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Abstract

The OSGi platform is a lightweight management layer

over a Java virtual machine that makes runtime extensi-

bility and multi-application support possible in mobile and

constraint environments. This powerfull capability opens

a particular attack vector against mobile platforms: the in-

stallation of malicious OSGi bundles. The first countermea-

sure is the digital signature of the bundles. We developed a

tool suite that supports the signature, the publication and

the validation of the bundles in an OSGi framework. Our

tools support the publication of bundles onto a remote bun-

dle repository as well as the validation of the signature ac-

cording to the OSGi R4 specifications. A comparison of ex-

isting validation mechanisms shows that our security layer

is the only one that is compliant with the specification.

1 Introduction

The OSGi platform is on the way of becoming the de

facto standard componentization middleware for support-

ing extensible software, through the management layer it

provides to control the life-cycle of the so-called ‘bundles’,

i.e. the OSGi components. However, the security charac-

teristics of this life-cycle are hardly identified, in particular

during the deployment of the bundles which is usually real-

ized over insecure networks. We present here the tools we

developed to support the secure deployment of bundles. The

first tool, SF-Jarsigner1, covers the early life-cycle phases

of the deployment, namely the signature of the bundles by

their issuer and their publication. The second tool, SFelix2,

is actually an implementation of the digital signature valida-

tion layer of OSGi Release 4 specifications, and is based on

the Felix3 OSGi implementation. Both are compliant with

1This work is partially founded by MUSE IST FP6 Project #026442.
1http://sf-jarsigner.gforge.inria.fr
2http://sfelix.gforge.inria.fr/
3http://incubator.apache.org/felix/

OSGi Release 4 [10]. The publication process is not de-

fined by these specifications, but relies on the Open Bundle

Repository (OBR) format [11], which is supported by sev-

eral Open Source OSGi implementations: the OBR1 format

is supported by Oscar and Knopflerfish, and the OBR2 for-

mat is supported by Felix.

The OSGi platform is a lightweight overlay to the Java

virtual machine, which supports the runtime installation of

Java components, the management of their life-cycle, as

well as the proper expression of the dependencies between

them. This facility typically allows a user to discover soft-

ware packages that are available on the Internet or in its

near environment, to install them together with their depen-

dencies, and to un-install them when they are no longer re-

quired. The runtime extensibility which is thus provided

opens a new attack vector, which to the best of our knowl-

edge has been overlooked in the literature: the possibility

of seamlessly executing malicious code from the environ-

ment. Figure 1 shows the attack tree for executing malicious

code on a client system [13]. Two main strategies exists: to

install a malicious platform, and to install malicious bun-

dles. The first strategy is prevented by the control of the

integrity of the framework when it is installed. The second

strategy can be realized through three different approaches:

inserting malicious code during the development, inserting

malicious bundles onto the bundle repositories, or installing

bundles from unauthorized repositories. The bundle issuer

is responsible for guaranteeing that the code he provides is

sound, which can be achieved through code analysis. The

insertion of malicious bundles in the repositories or the in-

stallation from unvalid repositories can be prevented by the

digital signature of bundles. This paper presents the tools

we developed to perform this digital signature. Further in-

formation is provided in the related technical report [12].

The main current use cases of the OSGi platform is the

deployment of Open Source software. In such environ-

ments, security problems are often neglected due to the

open structure of the projects. However, the broadening

of the applications of the OSGi framework and the ben-



Figure 1. The Attack Tree for malicious Code

Execution

efits it may provide to adaptable and extensible business-

critical systems are highly likely to require a firm under-

standing of its security implications, and the availability

of effective tools. The security infrastructure, which relies

in a great part on the digital signature of bundles, is com-

mon to all application domains, such as mobile commerce,

wireless remote control, health-care monitoring, and video-

surveillance. This infrastructure must be completed with

context- and application-specific security policies, which

are out of the scope of this paper.

The following of the paper is organized as follows. Sec-

tion 2 presents the related works. Section 3 gives the de-

tail relative to our tool suite. Section 4 provides a com-

parison of the various available tools and frameworks dedi-

cated to signing and validating the digital signature of bun-

dles. Lastly, we conclude this work and give further per-

spectives.

