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University at Buffalo, Buffalo, NY

Abstract. We investigate the problem of querying (regular) sets of
XML documents represented with tree automata and we consider n-ary
tree automata queries whose expressive power captures MSO on trees.
Because finite automata can represent infinite sets of documents, we pro-
pose the notions of universal and existential query answers, answers that
are present resp. in all and some documents. We study complexity of
query answering and show that computing existential query answers is
in PTIME if we assume the arity of the query to be a fixed parameter.
On the other hand, computing universal query answers is EXPTIME-
complete, but we show that it is in PTIME if we assume that the query
is fixed (data complexity). Finally, we argue that the framework cap-
tures problems central to many novel XML applications like querying
inconsistent XML documents. In particular, we demonstrate how to use
our framework to compute consistent query answers in XML documents
that do not satisfy the schema. This solution significantly extends our
previous results in this area.

1 Introduction

In this paper we investigate the problem of querying potentially large sets of
XML documents having a small compact representation by a finite tree automa-
ton. Our work is inspired by the problem of evaluating a query in a document
that possibly does not satisfy the schema. Since the satisfaction of the schema is
usually assumed during formulation of a query, evaluation of the query against
a document that does not satisfy the schema may yield incorrect and misleading
answers. This problem has been previously recognized in the setting of relational
databases [3] and the proposed framework of repairs and consistent query an-
swers (CQA) has been adapted to semi-structured databases [18, 10, 11]. A repair
is a document satisfying the schema and obtained from the original document
by a minimal number of standard edit operations [1, 5]: inserting, deleting, and
modifying an element of the document. An answer is consistent (also called valid)
if it is an answer to the query in every repair.

Our research shows that the set of repairs of a document is a regular lan-
guage that has a compact representation by a finite (weighted) tree automata.
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This reduces the problem of querying the set of repairs to a more general prob-
lem of querying a regular set of documents represented by a tree automaton.
Because the set of documents represented by an automaton can be very large,
an approach where we return the collection of the sets of answers in every tree
may be simply inappropriate for many applications. Consequently, we propose
two ways of computing answers to queries in sets of documents: (i) universal
answers that are present in every document and (ii) existential answers that are
present in some document. Obviously, universal answers capture consistent an-
swers. We also note that the existential answers capture the notion of possible
answers, i.e. the answers that are present in some repair [10], often considered
next to consistent answers in the framework of CQA. Another motivation to
study the problem of querying regular sets of documents is that there are other
frameworks where the queries are evaluated not on the instance itself but rather
on the set of instances obtained by some (often nondeterministic) process from
the original one. An example is XML data exchange [4]: the queries are formu-
lated against target schema whose instances (called solutions) are obtained from
a source instance with a set of source-to-target dependencies specifying how the
parts of the source instance translate to an instance in target schema. In the
data exchange scenario, the notion of universal and existential answers coincide
resp. with certain and maybe answers [15]. It is, however, yet to be seen if the
set of solutions can be represented by a tree automaton.

Now, we briefly summarize our contributions:

– We define the problem of universal and existential querying of sets of docu-
ments represented by a finite tree automaton with attribute values and we
consider n-ary queries expressed with tree automata.

– We thoroughly study the complexity of computing existential and universal
answer. For computing existential answers, we show that its combined com-
plexity is NP-complete, but its complexity parametrized by the arity of the
query is FPT (Fixed Parameter Tractable) [9]. This result is not surprising
as the number of answers to an n-ary query can be exponential in n. Com-
puting universal answers is, however, EXPTIME-complete in terms of both
the combined and parametric complexity. On the other hand we show that
its data-complexity is PTIME.

– We show how to compute consistent query answers by constructing a repair
automaton that defines the set of all repairs of a document w.r.t. a schema
(expressed with a tree automaton). This extends our previous results [18, 17]
in several directions: (i) we consider n-ary automata queries whose expressive
power captures MSO as compared to a restricted class of unary Core XPath
queries, (ii) schema can be expressed using tree automata which are strictly
more expressive than DTDs, (iii) we show that data complexity of computing
consistent answer to any n-ary automata query is PTIME, (iv) we consider
a more general set of editing tree operations that allow to operate on inner
nodes as compared to operations on leaves only.



Related work [10] investigates querying XML documents that are valid but
violate functional dependencies. Two repairing actions are considered: updating
element values with a null value and marking nodes as unreliable. Such nodes
are simply omitted in the query answers. Only simple descending path queries
a1/a2/ . . . /an are considered. A polynomial algorithm for computing consistent
and possible answers is presented. [11] considers editing operations operating on
leaves only to define the set of repairs for consistent querying of documents that
violate functional dependencies. A different, set-theoretic, notion of minimality
is used when defining repairs. Both consistent and possible answers are consid-
ered. For restricted classes of functional dependencies and DTDs a polynomial
algorithm is proposed to compute consistent answers to n-ary conjunctions of
path expressions.

[12] considers evaluation of monadic Datalog queries on compressed trees
(represented by a tree automaton) and shows that combined complexity is PSPACE-
complete and data complexity is PTIME. We note that this framework is close to
existential querying: a (finite) set of trees can be gathered in one tree with a new
root symbol. The difference between the complexity results (for unary queries
we have polynomial algorithm in terms of combined and data complexity) comes
from different representations of queries. [16] extends this approach to trees rep-
resented by straight-line context-free grammars which is strictly stronger than
regular languages.

[21] study the problem of checking if a document is within a specified align-
ment distance to the given schema. We note that the edit distance is more general
than the alignment distance which imposes certain conditions on the sequence of
editing operations [6] and hence our approach is more general. A compact repre-
sentation of all repairs (obtained with restricted sequences of editing operations)
as a regular language is also presented.

The paper is organized as follows. Section 2 contains basic XML notions and
streaming tree automata. In Section 3 we define existential and universal answers
to n-ary queries and present algorithm for computing them. In Section 4 we study
computational implications of our framework. Section 5 shows how to use our
framework to compute consistent query answers. Because of space limitations
the proofs are omitted; they can be found in the appendix available at [19].

2 Basic notions

2.1 Trees and streams

We model XML documents using ordered unranked trees whose nodes are labeled
with elements of a finite set of symbols Σ. Every node is additionally labeled
with an attribute whose value is drawn from an infinite set Λ. We denote the set
of all trees by T . The size of t, denoted by |t|, is the number of nodes of t.

In our framework only the attribute values are used to define query answers.
The attributes of a tree can store unique node identifiers and we call such trees



standard. In general, however, the attribute can store (possibly repeated) data
values.

In this paper we work mainly with the serialized version of trees, i.e. well-
formed sequences of opening and closing tags (corresponding to a preorder
traversal of the tree) with attribute values associated to the opening tags. The
set of all tags is Σ♦ = {〈a〉|a ∈ Σ} ∪ {〈/a〉|a ∈ Σ}. When working with a serial-
ized version of a tree e1, . . . , en we write tag(ei) for the tag of ei and att(ei) for
the attribute value of ei. Given a tree t its serialized version is denoted by t̄. We

cl0

al1 bl2 al3 bl4 al5

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

tag 〈c〉 〈a〉 〈/a〉 〈b〉 〈/b〉 〈a〉 〈/a〉 〈b〉 〈/b〉 〈a〉 〈/a〉 〈/c〉
att l0 l1 – l2 – l3 – l4 – l5 – –

Fig. 1. An example of a tree t0 and the corresponding tag sequence

use also unranked terms over the signature Σ × Λ to represent trees. Figure 1
contains an example of a tree t0 = cl0(al1 , bl2 , al3 , bl4 , al5) and its serialization.

2.2 Streaming tree automata

To capture regular tree languages we use streaming tree automata [13] which
are Visibly Pushdown Automata [2] working on serializations of unranked trees.
They are allow to capture Extended DTDs [14] which makes them equivalent
to standard (ranked) tree automata working on encodings of unranked trees [8].
We choose this model because it is better fitted to capture repairs of XML
documents: repairs are obtained by edit operations on nodes and those easily
translate to string edit operations on pairs of matching tags. We also extend
this model by allowing it to specify attribute values: this way the repairs can be
defined in terms of the attribute values of the original document. For simplicity
of presentation we fix the set of attribute values Λ.

Definition 1. An attributed streaming tree automaton (attributed STA) is a
tuple M = (Σ,ΓM , QM , IM ,∆M , FM ), where Σ is a finite set of node labels,
ΓM is a finite set of stack symbols, QM is a finite set of states, and IM ⊆ QM

is the set of initial states, FM ⊆ QM is the set of final states. ∆M is a finite

set of transitions of one of the following types: opening transition p
〈a〉:γ
−−−→

l
q, and

closing transition p
〈/a〉:γ
−−−−→q, where p, q ∈ QM , a ∈ Σ, γ ∈ ΓM , and l ∈ Λ ∪ {∗}

(∗ is a wildcard).

The size of M is |M | = |QM |+ |∆M | and by Dom(M) ⊆ Λ∪ {∗} we denote the
set of different attribute labels used in ∆M .

Essentially, an attributed STA is a push-down automaton working on se-
quences of tags with the stack manipulation restricted to: placing a symbol on



the stack when reading an opening tag, and removing top symbol from the stack
when reading a closing tag. A configuration is an tuple (q, ᾱ, s̄), where q is the
current state, ᾱ is the current stack, and s̄ is the remaining (possibly unbalanced)
tag sequence. The move relation →M is a binary relation on configurations de-
fined as follows:

(i) (q, ᾱ, e · s̄) →M (p, γ · ᾱ, s̄) if q
〈a〉:γ
−−−→

l
p ∈ ∆M , tag(e) = 〈a〉, and if l 6= ∗,

then att(e) = l .

(ii) (q, γ · ᾱ, e · s̄) →M (p, ᾱ, s̄) if q
〈/a〉:γ
−−−−→ p ∈ ∆M and tag(e) = 〈/a〉.

→∗
M is the reflexive and transitive closure of →M . The tree language of M is

defined as L(M) = {t | (q, ε, t̄) →∗
M (p, ε, ε), q ∈ IM , p ∈ FM}.

An STA is an attributed STA that imposes no restrictions on the attribute
values, i.e. it uses only ∗. Then, we also omit the attribute labels altogether.
Figure 2 contains an example of an STA M0 that recognizes trees with root
label c satisfying the DTD D0 given by the rules: c → (a · b)∗ · a, a → ǫ, b → ǫ.
We observe that the tree t0 (Fig. 1) satisfies M0.

q0 q1 q2 q3 q4 q5

〈c〉 : γ0 〈a〉 : γ1

〈/a〉 : γ1

〈b〉 : γ2

〈/b〉 : γ2

〈/c〉 : γ0

Fig. 2. The STA M0 for the DTD D0

Weighted STAs To represent the sets of minimal repairs we further extend
attributed STAs by assigning to every transition its weight, a non-negative real
value. The weights are used to restrict the set of recognized trees to those with
a run of minimal summary weight.

More formally, a weight of a run is the sum the weights of the transition used
at each step. For a tree (with an accepting run) we associate the minimal weight
of its accepting run. L(M) contains only the trees that whose weight is equal to
the minimum of weights of all trees (with an accepting run).

2.3 STA queries

We define an n-ary query as a function that takes a tree and returns a set of
n-ary tuples of values from Λ (that are used in the tree).

To define an n-ary query we use an extension of (standard) STAs where with
every opening transition we associate a set of variables X ⊆ {x1, . . . , xn} that



indicates the positions of the resulting tuple (x1, . . . , xn) that are to be filled
when the transition is used in a run (the positions are filled with the attribute
value). Each position of the resulting tuple has to be filled exactly once during a
run, otherwise the run is non-accepting. The set of query answers consists of all
tuples obtained from all accepting runs. We use name STA queries to refer to
such automata and to distinguish them from STAs we use Greek capital letters
Φ, Ψ, . . .. We also put the sets X in the superscript of the opening transitions.
Figure 3 contains an STA query Φ selecting pairs (x1, x2) of any node a and its
immediate right sibling b (satisfaction of DTD D0 is assumed). On the tree t0

q0 q1 q2 q3 q4

Σ♦ : γ0

〈a〉 : γ1

{x1}

〈/a〉 : γ1 〈b〉 : γ2

{x2}

〈/b〉 : γ2

Σ♦ : γ0

Fig. 3. An example of a binary STA query

(Fig. 1) this query has two answers: (l1, l2) and (l3, l4).
We define query answers formally as follows. A configuration of an n-ary

STA query Φ is an element (q, ᾱ, s̄, τ), where q, ᾱ, and t̄ are as before, and
τ ∈ (Λ ∪ {⊥})n is the tuple of values assigned so far, with ⊥ (the null value)
indicating that the value has not been yet assigned. We define the move relation
analogously:

(i) (q, ᾱ, e · s̄, τ) →Φ (p, γ · ᾱ, s̄, τ ′) if q
〈a〉:γ
−−−→ p ∈ ∆Φ, tag(e) = 〈a〉, τi = ⊥ for

every xi ∈ X, and τ ′ = τ [X/att(e)],

(ii) (q, γ · ᾱ, e · s̄, τ) →Φ (p, ᾱ, s̄, τ) if q
〈/a〉:γ
−−−−→ p ∈ ∆Φ and tag(e) = 〈/a〉.

Again, →∗
Φ is the reflexive and transitive closure of →Φ. The set of answers

to an n-ary STA query Φ in t is QA(Φ, t) = {τ ∈ Λn|(q, ε, t̄, (⊥, . . . ,⊥)) →∗
Φ

(p, ε, ε, τ), p ∈ IΦ, q ∈ FΦ}.
It is known [13] that over standard trees n-ary STA queries have the same

expressive power as MSO formulas with n free variables over the first-child,
next-sibling signature of unranked trees In particular, STA queries subsume
unary CoreXPath queries. It should be noted, however, that similarly translating
an MSO formulas may yield a automata of non-elementary size [20, 13]. This
generally applies also to CoreXPath queries, but it can be easily seen that simple
descending XPath queries with no test expressions translate to STA queries of
linear size.

3 Existential and universal querying of attributed STAs

Now, we consider querying sets of trees defined by attributed STAs. First, we
note that the set of trees defined by an attributed STA may be infinite and



even if the STA is weighted, the number of trees may be exponential in the size
of the automaton (modulo different attribute values). Therefore, an approach
where we return the collection of the sets of answers obtained in every tree may
be inappropriate for many applications. Consequently, we propose two ways of
querying sets of trees.

Definition 2 (Universal and existential answers). Given a (possibly weighted)
attributed STA M such that L(M) 6= ∅ and n-ary STA query Φ

– the universal answers to Φ in M are QA∀(Φ,M) =
⋂

t∈L(M) QA(Φ, t),

– the existential answers to Φ in M are QA∃(Φ,M) =
⋃

t∈L(M) QA(Φ, t).

We note that the language defined by a weighted automaton is empty if and
only if the corresponding automaton without weights defines an empty language.
Emptiness of an attributed STA can be tested in cubic time using the classical
algorithm for PDAs. Because our algorithms have complexity of a higher de-
gree, from now on we will assume that we always deal with automata defining
nonempty language. Also, the set QA∀(Φ,M) is always finite, but QA∃(Φ,M)
may be infinite if M uses wildcards. Hence, we also allow to use wildcards in
answers to finitely represent QA∃.

Now, we present Algorithm 1 computing existential answers to an n-ary query
Φ in an attributed STA M . This algorithm is is based on a product technique

Algorithm 1 Computing existential answers to n-ary Φ in M

function QA∃(Φ,M)
macros: Q :≡ QΦ ×QM , I :≡ IΦ × IM , F :≡ FΦ × FM

(p1, q1)
x:(γ1,γ2)
−−−−−−→

X:=l
(p2, q2) :≡ p1

x:γ1−−−→
X

p2 ∈ ∆Φ ∧ q1
x:γ2−−−→

l
q2 ∈ ∆M ,

1: for (u, v) ∈ Q2 do

2: T0[u, v] =

(

{(⊥, . . . ,⊥)}, if u = v,

∅, otherwise.

3: for i← 1, . . . , n|Q|2 do

4: for (u, v) ∈ Q2 do

5: Hi[u, v] = Ti−1[u, v]
6: for j ← 1, . . . , ⌈log(n|Q|2)⌉ do

7: for (u, v) ∈ Q2 do

8: Hi[u, v]← Hi[u, v] ∪
S

{merge(Hi[u, w], Hi[w, v])|w ∈ Q}
9: for (u, v) ∈ Q2 do

10: Ti[u, v]← Ti−1[u, v] ∪
S

{assignX(Hi[u
′, v′], l)|u

〈a〉:γ
−−−→
X:=l

u′ ∧ v′ 〈/a〉:γ
−−−−→ v}

11: return {τ ∈ (Λ ∪ {∗})n|τ ∈ Tn|Q|2 [u, v] ∧ u ∈ I ∧ v ∈ F}
end function

of the two input automata. Essentially, it evaluates the query on every tree of
height and width ≤ n|Q|2, where Q = QΦ × QM . This procedure yields correct
results thanks to pumping properties of STAs. In particular, if there is a tree



t ∈ L(M) and tuple τ ∈ QA∃(Φ, t), there is also a tree t∗ whose depth and width
is bounded by n|Q|2, such that t∗ ∈ L(M) and τ ∈ QA∃(Φ, t∗). Consequently,
we need to consider query runs of depth and width bound by n|Q|2. This space
can be explored with a simple dynamic programming technique because runs of
an STA on a tree share the structure of the tree. In particular, Ti and Hi store
all tuples “collected” from runs on resp. trees and hedges (sequences of trees)
of depth ≤ i and width ≤ n|Q|2. We use assignX(A, l) to assign the value l
on positions X to every tuple from A (tuples having a value different from ⊥
on those positions are discarded). merge(A,B) returns the set of merged tuples
from sets A and B (two tuples having assigned value on the same position cannot
be merged). An easy complexity analysis shows that:

Theorem 1. For an attributed STA M and n-ary query Φ Algorithm 1 computes
QA∃(Φ,M) in time O((|Φ||M |)6|Dom(M)|2n).

Extending the algorithm to weighted attributed STAs is not difficult because
minimal runs enjoy optimal substructure properties. Also, if we first perform the
run of the algorithm on the attributed STA where every attribute value has been
replaced by one unique constant, we can find which tuples in the intermediate
steps are removed by the apply and merge operations. This allow us to replace
the |Dom(M)|2n factor by 22n|QA∃(Φ,M)|.

Corollary 1. For any weighted attributed STA M and n-ary query Φ the set
QA∃(Φ,M) can be computed in time O(22n(|Φ||M |)6|QA∃(Φ,M)|).

We observe that the high complexity in terms of |M | comes from the particular
pumping properties of STAs. We note, however, that the algorithm could be
easily adapted to standard tree automata working on binary representation of
unranked trees. Those automata enjoy nicer pumping properties and in partic-
ular the complexity would be cubic in terms of the size of the input automata.

To compute universal answers we observe that QA∀(Φ,M) ⊆ QA∃(Φ,M).
Instead of computing universal answers directly, we compute QA∃(Φ,M) and on
every tuple we perform tuple check, i.e. we find if the tuple is an answer in every
tree. Because we use it as a tool for analyzing the complexity of universal and
existential query answers, we formally define it:

Existential (universal) tuple check is a decision problem where given
an attributed STA M , an n-ary STA query Φ, and a tuple τ ∈ (Λ∪{∗})n

find if τ is an existential (universal resp.) answer to Φ in M .

Theorem 2. Universal tuple check can be decided in time O(f(|Φ|)|M |3)), where

f(|Φ|) = 2|Φ|222n

(and O(f(|Φ|)log(|M |)|M |4)) if M is weighted).

Consequently, we obtain a characterization of the simple procedure of computing
universal answers.

Corollary 2. For any weighted attributed STA M and n-ary query Φ the set
QA∀(Φ,M) can be computed in time O(2|Φ|222n

|Φ|6|M |6|QA∃(Φ,M)|).



4 Complexity analysis

Now, we analyze tractability of computing existential and universal query an-
swers by investigating the complexity of universal and existential tuple check
(defined in the previous section). We start with combined complexity where all
the elements are considered to be the part of the input.

Theorem 3. Combined complexity of existential and universal tuple check are
NP-complete and EXPTIME-complete respectively.

We remark that the EXPTIME-hardness is proved with a reduction of the con-
tainment problem of two tree automata to a universal tuple check where one of
the automata is treated as a 0-ary query.

Next, we observe that if the arity of the query is fixed, then the existential
tuple check can be done in polynomial time. Moreover, the degree of the poly-
nomial does not depend on the arity of the query. Hence, we can characterize
the (multiplicative) fixed parametric complexity [9].

Corollary 3. When the arity of the STA query is a parameter, the existential
tuple check is FPT (Fixed Parameter Tractable).

We note that universal tuple check remains intractable when fixing the arity of
the query as the EXPTIME-hardness proof uses an STA query of arity 0.

Finally, Theorem 2 give us a characterization of data complexity [22] of uni-
versal query answers (the query is assumed to be fixed).

Corollary 4. Data complexity of universal tuple check is PTIME.

5 Consistent querying of XML documents

We recall the basic notions of the framework of consistent query answers for semi-
structured databases. The process of repairing an XML document is modeled
with the standard edit operations on trees: (i) renaming the node, (ii) deleting
a node (different than the root) which involves promoting its children to the
parent of the node (placed in the same order from the position of the node), and
(iii) inserting a node (different than the root) with a possible adoption of a list of
subsequent children from the parent of the node (dual to the delete operation).
With every editing operation we associate a cost: cR, cD, and cI the costs for
renaming, deleting, and inserting a node respectively. We note, however, that
our approach can be easily extended to weights that depend on properties of the
node, for example its label.

The edit distance d(t1, t2) between two trees t1 and t2 is the minimal cost of
transforming t1 to t2 with a series of edit operations. Given a tree t and an STA
M (expressing the schema), we define the distance between t and M , denoted
d(M, t), as the minimum edit distance between t and any t′ valid w.r.t. M .

A repair of t w.r.t. M is a tree t′ ∈ L(M) such that d(t, t′) = d(t, M). By
Rep(t, M) we denote the set of all repairs of t w.r.t. M . Given an n-ary STA
query Φ we say that a tuple τ is a consistent (or valid) answer to Φ in t w.r.t. M
if and only if τ is an answer to Φ in every repair of t w.r.t. M . By CQA(Φ, t, M)
we denote the set of all consistent answers to Φ in t w.r.t. M .



5.1 Repair automaton

In this part we define a weighted attributed STA that defines the set of all repairs
of a document. For ease of construction we allow the use of ǫ-transitions. As they
have no attribute value and perform no operations on the stack, we can easily
remove them by standard closure (remembering to aggregate the weight). Also,
we make a natural assumption that the schema does not allow an empty tree.

Definition 3. Let M be an STA, t be a tree with n nodes, and t̄ = (e1, . . . , e2n)
be the serialization of t. Assume that the nodes of t are numbered with consecutive
natural numbers 0, 1, . . . , n − 1 in the standard document order. For an opening
or closing tag ei let mi be the number assigned to that node.

The repair automaton of t w.r.t. M is a weighted attributed STA R(t, M) =
(Σ,ΓR, QR, IR,∆R, FR) where: ΓR = ΓM ∪ ΓM × {1, . . . , n}, QR = IM × {0} ∪
QM × {1, . . . , 2n− 1} ∪ FM × {2n}, IR = IM × {0}, and FR = FM × {2n}. The
state (q, i) will be denoted as qi. The transitions of ∆R (with their attributes and
weights) capture edit operations performed on the tag stream as follows:

– qi−1 x:(γ,mi)
−−−−−→

att(ei)
pi renaming ei to x if tag(ei) 6= x and doing nothing if

tag(ei) = x, for every i ∈ {1, . . . , 2n} and every q
x:γ
−−→ p ∈ ∆M ; its weight

is cR/2 if tag(ei) 6= x and 0 if tag(ei) = x.

