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Summary. In this paper we consider the problem of mobile robot lo@aion with range
sensors in outdoor environments. Our approach appliestelpdilter to estimate the full
six-dimensional state of the robot. To represent the enwient we utilize multi-level sur-
face maps which allow the robot to represent vertical stmest and multiple levels in the
environment. We describe probabilistic motion and sensadats to calculate the proposal
distribution and to evaluate the likelihood of observasioBxperimental results obtained with
a mobile robot in an outdoor environment indicate that oyragch can be used to robustly
and accurately localize an outdoor vehicle. The experimalso demonstrate that multi-level
surface maps lead to a significantly better localizatiorfguerance than standard elevation
maps.

1 Introduction

The problem of mobile robot localization with range sendarsutdoor environ-
ments arises whenever GPS signals are missing becauselo$ions caused by
buildings, bridges, or trees. In such situations, a molalsot typically has to esti-
mate its position in the environment using its other senaondsa map of the environ-
ment. In this paper, we consider the problem of localizingadoite robot in outdoor
environments by matching laser range measurements to @ igiap of the environ-
ment. One of the most popular representations for outdodramments are eleva-
tion maps [3, 9, 10, 13]. The key idea underlying elevatiompsia to store the ?
dimensional height information of the terrain in a two-dims@®nal grid, which cor-
responds to a representation of the horizontal surfacdsedaéivironment. Whereas
the knowledge about the horizontal surfaces is well suitedupport traversabil-
ity analysis and path planning, it provides only weak supjpar the localization
of the vehicle. Modeling only the horizontal surfaces, nmmeans that vertical
structures, which are frequently perceived by ground bashbitles, cannot be used
to support localization. To avoid this problem, multi-lesarface (MLS) maps [16]
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Fig. 1. Elevation Map (left) and multi-level surface (MLS) map (i) of the Freiburg cam-
pus. The MLS map represents vertical structures more aetyi@nd can deal with multiple
surfaces that can be traversed by the robot.

Fig. 2. Advantage of the MLS map approach in comparison to the stdrelavation maps.
In contrast to the MLS map (right) the elevation map (lefEksthe ability to model vertical
structures, because it averages over all measured heigbsv&ince the distance of the end-
point of a laser beam to the closest point in the elevation caaphave substantial deviations
from the true distance, localization becomes harder.

have been introduced. They can be regarded as an extensienabdéissical elevation

maps as they additionally represent intervals correspgrtdi vertical objects in the

environment. A further disadvantage of elevation mapsas ey cannot represent
multiple levels. This, for example, is important when mebibbots are deployed in
environments with bridges or underpasses.

Fig. 1 depicts examples of an elevation map (left) and theesponding MLS
map (right) of the campus at the University of Freiburg. Aa t& seen from the
images, the MLS map is able to represent the environment atagrately than the
elevation map. In the MLS map, objects like trees and wadis@presented properly.
Another example is shown in Fig. 2. Here the robot is locatefildnt of a wall. In
the elevation map, the wall is not represented correctlyabse the height values
obtained from beams reflected by the wall are averaged whitieitypical approach
in elevation maps. This can lead to a poor estimate of the uneaent likelihood at
the particular robot position. In contrast, when the MLS risapsed, one obtains a
better value of the likelihood, because the wall is modetedactly.

In this paper we present an approach to use the multi-levielesaimaps for loca-
lization. We present probabilistic motion and observatiwodels and describe how
these models can be utilized in a probabilistic localizasoheme. We furthermore
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evaluate how the localization performance changes whettatd elevation maps
are used instead of MLS maps.

This paper is organized as follows. After discussing relat®rk in the next
section, we briefly describe Monte Carlo localization in t®st 3. Our approach
to apply the MLS maps is presented in Sections 4 and 5. Firiallgection 6, we
present experimental results illustrating the advantafepplying MLS maps for
localization in outdoor environments.

2 Related Work

The problem of localization of mobile robots in outdoor enviments with range
sensors or cameras has been studied intensively in theHoastxample, Adamet
al. [1] extract predefined features from range scanners andg appdrticle filter for
localization. Davison and Kita [4] utilize a Kalman filterfaision-based localization
with point features on non-flat surfaces. Recently, Agraaved Konolige [2] pre-
sented an approach to robot localization in outdoor tesrbased on feature points
that are tracked across frames in stereo images. Lingeetaan[11] recently de-
scribed a method for fast localization in in- and outdooriemments. Their system
operates on raw data sets, which results in huge memoryrezgents. Additionally,
they apply a scan-matching routine for localization, whddes not facilitate global
localization. To reduce the memory requirements of outdewain representations,
several researchers applied elevation maps [3, 9, 10, 13joBabilistic approach to
localize a planetary rover in such elevation maps has beseried by Olson [12].
In this system, elevation maps werdfszient to robustly localize the vehicle, mainly
because the number of vertical and overhanging objectglgitge in environments
like on Mars. However, environments on earth contain margatb like buildings or
trees which have vertical or even overhanging surfacesddioess this issue, Rfaet
al. [14] extended the elevation map approach by a cell clasgditdn this approach
the individual cells are divided into three classes: celtsclv have been observed
from above, cells with vertical objects, and cells with dvaarging objects. This ex-
tension has been utilized to improve the data associationgithe scan matching
process and enabled the robot to traverse cells with ovgihgobjects. In contrast
to MLS maps, however, this approach still lacks the abititgtiore multiple surfaces
at one position, which prevents the robot from dealing withagions, in which it
has to traverse a bridge and move through the correspondateypass. The goal of
this paper is to develop a probabilistic localization methased on MLS maps and
to demonstrate that the more accurate representation @ni¥fisonment results in
improved localization capabilities.

3 Monte Carlo Localization

To estimate the pose= (x,V, z ¢, ¥, ¢) of the robot in its environment, we consider
probabilistic localization, which follows the recursivaygesian filtering scheme. The
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key idea of this approach is to maintain a probability deng{k; | z1, Uo-1) of the
robot’s locationx; at timet given all observationg;; up to timet and all control
inputsug,_; up to timet — 1. This posterior is updated as follows:

P(Xt | