method, the as-
similation scheme exploits a simplified version of the previous dynamical model
which includes uncertainty terms. In contrast to the first approach, this second
method incorporates fine scale spatio-temporal image features as observations.
This technique is in spirit different from the first approach and from standard
data assimilation techniques.

The document is organized as follows. After a description of data assimila-
tion methodology in section 2, the acquisition of pressure image observations is
presented in section 3. The two different image assimilation schemes are then
successively described in sections 4 and 5. A comparison of the two methods on
synthetic and real meteorological images is provided in section 6.

2 Data assimilation

In this section let us recall the variational data assimilation concepts [21, 36, 1]
proposed for the analysis of geophysical flows. We will first present a standard
formulation where the state variable of interest obeys a perfect evolution law.

INRIA
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Let us note that this situation corresponds to the most usual model used in the
geophysical domain for data assimilation.

2.1 Data Assimilation with perfect model

2.1.1 Direct evolution model

Let the state space V be an Hilbert space identified to its dual space. Noting
X ∈ W(t0, tf ) as the state variable representing the feature of interest, which is
assumed to live in a functional space W(t0, tf ) = {X |X ∈ L2(t0, tf ;V), ∂tX ∈
L2(t0, tf ;V)} and assuming that the evolution in time range [t0; tf ] of the state
is described through a (non linear) differential model M : V×]t0, tf [→ V , we get
the following direct problem:

˛
˛
˛
˛
˛
˛
˛

˛
˛
˛
˛
˛
˛
˛

For a given η ∈ V, find X ∈ W(t0, tf ) such that:


∂tX(t) + M(X(t), t) = 0,
X(t0) = X0 + η.

(1)

This system is monitored by a control variable, η ∈ V , identified here as the
inaccuracy on the initial condition. The control could also be defined by model
parameters [21] or by boundary conditions [38, 40]. The direct problem (1)
will be assumed to be well posed, which means that we first assume that the
application V → V : η 7→ X(η, t) is differentiable ∀t ∈]t0, tf [ and secondly
that given η ∈ V , ∀tf > t0, there exists a unique function X ∈ W(t0, tf )
as solution of problem (1) and that this solution depends continuously on η,
i.e.: V → V : η 7→ X(η, t) is continuous ∀t ∈]t0, tf [. Let us also assume that
some observations Y ∈ O of the state variable components are available. These
observations may live in a different space (a reduced space for instance) from
the state variable. We will nevertheless assume that there exists a (non linear)
observation operator H : V → O, that goes from the variable space to the
observation space.

2.1.2 Cost function

An error cost function J : V × V → R measuring the discrepancy between a
solution associated with a given control and the observations available can be
introduced:

J(η) =
1

2

Z tf

t0

‖Y − H(X(η, t), t)‖2
Rdt +

1

2
‖η‖2

B . (2)

Thus, the overall problem that we are facing consists in finding the control
variable η ∈ V that minimizes cost function J . Norms ‖ · ‖R and ‖ · ‖B are re-
spectively associated with the scalar products

〈

R−1·, ·
〉

O
and

〈

B−1·, ·
〉

V
, where

R and B are symmetric positive defined endomorphisms of V . In our applica-
tions, R and B are respectively called the observation covariance matrix and
the initialization covariance matrix.
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6 Corpetti & al.

Algorithm 2.1 Perfect Model
Let X(t0) = X0.

(i) From X(t0), compute X(t), ∀t ∈]t0, tf [ with a forward integration of system
(1).

(ii) With X(t), realize a backward integration of the adjoint variable with the sys-
tem (3).

(iii) Update the initial condition X(t0) with relation (5).

(iv) Return to (i) and repeat until a convergence criterion.

2.1.3 Adjoint evolution model

The gradient of this functional is computed introducing an adjoint variable λ
defined as the solution of the following adjoint problem:

˛
˛
˛
˛
˛
˛
˛
˛
˛

˛
˛
˛
˛
˛
˛
˛
˛
˛

Given η ∈ V, tf > t0 and X(t) solution of (1),

find λ ∈ W(t0, tf ) such that, ∀t ∈]t0, tf [:


−∂tλ(t) + (∂XM)∗λ(t) = (∂XH)∗R−1(Y − H(X(t))),
λ(tf ) = 0.

(3)

In the same way as for the direct model, it is assumed that given η ∈ V , tf > t0
and X ∈ W(t0, tf ) as solution of problem (1), there exists a unique function
λ ∈ W(t0, tf ) as solution of problem (3). It is also assumed that this solution
depends continuously on η (i.e: V → V : η 7→ λ(η, t) is continuous ∀t ∈]t0, tf [).

2.1.4 Functional gradient

Given this adjoint problem, it can be shown that the cost function derivative
with respect to η finally reads:

∂J

∂η
= −λ(t0) + B−1(X(t0) − X0). (4)

As a consequence, given a solution X(t) of the direct model (1), the functional
gradient can be computed from a backward integration of the adjoint model (3).
The adjoint variable then permits to update the initial condition, by canceling
the gradient defined in (4):

X(t0) = X0 + Bλ(t0) (5)

where B is the pseudo inverse of B−1 [1]. As the complexity of the adjoint model
resolution is the same as the one of the direct model, the use of this technique
appears to be very efficient for state space of large dimension. The principle of
the overall technique is summarized in Algorithm (2.1). This first approach has
been widely used in environmental sciences for the analysis of geophysical flows
[1, 8, 12, 35]. However, such modeling appears to be limited in image analysis
since the differents models, on which we can rely, are usually inaccurate due, for
instance, to 3D-2D projections, varying lighting conditions, completely unknown
boundary conditions, etc. Considering imperfect dynamical models now comes
to an optimization problem where the control variable is constituted by the
whole trajectory of the state variable.

INRIA



Pressure image assimilation for atmospheric motion estimation 7

2.2 Data Assimilation with imperfect model

The dynamical model we consider now is defined up to a control function
ν ∈ W(t0, tf , V ), where ν(t) ∈ V . We are now facing an imperfect dynami-
cal system which depends on the whole trajectory of the control variables (i.e
ν, η). Formally, the system reads:

˛
˛
˛
˛
˛
˛
˛

˛
˛
˛
˛
˛
˛
˛

Given (ν, η) ∈ (W,V), find X ∈ W(t0, tf ) such that


∂tX(t) + M(X(t), t) = ν(t) ∀t ∈]t0, tf [,
X(t0) = X0 + η.

(6)

2.2.1 Cost function

The cost function J : W × V → R that gathers the different types of involved
errors is defined as:

J(ν, η) =
1

2

Z tf

t0

‖Y − H(X(ν(t), η, t))‖2
R dt +

1

2
‖η‖2

B

+
1

2

Z tf

t0

‖ν(t)‖2
Q dt.

(7)

The norm ‖ · ‖Q is associated to the inner scalar product
〈

Q−1·, ·
〉

V
, where Q

is a symmetric positive defined endomorphism of V called the model covariance
matrix.