– qi x:γ
−−→ pi inserting x (before ei), for every i ∈ {2, . . . , 2n − 1} and every

q
x:γ
−−→ p ∈ ∆M ; its weight is cI/2 and it is attributed with ∗ if x is an

opening tag.
– qi−1 ε

−→ qi deleting ei, for every i ∈ {2, . . . , 2n − 1} and every q ∈ QM ; its
weight is cD/2.

Example 1. Figure 4 contains the repair automaton of the tree t1 = cl0(al1 , bl2)
(Fig. 1) and the STA M0 (Fig. 2). The weights are assumed to be wR = wI =
wD = 1. Because this graph is very intricate, for clarity we present in all details
only the transitions that produce the minimal trees. Also, γj

i is short for (γi, j).
R(t1,M0) defines the set of trees {cl0(al1)} ∪ {cl0(al1 , bl2 , al)|l ∈ Λ}, i.e. the set
of repairs of t1 w.r.t. M0.

Theorem 4. For any tree t, any STA M , and any STA query Φ we have that
Rep(t, M) = L(R(t, M)) and CQA(Φ, t, M) = QA∀(Φ,R(t, M)).

5.2 Complexity analysis

From Corollary 2 we get directly:

Corollary 5. The data complexity of computing consistent answers to an n-ary
query w.r.t. an STA is PTIME.

To further analyse the tractability of consistent query answers we investigate
the complexity of the problem of tuple check for consistent query answers [17].
Similarly to universal answers the problem is intractable.

Theorem 5. The combined complexity of consistent query answers is Π2
p -complete

if wI > 0 and EXPTIME-complete if wI = 0.
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Fig. 4. A repair graph R(t1, M0)

6 Conclusions and future work

In this paper we presented the framework of querying regular sets of XML docu-
ments. We considered the class of n-ary automata queries and introduced notions
of universal and existential answers, i.e. answers present in every and some docu-
ments represented by a tree automata. We investigated computational properties
of our framework and presented algorithms for computing universal and existen-
tial answers. Finally, we used our framework to compute consistent query answers
in XML documents that do not satisfy the schema. This solution significantly
extends our previous results in this area [18].

We envision several possible directions of further study. Firstly, we would like
to investigate the problem of querying regular sets of trees with a query defined
in a logical formalism which allow comparison of data-values. Such formalisms
have been studied in [7] where FO logic over data trees is considered. It is shown
that FO is decidable for the two-variable fragment with a successor relation and a
predicate to compare data-values. Another important direction of future study
is to investigate if the setting of data exchange could be effectively captured
by our framework. Finally, we would like to investigate using more expressive
formalisms, for instance context-free tree grammars, to represent the sets of
trees.



References

1. S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and J. L. Wiener. Incremental
Maintenance for Materialized Views over Semistructured Data. In International
Conference on Very Large Data Bases (VLDB), pages 38–49, 1998.

2. R. Alur and P. Madhusudan. Visibly Pushdown Languages. In ACM Symposium
on Theory of Computing (STOC), pages 202–211, 2004.

3. M. Arenas, L. Bertossi, and J. Chomicki. Consistent Query Answers in Inconsistent
Databases. In ACM Symposium on Principles of Database Systems (PODS), pages
68–79, 1999.

4. M. Arenas and L. Libkin. XML Data Exchange: Consistency and Query Answering.
In ACM Symposium on Principles of Database Systems (PODS), pages 13–24,
2005.

5. A Balmin, Y. Papakonstantinou, and V. Vianu. Incremental Validation of XML
Documents. ACM Transactions on Database Systems (TODS), 29(4):710–751,
December 2004.

6. P. Bille. Tree Edit Distance, Aligment and Inclusion. Technical Report TR-2003-
23, The IT University of Copenhagen, 2003.

7. M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-
variable logic on data trees and xml reasoning. In PODS, pages 10–19, 2006.

8. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
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