2 Related Works

So as to define a secure process for deploying OSGi bun-

dles, it is necessary both to control the overall deployment

process, as well as the security mechanisms that can be used

to protect it. We therefore present other research works re-

lated to the deployment process, and to the security aspects

of deployment.

2.1 Deployment of Components

The various steps of the life-cycle of software compo-

nents and of OSGi bundles in particular are the following

[1]: the publication of the components, the discovery of

the components, the resolution of dependencies between the

components, the download, and the configuration at the ini-

tialization step.

The publication step requires that both the components

and the information necessary for the client to execute them

properly are made available: the component meta-data, de-

pendencies between components, the source location and

the scope of the component release are published in ‘release

databases’ [16]. The binding between the publishers and the

clients is done either through the publication of static meta-

data [11], or through a publish/subscribe mechanism [17].

In both cases, a third party broker is required. The discovery

phase is made of the identification of the available bundles

by the clients, and the resolution of the dependencies. The

Eureka framework is an example of such a discovery mech-

anism over the OSGi platform [14]. Specific languages are

defined to support this process of dependency resolution [7].

The download phase is typically done from a centralized

repository [11]. However, the distribution of the resources

over peer-to-peer overlay networks can be used with ben-

efit, so as to increase the robustness of the infrastructure,

the availability of the components[3].The last phase of the

deployment is the configuration of the components on the

client. It builds the finalization phase of the deployment of

complex distributed systems, and is often overlooked when

deploying single applications [6].

The tools we propose are based on the Bundle Repos-

itory Metadata to support the extraction of metadata dur-

ing the publication, and their resolution by the clients. The

download is handled by the ‘bundle repository’ bundle at

the client’s, which is part of the Felix framework. We in-

tegrate these existing facilities together with a publication

management tool we developed. This latter deals with the

update of the meta-data of the bundle repository and the up-

load of the bundles. To the best of our knowledge, such a

tool is available neither in the frame of the Felix project, nor

in the Equinox platform.

2.2 Secure Deployment

The cardinal security properties are the integrity of the

data, the authentication of their emitter, the confidentiality

of the communications and the non-repudiation of the ac-

tions. Diverse approaches have been defined so as to en-

force these properties on the context of component deploy-

ment.

The current specification for securing the deployment of

bundles is based on the Java Archive specification [15], and

defined with precision in the OSGi Release 4 specifications

[10]. It consists in the integration of the integrity control for

each resource through a hash value and a digital signature in

the bundle itself. The algorithms used are SHA-1 for hash-

ing and DSA for the signature. The necessary meta-data

is encapsulated in a file compliant with the ‘Cryptographic

Message Syntax’ [8]. This approach provides the authenti-

cation of the bundle issuer and the guarantee of the integrity

of the code.

An alternative to signature based on asymmetric cryptog-

raphy is the use of Message Authentication Code (MAC)

based on symmetric key [9]. This provides a more

lightweight cryptographic mechanism, but is often consid-

ered as being less secure than asymmetric cryptography, be-



cause the secret key is shared among several entities. More-

over, no performance indication is given, which means that

no factual comparison can be done with current specifica-

tions. The MAC signature process can take benefit of the

XML signature encapsulation for easier management [9].

A more robust mechanism for guaranteeing the deploy-

ment of component is the S-CODEP (SECure COmponent

DEPloyment) protocol [5]. It is based on Kerberos, and

provides an anti-replay mechanism. It assumes that the un-

derlying platform can not be compromised. The use of Ker-

beros make this approach a heavyweight one. It is adapted

for sensitive systems such as enterprise information systems

or telecommunication environments.

Several security infrastructures for specific component

platforms have been defined. For instance, the Cingal model

is a component model very similar to the OSGi one, and

provides digital signature using the same principle of digital

signature of the bundles [2]. A similar mechanism has been

defined to support the deployment of Web Services [4]. The

.Net framework also proposes a similar mechanism to sign

assemblies. Its main limitation is that the installed assem-

blies can not be removed, contrary to OSGi bundles, which

makes it unproper for mobile and resource-constraint plat-

forms.