2.2.2 Adjoint evolution model

Similarly to the previous case, defining the adjoint variable λ ∈ W(t0, tf ) as a
solution of the following adjoint problem:

˛
˛
˛
˛
˛
˛
˛
˛
˛

˛
˛
˛
˛
˛
˛
˛
˛
˛

Given (ν, η) ∈ (W,V), tf > t0 and X(t) a solution of (6),

find λ ∈ W(t0, tf ), such that, ∀t ∈]t0, tf [:


−∂tλ(t) + (∂XM)∗λ(t) = (∂XH)∗R−1(Y − H(X(t))),
λ(tf ) = 0.

(8)

enables one to get an expression of the cost function gradient.

2.2.3 Functional gradient

It can be shown that the derivatives of the cost function with respect to ν and
η reads in this case:

∂J
∂ν

= Q−1(∂tX + M(X)) − λ, (9)

∂J
∂η

= −λ(t0) + B−1(X(t0) − X0). (10)

Canceling these components to zero and introducing Q and B, the respective
pseudo inverses of Q−1 and B−1, we have:


∂tX(t) + M(X(t)) = Qλ(t)
X(t0) − X0 = Bλ(t0).

(11)

The second equation still constitutes an incremental update of the initial con-
dition. Generalizing these expressions, we can define the following incremental
formulation.
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8 Corpetti & al.

Algorithm 2.2 Imperfect model
Let X(t0) = X0.

(i) From X(t0), compute X(t), ∀t ∈]t0, tf [ with a forward integration of
system (13).

(ii) X(t) being given, realize a backward integration of the adjoint variable
with the system (8).

(iii) Compute the initial value of the incremental function(15).

(iv) From dX(t0), compute dX(t), ∀t ∈]t0, tf [ with a forward integration of
system (14).

(v) Update X = X + dX.

(vi) Return to (ii) and repeat until convergence.

2.2.4 Incremental function

Denoting


X(t) = X̃(t) + dX(t) ∀t ∈ [t0, tf ],

X̃(t0) = X0,
(12)

where ˜X(t) could either be a fixed component or a previous estimated trajectory
of the state variable. Equation (11) can be split and written as:

∂tX̃(t) + M(X̃(t)) = 0 ∀t ∈]t0, tf [, (13)

∂tdX(t) + ∂X̃M(X̃(t))dX(t) = Qλ(t) ∀t ∈]t0, tf [. (14)

Hence, the update of the state variable X is driven by an incremental function
dX which depends on the whole trajectory of the adjoint variable λ. The initial
value of this incremental function is given by (10):

dX(t0) = Bλ(t0). (15)

Equations (6), (12), (13), (14) and (15) give rise to the data assimilation method
with imperfect dynamical model. A sketch of the whole process is summarized
in Algorithm (2.2).

3 Image observations

3.1 Layer decomposition

The layering of atmospheric flow in the troposphere is valid in the limit of hor-
izontal scales much greater than the vertical scale height. Thus for layers of
a thickness on the order of scale of 1km, this hypothesis is roughly valid for
horizontal scales greater or equal to 100 km. It is thus impossible to truly char-
acterize a layered atmosphere with a local analysis performed in the vicinity of
a pixel characterizing a kilometer order scale. Nevertheless, one can still decom-
pose the 3D space into elements of variable thickness, where only sufficiently

INRIA



Pressure image assimilation for atmospheric motion estimation 9

Figure 1: Image observations. From top to bottom : cloud top pressure image;
classification into low (in dark gray), medium (in light gray) and high (in white) clouds;
pressure difference of the higher layer; pressure difference of the intermediate layer;
pressure difference of the lower layer. Black regions correspond to missing observations
and red lines represent coastal contours, meridians and parallels (every 10o).

thin regions of such elements may really correspond to common layers. Anal-
ysis based on such a decomposition presents the main advantage of operating
at different atmospheric pressure ranges and avoids the mix of heterogeneous
observations.

For the definition of the K layers, we present the 3D space decomposition
introduced in [14, 13]. The k-th layer corresponds to the volume lying in be-
tween an upper surface sk+1 and a lower surface sk. These surfaces sk+1 are
defined by the height of top of clouds belonging to the k-th layer. They are
thus defined only in areas where there exist clouds belonging to the k-th layer,
and remain undefined elsewhere. The membership of top of clouds to the dif-
ferent layers is determined by cloud classification maps, as illustrated in figure
1. Such classifications, which are based on thresholds of top of cloud pressure,
are routinely provided by the EUMETSAT consortium, the European agency
which supplies the METEOSAT satellite data.
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10 Corpetti & al.

3.2 Sparse pressure difference image observations

Top of cloud pressure images, as routinely provided by the EUMETSAT consor-
tium, are derived from a radiative transfer model using ancillary data obtained
by analysis or short term forecasts. Multi-channel techniques enable the deter-
mination of the pressure at the top of semi-transparent clouds [33].

We denote by Ck the class corresponding to the k-th layer. Note that the
top of cloud pressure image is composed of segments of top of cloud pressure
functions p(sk) related to the different layers. That is to say, cloud pressure
image is defined as {

S

k p(x, y, sk+1, s)|(x, y) ∈ Ck}. Thus, pressure images of
top of clouds are used to constitute sparse pressure maps of the layer upper
boundaries p(sk+1). As with satellite images, the lower cloud boundaries are
always occluded, we coarsely approximate the missing pressure observations
p(sk) by an average pressure value p(sk) observed as the top of the clouds of
the layer underneath. Finally, for layer k ∈ [1, K], we define observations hk

obs as
pressure differences in hecto Pascal (hPa) units:

hk
obs =


p(x, y, sk) − p(x, y, sk+1) if (x, y) ∈ Ck

0 else
(16)

Resulting image observations are illustrated in figure 1.

4 Image assimilation with a perfect dynamical

model

In this section, we will adopt a perfect modeling scheme for atmospheric lay-
ers using filtered shallow water equations, while in section 5, we will relax the
constraint on the dynamical model accuracy (i.e. on the shallow water assump-
tion) by using an imperfect modeling scheme combined with an appropriate
observation operator.

4.1 Shallow-water model for atmospheric layers

In order to provide a dynamical model describing the evolution of pressure dif-
ference observations, we use the shallow-water approximation (horizontal mo-
tion much greater than vertical motion under the assumption of incompressibil-
ity) [9]. This approximation is valid for the upper range of mesoscale analysis
in a layered atmosphere. Considering horizontal scales on the order of 100 km,
combined with layer depths on the order of 1 km, makes the shallow-water ap-
proximation relevant. Therefore, in order to obtain a valid dynamical model on
a pixel grid of resolution δp in kilometers, we can filter the dynamical equations
with a Gaussian kernel function Kδx

of standard deviation equal to δx = 100δ−1
p ,

where δp denotes the image pixel resolution in kilometers.

Shallow-water approximation assumes incompressibility. Thus we consider
a constant density ρk within the layer, which implies under hydrostatic balance
that horizontal divergence is weak. Let us remark that this incompressibility
simplification which underlies a shallow water system is reasonable, while it may
be erroneous for finer horizontal scales. Mean densities ρk can be related to the
average pressures pk by vertical integration of the equation of state for dry air

INRIA



Pressure image assimilation for atmospheric motion estimation 11

(p = ρRT ), combined with the hydrostatic relation (dp = −gρdz), under the
assumption of constant lapse rate (T = T0 + γz), where g, R, T0 and γ denote
the standard physical constants. More precisely, between altitudes z0 and z (or
pressure p0 and p), one obtains :

Z p

p0

dp′

p′
= −

Z z

z0

g

R(T0 + γz′)
dz′, (17)

which yields after some calculation to the expression of density as a function
of pressure [16]:

ρ(p) =
p0

RT0

` p

p0

´ γR
g

+1
. (18)

Thus, computing the vertical average, the mean density related to the k-th
layer reads :

ρk =
1

pk+1 − pk

Z pk+1

pk

ρ(p)dp

=
p2
0

(pk+1 − pk)( γR

g
+ 2)RT0

h“ p

p0

” γR
g

+2ipk+1

pk
. (19)

Note that a constant lapse rate γ, that is to say a linear variation of temper-
ature with altitude, is a rough approximation in the troposphere. However, as
we are averaging the obtained density law vertically and horizontally over the
whole domain embedding the layer, the impact of such an assumption should
have minor impact on the modeling.

We now derive a direct shallow-water model dedicated to atmospheric layers.
At the upper range of the mesoscale, friction components and terms depend-
ing on Earth curvature can be neglected [16, 14, 13]. Introducing the filtered
pressure and horizontal wind

p̃ = Kδx ∗ p (20)

ṽ = (ũ, ṽ)T = Kδx ∗ (u, v)T (21)

and using the shallow-water approximation, the filtered horizontal momentum
equations for atmospheric motion read :

(
dũ
dt

+ p̃x

ρ0
− ṽfφ = νT ∆ũ

dṽ
dt

+
p̃y

ρ0
+ ũfφ = νT ∆ṽ

(22)

where ρ0, f
φ and νT denote the local mean density, the Coriolis factor depending

on latitude φ and the turbulent viscosity produced at sub-grid scales [10]. The
induced turbulent dissipation can be approached by sub-grid models proposed
in large eddy simulation literature [32]. The simplest one is the well known
Smagorinsky sub-grid model which is in agreement with Kolmogorov “K41”
theory [34]. For 2D flows, it results in an anisotropic diffusion with a turbulent
viscosity coefficient equal to :

νT = (Cδx)2
q

2(ũ2
x + ṽ2

y + (ũy + ṽx)2) (23)
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12 Corpetti & al.

where C is the Smagorinsky coefficient (which is usually fixed to 0.17).

Expanding the total derivatives in the isobaric coordinate system (x, y, p)
and using the fact that the flow is incompressible (zero local 3D divergence),
Equation 22 can be rewritten as :

(
∂ũ
∂t

+ ∂ũ2

∂x
+ ∂ũṽ

∂y
+ ∂ũω̃

∂p
+ p̃x

ρ0
− ṽfφ = νT ∆ũ

∂ṽ
∂t

+ ∂ũṽ
∂x

+ ∂ṽ2

∂y
+ ∂ṽω̃

∂p
+

p̃y

ρ0
+ ũfφ = νT ∆ṽ

(24)

where ω̃ = dp̃
dt

is the filtered vertical wind component in pressure coordinates. In
the isobaric coordinate system (x, y, p), the mass conservation equation reads :

∂ũ

∂x
+

∂ṽ

∂y
+

∂w̃

∂p
= 0 (25)

In order to perform the vertical integration of Equation 24 and Equation 25 in
the pressure interval [p̃(sk+1), p̃(sk)], we first fix the boundary conditions :

(
∂p̃(sk)

∂t
+ũ(sk) ∂p̃(sk)

∂x
+ṽ(sk) ∂p̃(sk)

∂y
= ω̃(sk)

∂p̃(sk+1)
∂t

+ũ(sk+1) ∂p̃(sk+1)
∂x

+ṽ(sk+1) ∂p̃(sk+1)
∂y

= ω̃(sk+1).
(26)

Such boundary conditions can be interpreted as the fact that boundary surfaces
p̃(sk) and p̃(sk+1) are deformed by the vertical wind ω̃(sk) and ω̃(sk+1). To
achieve such a vertical integration in the pressure interval [p̃(sk+1), p̃(sk)] vary-
ing with spatial coordinates, we employ the Leibnitz formula with the previous
boundary conditions. This formula, which is valid for all integrable and deriv-
able function f(x, p) and for all interval [a(x), b(x)] with boundaries varying
with x, reads :

Z b(x)

a(x)

∂f(x, p)

∂x
dp =

∂

∂x

 Z b(x)

a(x)

f(x, p)dp

!

− f(x, b(x))
∂b(x)

∂x
+ f(x, a(x))

∂a(x)

∂x
. (27)

Thus, using Equation 26 and Equation 27, the vertical integration of Equation
24 in the pressure interval [p̃(sk+1), p̃(sk)] yields to a momentum conservation
equation for the k-th atmospheric layer :

∂(q̃k)

∂t
+div(

1

h̃k
q̃k ⊗ q̃k)+

1

2ρk
∇xy(h̃k)2+

»
0 −1
1 0

–

fφq̃k = νk
T ∆(q̃k) (28)

with
h̃k = p̃(sk) − p̃(sk+1), (29)

ṽk = (ũk, ṽk) =
1

h̃k

Z p̃(sk)

p̃(sk+1)

ṽdp, (30)

q̃k = h̃kṽk, (31)

div(
1

h̃k
q̃k ⊗ q̃k) =

"
∂(h̃k(ũk)2)

∂x
+ ∂(h̃kũk ṽk)

∂y

∂(h̃kũk ṽk)
∂x

+ ∂(h̃k(ṽk)2)
∂y

#

, (32)
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Pressure image assimilation for atmospheric motion estimation 13

By vertical integration of the continuity equation (Equation 25) in the pres-
sure interval [p̃(sk+1), p̃(sk)], we supplement the momentum conservation law of
Equation 28 by the mass conservation law :

∂h̃k

∂t
+div(q̃k) = 0, (33)

and obtain independent shallow-water equation systems for atmospheric layers
k ∈ [1,K]:

8

>><

>>:

∂h̃k

∂t
+div(q̃k) = 0

∂(q̃k)
∂t

+div( 1

h̃kq̃
k ⊗ q̃k)+ 1

2ρk ∇xy(h̃k)2+

»
0 −1
1 0

–

fφq̃k

=νk
T ∆(q̃k),

(34)

Note that as we are in the isobaric coordinate system, partial derivatives with
respect to x, y and t are defined at constant pressure p. However, according to
section 3, pressure difference observations correspond to rough constant pressure
interval. Therefore, such data fit the shallow water model of Equation 34 defined
in the isobaric coordinate system. Note that the proposed shallow-water system
describes the dynamics of physical quantities expressed in standard units. Thus,
some dimension factors appear in the equation when it is discretized on a pixel
grid with velocities expressed in pixels per frame and pressure in hPa1.