These research works related to the problem of securely

deploying OSGi bundles and other software components

suffer from one obvious drawback. There is currently to the

best of our knowledge no tools that supports the deployment

process as it is specified by the OSGi Alliance. This mat-

ter of fact makes any comparison impossible - and greatly

limits the use of the OSGi platform in environments where

security is required. We therefore developed those tools,

and present them in the subsequent sections.

3 The SFelix Tools suite

So as to support the process of secure deployment of

OSGi bundles, we developed two complementary tools.

The first is the SF-Jarsigner that performs the signature and

the publication of the bundles by their issuer. The second

is SFelix, which is an extension of the Felix implementa-

tion of OSGi. Our main contribution in SFelix is the imple-

mentation of the OSGi R4 security layer, which is the sole

project we know that supports bundle signature according

to the OSGi Specifications [10]. For more precision, please

refer to our technical report [12].

3.1 Secure Deployment

The process of secure deployment is shown in figure 2.

The deployment of OSGi bundles is compound of issuance

phase, and a client-side phase.

Figure 2. Secure Deployment of OSGi Bun-

dles

The issuance phase is performed by the bundle issuer.

The first step is to sign the bundles, or to check that the

existing signature is valid. The second step is the extraction

of the meta-data of the signed bundles, and the publication

onto a third party repository. The format of the meta-data is

defined by the OBR2 Request for Comments of the OSGi

Alliance [11].

The client-side phase of the deployment is made of the

discovery of the bundles, the dependency resolution, the

download of the code archives, the validation of the dig-

ital signature, and the start of the bundles. The discov-

ery, the dependency resolution and the download steps are

dealt with by the bundle-repository facility, which is avail-

able in the Felix distribution. The validation step is per-

formed when the bundle is stored locally, to avoid a TOC-

TOU (time-of-check, time-of-use) substitution, and before

it is installed, so that not authenticated bundles can not be

executed. It must be compliant with OSGi R4 specifica-

tions, but also compatible with the behavior of the virtual

machine. The Sun tools are considered as the reference.

When the bundle signature is valid, and the signer is identi-

fied by the platform as being a trusted one, the bundle can

be started.

3.2 SF-Jarsigner: a Tool for secure Publi-
cation of Bundles

The SF-Jarsigner tool aims at providing a convenient

graphical user interface for signing and publishing OSGi

bundles. Since the signature generation mechanism is com-

patible with the Sun Jarsigner tool, other types of Jar files

or data archives can also be signed.

The SF-Jarsigner tool is compound of four graphical

panels. The first panel let the archive publisher select a

‘keystore’ file, where its private/public key pair (respec-

tively a public key) is stored for signing (respectively check-

ing) bundles. The second panel is the one shown on figure

3, it supports the signature or verification of bundles that

are stored on the local system. The valid bundles are shown



on the list on the right, and made available for publication.

The third panel allows to set and store the informations rel-

ative to the remote file server where the bundles are to be

published. Currently, only the FTP protocol is supported.

The last panel lets the publisher choose among the available

signed bundles which one are to be published. The opera-

tion can be repeated on several Bundle Repositories.

Figure 3. The Interface of the SF-Jarsigner
Tool

The SF-Jarsigner tool is provided as OSGi bundles. It

can be executed over the Felix, SFelix and Equinox plat-

forms. With a minor configuration effort, it can also be ex-

ecuted over Knopflerfish. It uses several third party open

source libraries: the Bouncycastle cryptographic libraries

bcprov and bcmail, the XML libraries xml-commons-

resolver and Xerxes from Apache, the FTP library Edtftp,

and the OBR2 metadata extractor Bindex. The validation

functionalities are provided by the ‘jarvalidation’ bundle,

and the graphical interface by the ‘Jar Signer Gui’ bun-

dle. Its total size is 3,657 kbytes. SF-Jarsigner is available

through the SFelix Bundle Repository4.

3.3 SFelix: a hardened OSGi platform

The SFelix platform is an extension of the Felix OSGi

implementation, which performs a bundle signature check

before the bundles are installed. If the signature of a given

bundle is unvalid, the bundle is rejected and the installation

is aborted.