4.2 Estimation and tracking of wind and pressure fields

Let us now define the components of the assimilation system controlling the
initial conditions used for the dense estimation and the tracking of pressure
difference maps h̃k and average velocities ṽk related to the set of k ∈ [1,K]
layers.

4.2.1 State variables

The state variable considered for each of the layers k ∈ [1,K] is composed of
the height and of the flow : Xk = [h̃k, q̃k]T . The control of the initial conditions
h̃k(t0) and q̃k(t0) of the system (34) is performed through the control variables
ηk

h and ηk
q :


h̃k(t0) = h̃k

0 + ηk
h

q̃k(t0) = q̃k
0 + ηk

q

(35)

4.2.2 Observation operator

Observations hk
obs are provided by the pressure difference maps introduced in

section 3.2. As we aim to track the filtered state vector [h̃k, q̃k]T and as we

1As one pixel represents δp meters and one frame corresponds to ∆t seconds, the densities
ρ

k expressed in pascal by square seconds per square meter (Pa s2/m2) must be multiplied

by 10−2δp2/∆t2, and Coriolis factor fφ expressed per seconds must be multiplied by ∆t.
By a scale analysis and as also observed in our experiments, for ∆t = 900 seconds, the third
term of Equation 28 has a magnitude similar to other terms if δx ∼ 100. This is in agreement
with the shallow water assumption.
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Figure 2: Graph of a robust cost function (Φ(x2) = 1 − exp( x2

σ2 )) compared to
a quadratic function.

only observe non filtered hk
obs, the observation system Y = H(X) is thus simply

defined by :


Y = h̃k

obs = Kδx ∗ hk
obs

H = [Id, 0]
. (36)

This means that the motion correction will be achieved relying uniquely on
pressure difference observations.

4.2.3 Cost function

Assuming those variables are of weak energy yields to the minimization of the
following functional for layer k :

Jk(ηk
h, ηk

q) =
1

2

Z tf

t0

φ
“

‖Kδx ∗ hk
obs−h̃k(ηk

h, ηk
q)‖2

Rk

”

dt

+
1

2
‖ηk

h‖
2
Bk

h
+

1

2
‖ηqk‖

2
Bk

q

, (37)

where Bk
h and Bk

q denote the covariance matrices associated to the initial control
functions ηh and ηqk . A robust penalty function φ(.) has been introduced in the
previous functional to remove unreliable observations, that is to say observa-
tions which constitute outliers for the shallow-water model. Such cost functions
penalizes large “residual” values less drastically than quadratic functions do
[15, 11, 26], as illustrated in figure 2. It can be shown, under certain simple
conditions (mainly concavity of Φ(

√
x)), that any multidimensional minimiza-

tion problem of the form

arg min
X

∫

φ(g(X)2)dx, (38)
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Pressure image assimilation for atmospheric motion estimation 15

can be turned into a dual minimization problem:

arg min
X,z

∫

[zg(X)2 + ψ(z)]dx. (39)

This new optimization problem involves an additional auxiliary variable (or
weight function) z(x) with value in the range [0, 1]. Function ψ is a continuously
differentiable function defined from φ and that is uniquely a function of the
weight variables. The new minimization is then lead alternatively with respect
to X and to z. If g is an affine function, minimization w.r.t. X is a standard
weighted least squares problem. The variable X being frozen, it can be shown
that the best weights have the following closed form [11]:

ẑ(x) = φ′[g(X(x))2]. (40)

Experimentally the use of these functions has proven to bring significant im-
provements for computer vision application. In this work, a Leclerc M-estimator

has been chosen for φ(x2) = 1−exp −x2

σ2 . In practice at each update of the state

variables, the new optimal value of the weight variable ẑ(x) = exp −x2

σ2 is com-
puted and a new weighted quadratic norm is considered in the assimilation
process. This norm reads ‖ · ‖2

ZkRk where Zk is the outlier diagonal matrix
defined as

Zk(x,x′) =

(

exp −g(X(x))2

σ2 , if x = x′

0 else.
(41)

4.2.4 Dynamical operator

The dynamical model M(h̃k, q̃k) is given by Equation 34. The adjoint opera-
tor of a shallow-water equation system can be expressed analytically [17]. For
the dynamical model defined in Equation 34, the adjoint operator (∂XkM)∗

associated with the adjoint variable λk = [λk
h, λ

k
q]T reads :

8

>>>><

>>>>:

−∂tλ
k
h + ṽk · (ṽk · ∇)λk

q−
h̃k

%k div(λk
q)=(Rk)−1(Kδx ∗ h̃k

obs−h̃k),

−∂tλ
k
q−(ṽk · ∇)λk

q−(∇λk
q)ṽk−∇λk

h+

»
0 1
−1 0

–

fφλk
q =νk

T ∆(λk
q),

λk
h(tf ) = 0,

λk
q(tf ) = 0,

(42)

where λk
h and λk

q denote the two components of the adjoint variable λk related to
layer k. Let us remark that the turbulent viscosity has been considered as being
given by the direct integration. Its value is maintained in the backward inte-
gration. More details on the construction of adjoint models can be found in [36].

The implementation of bi-dimensional advection systems can be quite complex.
We chose for the spatial discretization of the shallow water Equation 34 the non
oscillatory schemes proposed in [39]. The temporal integration is achieved with
a third order Runge-Kutta scheme and a time step dt which respects the total
variation diminishing property [19].
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16 Corpetti & al.

4.2.5 Covariance matrices and initialization issues

An inverse diagonal covariance matrix (Rk)−1 is directly defined using the mask
of observation Ck :

(Rk)−1(s, s) =


αobs if s ∈ Ck

0 else,
(43)

where αobs is a fixed parameter defining the inverse of the observation covari-
ances. In an analogous way inverse diagonal covariance matrices (Bk

h)−1 and
(Bk

q)−1 are defined as :


(Bk
h)−1(s, s) = αh

(Bk
q)−1(s, s) = αq

(44)

where αh and αq are fixed parameters defining the inverse of the initial variable
covariances.
However, as observations are sparse and noisy, nine-diagonal inverse covariance
matrices obtained by Gaussian smoothing are employed to diffuse information
in the 3x3 vicinity of any pixel supporting observations.

As no guaranty of convergence towards a global minimum can be insured for
such a non-convex functional, the quality of results depends on the initial con-
ditions given to the system. We chose to initialize the state variables h̃k

0 with a
constant height computed as the average height observed on the layer. Initial ve-
locity fields ṽk

0 are provided by an optic-flow algorithm dedicated to atmospheric
layers [14]. These two elements provide the initial state variable q̃k

0 = h̃k
0ṽ

k
0 .

5 Image assimilation with an imperfect dynam-

ical model

In order to relax the layering assumption, we describe the evolution of the
filtered state variables using a simplified version of the previously introduced
shallow-water equations and perform assimilation using an imperfect modeling
scheme. Moreover, we propose to use an image-adapted observation operator,
able to exploit the fine spatio-temporal image structures, but at the same time,
remain related to the spatially filtered state variables.

5.1 Simplified filtered vorticity-divergence model

In order to simplify Equation 34, we assumed filtered horizontal motion com-
ponents to be homogeneous within the layer. In other words, we neglect their
vertical derivatives and consider that filtered horizontal winds ṽk which have
been vertically averaged are equal to filtered horizontal winds on layer upper
surfaces sk+1. Using such an assumption yields :

ṽk
t + ∇(ṽk)ṽk − ρ−1

0 ∇p̃(sk+1) +

»
0 −1
1 0

–

fφṽk = νT ∆(ṽk) (45)
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Pressure image assimilation for atmospheric motion estimation 17

with the notations ∇(ṽk) = (∇ũk,∇ṽk)> and ∆(ṽk) = (∆ũk,∆ṽk)>. Let us
denote the vorticity by ζ̃k = curl(ṽk) and the divergence by D̃k = div(ṽk). The
previous system may be expressed in its vorticity-divergence form :


ζ̃k

t + ṽk · ∇ζ̃k + (ζ̃k + fφ)D̃k = νT ∆(ζ̃k)

D̃k
t +ṽk · ∇D̃k+(D̃k)2−2|J |−ρ−1

0 ∆p̃(sk+1)+fφζ̃k =νT ∆(D̃k)
(46)

where |J | is the determinant of the Jacobian matrix of variables (ũk, ṽk). For
vorticity based large eddy simulation formulations, we may rely on enstrophy-
based sub-grid models, instead of using the Smagorinsky model (Equation 23).
Such models are based on Taylor’s vorticity transfer and dissipation by small
scales theory [37]. Consequently, the sub-grid turbulent dissipation term in the
curl transport equation may be modeled by the enstrophy-based sub-grid model
proposed in [25]. Such a model reads :

νT = (Cδx)2|ζ̃k|. (47)

In the momentum conservation formulations of Equation 45 and Equation 46,
dynamical models predict the evolution of velocity components (ũk, ṽk) and of
divergence and vorticity (ζ̃k , D̃k). In both models, one of the major difficulties is
induced by the dependence to the pressure variable p̃(sk+1) which is an unknown
variable of the k-th layer state. Adding pressure as a new state variable in the
assimilation process, whose evolution can be described by the mass conservation
law of Equation 33 constitutes a solution for achieving the model integrations.
However, we will need to later employ latter this mass conservation law to define
the observation operator. Thus, we search instead to derive a dynamical model
which is independent of the pressure unknown. In opposition to the classical
formulation, the vorticity-divergence equations have the advantage of providing
a dynamical model for which the vorticity evolution is independent of pressure.
Concerning the divergence, as at large scales it can be considered weak almost
everywhere, we will rely on an approximate evolution law.

We assume here that the divergence is advected by the flow and a noise
variable that encodes the uncertainty on the model. More precisely we will
assume that the divergence map is a function of a stochastic process representing
a particle position and is driven by the folowing stochastic differential equation:

dx(t) = ṽk(x(t))dt +
√

2νT dB(t). (48)

This equation states that the particle position is known only up to an uncer-
tainty that grows linearly with time. Bt is a standard Brownian motion of IR

2.
The process xt starts at points, xo. It can be shown through the Ito formula
and Kolmogorov’s forward equation, that the expectation at time t of such a
function, ξ(t,x) = E[divṽk(x(t))] obeys an advection diffusion equation [27]:

ξt + ṽk · ∇ξ + ξdivṽk − νT ∆ξ = 0,

ξ(0, x0) = divṽk(x0).
(49)

Assuming that the divergence of the flow is given by its expectation (D̃k ≈ ξ)
allows us to write the simplified filtered vorticity-divergence model for the layer
k as:
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18 Corpetti & al.


ζ̃k

t + ṽk · ∇ζ̃k + (ζ̃k + fφ)D̃k = νT ∆ζ̃k

D̃k
t +ṽk · ∇D̃k + (D̃k)2 = νT ∆D̃k . (50)

In this model we assume that the divergence of the flow is weak and is similar to
the divergence expectation. The divergence equation does not describe anymore
the evolution of the flow divergence but the evolution of its expectation. The
expectation of the divergence value is advected by the flow and dissipates due
to a subgrid isotropic incertitude. This hypothesis is quite natural in large scale
modeling.

5.2 Estimation and tracking of filtered wind fields

In this section, we present all components required to estimate and track the
wind fields with an assimilation scheme using an imperfect model.

5.2.1 Cost function and state variables

We choose to represent the system state (i.e. the velocity field) through the curl
and divergence components as their evolution can be described by Equation 50
and as they completely determine the underlying 2D velocity up to a laminar
flow. Indeed, denoting the orthogonal gradient by ∇⊥ = (−∂/∂y, ∂/∂x)> and
the 2D Green kernel G associated with the Laplacian operator, the Helmholtz
decomposition of the field can be expressed as :

ṽk = ∇⊥(G ∗ ζ̃k)
| {z }

ṽk
sol

+∇(G ∗ D̃k)
| {z }

ṽk
irr

+ṽk
har, (51)

where ṽk
har is an harmonic transportation part (divṽk

har = curlṽk
har = 0). In our

applications, we assume that this component of the velocity is constant. This
component may be recovered by subtracting its solenoidal and irrotationnal
parts from the initial field ṽk

0 . As a consequence, the field can be represented
by its div-curl components as :

ṽk = ∇⊥(G ∗ ζ̃k) + ∇(G ∗ D̃k) =
h

∇⊥G∗,∇G∗
i

| {z }

HG

»
ζ̃k

D̃k

–

(52)

where the operator HG can efficiently be computed in the Fourier domain.

As the divergence-vorticity model constitutes only an approximate dynami-
cal system describing atmospheric layer evolution, we employ the assimilation
scheme derived for imperfect models which has been presented in section 2.2.
This yields the minimization of the functional introduced in Equation 7 and
Equation 6 with the dynamical and observation operators defined in the follow-
ing.

5.2.2 Dynamical operator

The dynamical model required for the assimilation in (6) is defined by relation
(50). This model is associated with an imperfect dynamical modeling where
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Pressure image assimilation for atmospheric motion estimation 19

the model errors are here related to Coriolis effect, to the pressure difference
dissipation on the divergence component and to the sub-grid stress tensor error
on the vorticity and divergence component.