The SFelix security layer is provided as a Java library,

and therefore not seen as actual bundles in the framework.

The verification is performed as a single call to the ‘jarval-

idation’ library we provide, and which is the same that the

bundle used in the SF-Jarsigner tool. The required libraries

are the Bouncycastle libraries bcprov and bcmail. The to-

tal size of the Security Layer is 1.932 kbytes, because of

the numerous cryptographic primitives that are embedded

4http://www.sfelix.free.fr/repository/repository-ppd.xml

in the Bouncycastle library. In an environment with re-

stricted resources, it would be necessary to extract the re-

quired classes from these library, so as not to overwhelm

the available memory with unused code.

4 Comparison with other Archive Validation

Processes

So as to confirm the usefulness of the tools we propose,

we compare them to the solutions that are currently avail-

able. Two aspects need to be considered: the signature step,

and the validation step.

4.1 Signing Archives

Two tools are available for signing Jar files or bundles.

The first is the Sun Jarsigner, with is part of the Java SDK.

The second is the SF-Jarsigner tool we provide. The Sun

Jarsigner is available as a command line utility. The SF-

Jarsigner is provided as a set of OSGi bundles, which sup-

port both a convenient use through a graphical user inter-

face, or a programmatic use through services published in-

side the OSGi framework.

The specifications of digital signature according to the

Jar file specifications [15] are relatively vague. They are

therefore completed in the OSGi R4 specifications [10].

However, if the validity criteria for archive signature are

more strict in the frame of OSGi systems (see section 4.2),

the default signature process by the Sun Jarsigner generates

OSGi compatible archives.

The main difference between the Sun JVM and the OSGi

specifications is that, in the case of the Sun signature, all

entries of the manifest file must be hashed and stored in the

so-called ‘Signature File’ (see [12] for the detailed structure

of a signed bundle). This is not required by the OSGi speci-

fications, which consider that no new resource can be added

to a signed archive. However, to provide compatibility with

Sun tools, the SF-Jarsigner adds these additional meta-data.

Consequently, it is possible to use any of those tools for

performing the digital signature of OSGi bundles - or of

other Java archives. The benefit of SF-Jarsigner lies 1) in

the convenient user interface and 2) in the support for bun-

dle publication.

4.2 Signature Validation

Whereas the actual behavior of the considered signing

tools is identical, the criteria for verifying the validity of

signed archive greatly varies between the various available

checkers and platforms. This has the direct consequence

that an OSGi bundle that has been modified will not be con-

sidered as unvalid in all tools but ours.



Table 1. Behavior of several tools and frame-
works in the presence of unvalid archives

Error Sun Java with Felix SFelix

Type Jarsigner Security

Manager

Unsigned W A R R

Archive

Unknown A A R R

Signer

Addition of A A A R

Resource

Removal of A A A R

Resource

Modification R R W R

of Resource

Unvalid Order A A A R

of Resources

Signature of R R W R

Embedded

Archive

Unvalid

Time Of Check Test Exec Exec Install

A: Accept; R: Reject; W: Warning;

The criteria of validation of the signature of a bundle

are shown in the table 4.2. All potential errors are listed

according to the OSGi R4 specification [10], and the be-

havior of the tested tools and platforms in the presence of

such an error is given. The considered tools and platforms

are the following: the Sun Jarsigner, the Sun Java virtual

machine with a Security Manager, the Felix platform with

security enabled, and the SFelix platform. All data are di-

rectly drawn from experience, but the Felix behavior. Since

no minimal permission policy is made available, and can

not be easily deduced from the behavior of the platform,

it can be assumed that 1) the certificate control, which is

done explicitly in the platform, is performed correctly, and

2) that the integrity control, which is done by the virtual

machine, is done in the same way than the ‘Java with Secu-

rity Manager’ case. The behavior of the SF-Jarsigner tool,

which can also be used to check signatures, is the same as

the one of SFelix, since it relies on the same ‘JarValidation’

library. The other open source implementations of OSGi are

not considered here. Knopflerfish5 does not provide support

for bundle signature. Neither does Equinox6. The integrity

control during the deployment of Eclipse plugins, which is

based on the Equinox framework, is performed during the

Eclipse plugin deployment through a specific mechanism.