The associated tangent linear system (Equation 14) around the current so-

lution X? = [ζ̃?, D̃?]T is:

∂t

»
ζ̃k

D̃k

–

+

»
ṽ? · ∇+D̃?−νT ∆ ζ̃?+fφ

0 ṽ? · ∇+D̃? −νT ∆

–

| {z }

∂X? M

»
ζ̃k

D̃k

–

= Qkλ,

(53)

where νT = (Cδx)2|ζ̃?| and with the covariance matrix Qk which will be defined
in section 5.2.4. At each time increment dt, the current velocity solution ṽ? is
updated according to vorticity ζ̃k , divergence D̃k and harmonic transportation
ṽk

har using operator defined in Equation 52. The adjoint variables [λk
ζ , λ

k
D]T are

obtained with the following adjoint system:

8

>>>>>>>><

>>>>>>>>:

λk
ζ (tf ) = 0,

λk
D(tf ) = 0,

−∂t

»
λk

ζ

λk
D

–

+

»
−ṽ? · ∇+D̃?−νT ∆ ζ̃?+fφ

0 −̃v? · ∇+D̃?−νT ∆

–

| {z }

(∂X? M)∗

»
λk

ζ

λk
D

–

= ∂XkH
∗R−1(Y − H(X)).

(54)

Let us remark that the turbulent viscosity νT and the velocity ṽ? are com-
puted during the direct integration and maintained in the backward integration.
As opposed to the traditional shallow water setting, the resulting adjoint equa-
tion includes a turbulent viscosity. Discretization of this dynamical model has
been achieved using spatial and temporal schemes similar to those used previ-
ously. The observation errors Y −H(X) and the covariance matrix R are defined
in the next sections.

5.2.3 Observation operator

The mass conservation law of Equation 33 is used to define our observation
operator:

∂hk
obs(s, t)

∂t
+ ∇hk

obs(s, t) · ṽ
k(s, t) + hk

obs(s, t)divṽk(s, t) ≈ 0, (55)

However, this formulation can not be used alone, as it provides only one equa-
tion for two unknowns at each spatio-temporal location (s, t), with therefore a
one dimensional family of solutions in general. To remove such ambiguities, a
common approach consists in assuming a spatial coherence of wind field esti-
mates in a given neighborhood (similar to the well-known approach of [24] used
in computer vision). In the present case, this assumption is valid since unknowns
are filtered velocity vectors ṽk(s, t) spatially coherent at a location s within a
neighborhood of size δx. Therefore, the motion field can be measured through
the relation (omitting the spatio-temporal indexes (s, t) for sake of clarity):
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Kδx ∗

„
∂hk

obs

∂t
+ ∇hk

obs · ṽ + hk
obsdivṽk

«

≈ 0, (56)

where Kδx
is a Gaussian kernel of size δx. From the previous relation and

recalling that ṽk = HGX (with X = [ζ̃k , D̃k]T ), one can easily define our
observation system Y = H(X) with:

(

Y = Kδx ∗
∂hk

obs(s,t)

∂t

H = −
`
Kδx ∗ ∇hk

obs

´T
HG −

`
Kδx ∗ hk

obs

´
∇T

HG

. (57)

The observation operator H is linear w.r.t the state variable X = [ζ̃k, D̃k]T and
is then identical to its linear tangent operator. Noting that the adjoint of HG

is −HG (as shown in [29]), the adjoint of H therefore reads :

∂X?H
∗ = HG

“

Kδx ∗ ∇hk
obs

”

−
“

Kδx ∗ hk
obs

”

HG∇. (58)

5.2.4 Covariance matrices and initialization issues

Nine-diagonal inverse covarianc matrices (Bk
ṽ)−1 and (Rk)−1 fixing the inac-

curacy of the initial condition ṽk
0 and of observations hk

obs have been defined
similarly to section 4.2.5. Moreover, a nine-diagonal inverse covariance matrix
(Qk)−1 fixing the model inaccuracy with a given parameter αQ has been defined
analogously.

Initial velocities ṽk
0 are obtain by filtering wind fields, provided by the optic-flow

algorithm dedicated to atmospheric layers proposed in [14], with the Gaussian
Kernel Kδx

.

6 Experiments

6.1 Synthetic image sequence

For numerical evaluation of the image assimilation schemes, we have relied on
synthetic image observations generated by short time numerical simulation of
atmospheric layer motion. As the two assimilation schemes proposed in this
paper rely on different dynamical models, we derived two different benchmarks
according to a perfect and an imperfect shallow-water modeling given respec-
tively by Equation 34 and Equation 50. For both cases, we chose a realistic
initial condition on motion (and on layer pressure difference for Equation 34)
to integrate the models in an equivalent time period of 2h30min and create two
different sequence benchmarks composed of 10 images each which were denoted
respectively by seq-a (for the perfect model) and seq-b (for the imperfect model)
. Each image is composed of 128 × 128 pixels and represent a spatial area of
approximatively 400km2. These benchmarks have then been deteriorated by
different noises and by masking operations; we formed 4 synthetic sequences
a1, a2, a3, a4 related to seq-a, and 4 other synthetic sequences b1, b2, b3, b4 related
to seq-b. Sequences a1, b1 and a2, b2 were composed of dense observations of
hk

obs in hPa, corrupted by Gaussian noises with standard deviation respectively
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Exp. Mask Noise h̃k
obs(t0) RMSE |ṽk(t0)| RMSE |ṽk(t)| RMSE

% (hPa) (pixel/frame) (pixel/frame)
a1 no 15 28.79 0.0932 0.0911
a2 no 30 57.85 0.1869 0.1828
a3 yes 15 25.42 0.0932 0.0915
a4 yes 30 58.28 0.1836 0.1822

Figure 3: Initial setup used for assimilation with a perfect model. Initial

Root Mean Square Error (RMSE) on observations h̃k
obs at initial time t0 and on wind

norm |ṽk| at initial time t0 or at all times t of the image synthetic sequences.

Exp. final RMSE final RMSE final RMSE on |ṽk(t)|
on h̃k(t0)(hPa) on |ṽk(t0)|(pixel/frame) (pixel/frame)

a1 3.1100 0.0120 0.0128
a2 5.0421 0.0150 0.0153
a3 4.0808 0.0128 0.0135
a4 5.3249 0.0166 0.0168

Figure 4: Final estimation errors obtained by assimilation with a perfect

model. RMSE on estimates h̃k and |ṽk| at initial time t0 or at all times t of the image

synthetic sequences.

equal to 15% and 30% of the pressure amplitude. A realistic cloud classification
sequence was employed to extract regions from a1, a2, b1 and b2 in order to
create noisy and incomplete synthetic sequences a3, a4, b3 and b4. For initial-
izing the assimilation systems, we have used the synthetic ground truth values
of variables h̃k(t0) and ṽk(t0) deteriorated by Gaussian noises with standard
deviation equal to 15% and 30% of the variable amplitudes respectively for ex-
periments using synthetic sequences a1, a3, b1, b3 and a2, a4, b2, b4.

Table 3 and table 7 summarize the initial setup used for numerical evaluation
of the two assimilation schemes. Furthermore, these tables present the Root
Mean Square Error (RMSE) before assimilation of state variables. Figure 5 and
figure 9 displays examples of noisy and sparse pressure difference observations
and initial values of the state variables used in the experiments.

6.1.1 Perfect scheme

Comparing table 3 and table 4, one can notice significant decreases induced by
the assimilation system on the RMSE between real and estimated velocities and
pressure; the final RMSE reduces roughly by a factor of 10 with the assimila-
tion process. Moreover, the stable behavior of the RMSE on motion fields and
reconstructed pressure maps in these tables demonstrates the robustness of the
approach when dealing with incomplete and noisy observations. Reconstruction
of pressure maps and estimation of motion fields for experiments a2 and a3 are
presented in figure 6. A comparison with images of variable initial states dis-
played in figure 5 clearly illustrates the estimation efficiency.
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ground truth experiment ’a2’ experiment ’a3’

Figure 5: Observations and state variables before assimilation with a perfect

model : h̃k
obs(t0) (first line) and ṽk(t0) (second line) at initial time.

Ground truth experiment ’a2’ experiment ’a3’

Figure 6: Variables after assimilation with a perfect model: pressure difference

h̃k(t0) (first line) and wind fields ṽk(t0) (second line) estimates at initial time.
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Mask Noise RMSE on ζ̃k(t) RMSE on D̃k(t) RMSE on |ṽk(t)|
% (1/frame) (1/frame) (pixel/frame)

b1 no 20 0.0178 0.0305 0.0921
b2 no 40 0.0265 0.0534 0.1003
b3 yes 20 0.0179 0.0305 0.0925
b4 yes 40 0.0265 0.0543 0.1152

Figure 7: Initial setup used for assimilation with an imperfect model. Root

Mean Square Error (RMSE) on observations hk
obs, on initial vorticity |ζ̃k|, divergence

|D̃k| and wind norm |ṽk| obtained at all times t of the image synthetic sequences.

RMSE on ζ̃k(t) RMSE on D̃k(t) RMSE on |ṽk(t)|
(1/frame) (1/frame) (pixel/frame)

b1 0.0031 0.0017 0.0175
b2 0.0048 0.0023 0.0216
b3 0.0039 0.0019 0.0182
b4 0.0049 0.0024 0.0233

Figure 8: Final estimation errors obtained by assimilation with an imperfect

model. RMSE on estimates ζ̃k(t), D̃k(t) and |vk(t)| obtained at all times t of the

image synthetic sequences.

6.1.2 Imperfect scheme

By comparison of values in table 7 and table 8, here again one can notice a
significant decreases induced by the assimilation system on the RMSE between
real and estimated velocities : the final RMSE reduces roughly by a factor of 5
with the assimilation process. Although the error reduction is still important,
this is not as good as results obtained with an assimilation approach based on
a perfect model. Here again, the stable behavior of the RMSE on vorticity,
divergence and motion fields in these tables demonstrate the robustness of the
approach when dealing with incomplete and noisy observations. Vorticity, di-
vergence and motion fields estimates for experiments b2 and b3 are presented
in figure 10. A comparison with images of variable initial states displayed in
figure 9 clearly illustrates the estimation efficiency.

Although in these synthetic cases, the performance of a perfect modeling ap-
proach proved to overcome the performance of an imperfect modeling approach,
one should moderate such a conclusion in real cases.

6.2 METEOSAT Satellite image sequence

We then turned to qualitative evaluations of METEOSAT Second Generation
(MSG) meteorological image sequences acquired at a rate of an image every
15 minutes. This benchmark data, which has been provided by the EUMET-
SAT consortium, is composed of 10 images of top of cloud pressure and cloud-
classification images. The image spatial resolution is 3 × 3 km2 at the center
of the whole Earth image disk. The cloud-classifications were used to segment
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24 Corpetti & al.

Ground truth experiment ’b2’ experiment ’b3’

Figure 9: State variables before assimilation with an imperfect model :

initial wind ṽk (first line), vorticity ζ̃k (second line) and divergence D̃k (third line) at

initial time.
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Ground truth experiment ’b2’ experiment ’b3’

Figure 10: Variables after assimilation with an imperfect model : Wind

ṽk (first line), vorticity ζ̃k (second line) and divergence D̃k (third line) fields at t=

1h15min
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images into K = 3 broad layers, at low, intermediate and high altitude. Apply-
ing the methodology described in section 3, pressure difference images for the
3 layers were derived from pressure images. The sequence is composed of 10
images of 1024 x 1024 pixels covering an area over the north Atlantic Ocean (of
about 3000 km2) during part of one day (5-June-2004), from 12h00 to 14h30
UTC. (Coordinated Universal Time)

6.2.1 Perfect scheme

By assimilation of image observations with a perfect model, average motion
and pressure difference maps are estimated from the image sequence for these
3 layers. In figure 11, reconstructed pressure difference maps can be compared
to original and filtered pressure difference observations. Estimated vector fields
superimposed on reconstructed pressure difference maps are displayed in fig-
ure 12 for each of the 3 layers. The motion fields estimated from the different
layers on the cloudy observable parts are consistent with the visual inspection of
the sequence. In particular, several motion differences between layers are very
relevant. For instance, near the bottom left corner of the images, the lower layer
possesses a southward motion while the intermediate layer moves northward.

Let us note that the assimilation scheme using a perfect model is limited
to the estimation of large scale motion of layered atmospheric systems respect-
ing the shallow water assumption. In some real cases, we noted that the term

1

2ρk ∇(h̃k)2 of Equation 34 can locally dominate in areas where this assump-

tion breaks, which results in local instabilities. To avoid such phenomena, we
constrained in such cases the shallow water assumption to remain in force by
increasing the filtering parameter δx up to a value above 100δ−1

p in order to
consider scales greater than 100 km. The effect on observations of this filtering
operation can be seen in figure 11. It results in a good characterization of large
scale structure but also in a loss of information at small scales. This can be no-
ticed in figure 13 which is a visual comparison between the lower layer motion
component estimated by the layer-dedicated optic-flow method of [14] and by
the proposed perfect model assimilation system. Indeed, time-persistent large
structures of the flow are accurately estimated by both methods while noise
and time-inconsistent structures have been removed only by the assimilation
approach. However, smaller time-consistent structures have also been removed.

6.3 Imperfect scheme

Assimilation using an imperfect modeling scheme was then performed on the
same image sequence. Motion fields estimated for the different layers are pre-
sented in figures 15 and 15 together with original observations. The motion
fields estimated for the different layers are consistent with the results obtained
by the previous method. Furthermore, smaller structures have been accurately
characterized by this assimilation scheme. The enhancement at small scales can
be noticed in figure 16. The vorticity and divergence estimates displayed in
this figure can be compared to previous results displayed in figure 13. These
small structures appear to be coherent with the reference optical flow results.
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h1
obs

h̃1
obs

h̃1

t=0min t=2h30min

Figure 11: Pressure difference reconstruction by assimilation with a per-

fect model. Pressure difference observations hk
obs, filtered observations h̃k

obs and

reconstructed maps h̃k for the lower layer. Black regions of hk
obs correspond to missing

pressure difference observations and red lines represent coastal contours, meridians

and parallels (every 10o).
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Layer-1