5http://www.knopflerfish.org/
6http://www.eclipse.org/equinox/

The results of the experiments are the following. The

Sun Jarsigner tool identifies files that are not signed, that

have been tampered with, or for which the public key cer-

tificate is outdated. It does not take into account the fact that

the signer is trusted or not, though it has access to the ‘key-

store’ which contains such information. The Java virtual

machine has the same behavior than the Jarsigner, but does

not take the warnings into accounts. Consequently, no dif-

ference is done between a signed and an unsigned archive if

the valid signer are not explicitly indicated in the permission

policy before the virtual machine is launched. Therefore,

no modification of the list of trusted signers can be done

at runtime, which can be restrictive. The Felix framework

is expected to reject the unsigned archives and the archives

with unvalid signers. It issues warnings when archives that

have been tampered with are installed, but seems to install

them anyhow. SFelix has been developed specifically to be

conform to OSGi R4, so it has a proper behavior in all tested

error cases. Its current limitation is that it does not handle

certificates chains, used when a valid signer delegates its

right to another entity.

The time of integrity control is different in each tool. The

Sun Jarsigner tool, as a command line utility, prints the test

results immediately. The Java virtual machine checks the

integrity of the files when they are loaded to be executed,

and so does the Felix platform. This is not consistent with

the requirements that the whole archive is sound which is

expressed by the OSGi specifications. This explains why

Felix is not R4 compliant, at least what concerns the con-

trol of the integrity of the bundles. The SFelix platform

performs the archive signature check at install time. This

implies a slight performance overhead, but is necessary to

guarantee that only valid archives are installed. This ap-

proach prevents the sudden unavailability of services that

are installed, but for which some unfrequently executed

classes are tampered with.

5 Conclusions and Perspectives

We present in this paper the tool suite we developed to

support the secure deployment of OSGi bundles. Our con-

tribution is twofold. First, we integrate the available pub-

lication mechanisms defined by the Bundle Repository for-

mat in a convenient tool that makes possible to publish a

set of bundles so that they are made available to the client

platforms. Secondly, we provide a library that support the

generation and the validation of signature according to the

OSGi R4 specifications. The signature generation function-

ality is integrated in the publication tool SF-Jarsigner. The

signature validation functionality is integrated as an exten-

sion of the Felix OSGi implementation, name SFelix (for

Secure Felix). No other tool for bundle publication is cur-

rently available, to the best of our knowledge. Moreover,



all other existing validation mechanisms for OSGi bundle

signature do not follow the OSGi specifications. To provide

firm arguments of the benefit of our tools, we performed a

comparison between the various archive signature valida-

tion mechanisms.

The limitations of our tools are the following. Related

to the publication phase, only the OBR2 protocol is sup-

ported. However, Knopflerfish, and Oscar (the predecessor

of Felix) still use the OBR1 format, which is not compatible

with it. The extension of the current facility would make our

tool useful in systems that use those platforms, in particu-

lar Knopflerfish. Related to the signature process, the main

current limitation is that the possibility of signature delega-

tion through signature path is not supported at the verifier’s,

which must have a reference to each actual signers. More-

over, the signature generation must be done to maintain the

compatibility with the Java virtual machine and Sun tools.

Therefore additional meta-data are inserted in the hash files

of the signed bundles that would not be necessary.

This work provides the community with convenient tools

for securely publishing OSGi bundles, or other software

components. It also provides an implementation of the

OSGi security layer which is necessary for comparing the

current specifications and a modified security architecture.

The next requirement is the development of an infrastruc-

ture to manage the identity of the bundle issuers. The cur-

rent proposed solution is based on Public Key Infrastruc-

ture, which proves to be difficult to put into use. We there-

fore plan to study the possibility of using an alternative sig-

nature scheme. The Identity-based signature mechanism,

for instance, could be a valuable alternative to provide a

comparable level of security, while greatly simplifying the

key management process.
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