Layer-2

Layer-3

t=0 min t= 1h15min t= 2h30min

Figure 12: Horizontal wind fields estimated by assimilation with a per-

fect model. Estimates obtained by assimilation are superimposed on reconstructed

pressure maps.
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t=0 min

t=1h15 min

t=0 min

t=1h15 min

ṽ1 ζ̃1 D̃1

Figure 13: Comparison of a reference optic-flow method (two first lines)

with assimilation with perfect modeling (two last lines) . Divergence D̃1,

vorticity ζ̃1 and wind ṽ1 of the lower layer estimated by a reference optic-flow method

and by assimilation with a perfect model.
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Im. Lay.#1

Fields Lay.#1

Im. Lay.#2

Fields Lay.#2

Figure 14: Horizontal wind fields estimated by assimilation with an imper-

fect modeling (layers #1 and #2). Filtered observations (top) and estimates

(bottom) obtained by assimilation.
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Im. Lay.#3

Fields Lay.#3

Figure 15: Horizontal wind fields estimated by assimilation with an im-

perfect modeling (layer #3). Filtered observations (top) and estimates (bottom)

obtained by assimilation.
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t=0 min

t= 1h15min

t= 2h30min

ζ̃1 D̃1

Figure 16: Vorticity and divergence estimated by assimilation with imper-

fect modeling. Divergence D̃1 and vorticity ζ̃1 of the lower layer at different times.
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However, on the contrary to the latter method which produces noisy and discon-
tinuous fields, the proposed estimation method produces dynamically consistent
estimates.

The assimilation scheme using an imperfect model proved also to be much
more stable than the perfect modeling approach. Thus, in this case, observations
h̃k

obs were filtered according to a normal parameter value δx = 100δ−1
p .

7 Conclusions

In this paper, we proposed two assimilation approaches enabling, for the first,
time dynamically consistent estimations of dense and layered atmospheric wind
fields from entire satellite image sequences.

Both motion estimators are applied to sparse pressure difference images cor-
responding to a stack of layers in a stratified atmosphere. A method is proposed
to derive such images from top of cloud pressure images and classification, which
are operational satellite products of the EUMETSAT consortium.

The first estimator is based on an exact shallow water model describing the
coupled evolution of the layer motion and thickness. A perfect modeling ap-
proach has been chosen in this first case in order to jointly assimilate pressure
difference and wind variables through the control of the initial state. This first
approach results therefore in reconstructed pressure difference maps and dense
wind field estimates.

The second estimator is based on an imperfect modeling scheme, which man-
ages the error of an a priori dynamical model. This model is a simplification of
the previous shallow water dynamics in which the momentum equation has been
made independent of layer thickness. This second approach therefore assimilates
motion based on a vorticity-divergence evolution model without reconstructing
pressure difference maps. Instead of using the shallow-water mass conserva-
tion model to control the evolution of pressure difference variables, this strategy
uses mass conservation in order to build an image-adapted observation operator
which is able to extract motion at fine spatio-temporal scales.

An evaluation first performed on synthetic image sequences demonstrated
the efficiency of both methods in estimating accurately dense wind fields in the
difficult case of noisy and sparse observations. Experiments performed on ME-
TEOSAT top of cloud pressure image sequences proved that both estimators
were able to characterize time-consistent wind fields at large scales. Dynamical
structures at finer-scale were better characterized using the imperfect assimila-
tion scheme.
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[41] J. Yuan, C. Schnoerr, and E. Mémin. Discrete orthogonal decomposition
and variational fluid flow estimation. J. of Math. Imaging and Vision,
28(1):67–80, 2007.

[42] L. Zhou, C. Kambhamettu, and D. Goldgof. Fluid structure and motion
analysis from multi-spectrum 2D cloud images sequences. In Proc. Conf.
Comp. Vision Pattern Rec., volume 2, pages 744–751, Hilton Head Island,
USA, 2000.

Contents

1 Introduction 3

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Data assimilation 4

2.1 Data Assimilation with perfect model . . . . . . . . . . . . . . . 5
2.1.1 Direct evolution model . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Adjoint evolution model . . . . . . . . . . . . . . . . . . . 6
2.1.4 Functional gradient . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Data Assimilation with imperfect model . . . . . . . . . . . . . . 7
2.2.1 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Adjoint evolution model . . . . . . . . . . . . . . . . . . . 7
2.2.3 Functional gradient . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Incremental function . . . . . . . . . . . . . . . . . . . . . 8

INRIA



Pressure image assimilation for atmospheric motion estimation 37

3 Image observations 8

3.1 Layer decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Sparse pressure difference image observations . . . . . . . . . . . 10

4 Image assimilation with a perfect dynamical model 10

4.1 Shallow-water model for atmospheric layers . . . . . . . . . . . . 10
4.2 Estimation and tracking of wind and pressure fields . . . . . . . . 13

4.2.1 State variables . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.2 Observation operator . . . . . . . . . . . . . . . . . . . . . 13
4.2.3 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.4 Dynamical operator . . . . . . . . . . . . . . . . . . . . . 15
4.2.5 Covariance matrices and initialization issues . . . . . . . . 16

5 Image assimilation with an imperfect dynamical model 16

5.1 Simplified filtered vorticity-divergence model . . . . . . . . . . . 16
5.2 Estimation and tracking of filtered wind fields . . . . . . . . . . . 18

5.2.1 Cost function and state variables . . . . . . . . . . . . . . 18
5.2.2 Dynamical operator . . . . . . . . . . . . . . . . . . . . . 18
5.2.3 Observation operator . . . . . . . . . . . . . . . . . . . . . 19
5.2.4 Covariance matrices and initialization issues . . . . . . . . 20

6 Experiments 20

6.1 Synthetic image sequence . . . . . . . . . . . . . . . . . . . . . . 20
6.1.1 Perfect scheme . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1.2 Imperfect scheme . . . . . . . . . . . . . . . . . . . . . . . 23

6.2 METEOSAT Satellite image sequence . . . . . . . . . . . . . . . 23
6.2.1 Perfect scheme . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3 Imperfect scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Conclusions 33

RR n
�

6507



Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)��������� �	��
�


���������� ��� ���

ISSN 0249-6399


	Introduction
	Overview
	Related works
	Contributions

	Data assimilation
	Data Assimilation with perfect model
	Direct evolution model
	Cost function
	Adjoint evolution model
	Functional gradient

	Data Assimilation with imperfect model
	Cost function
	Adjoint evolution model
	Functional gradient
	Incremental function


	Image observations
	Layer decomposition
	Sparse pressure difference image observations

	Image assimilation with a perfect dynamical model
	Shallow-water model for atmospheric layers
	Estimation and tracking of wind and pressure fields
	State variables
	Observation operator
	Cost function
	Dynamical operator
	Covariance matrices and initialization issues


	Image assimilation with an imperfect dynamical model
	Simplified filtered vorticity-divergence model
	Estimation and tracking of filtered wind fields
	Cost function and state variables
	Dynamical operator
	Observation operator
	Covariance matrices and initialization issues


	Experiments
	Synthetic image sequence
	Perfect scheme
	Imperfect scheme

	METEOSAT Satellite image sequence
	Perfect scheme

	Imperfect scheme

	Conclusions

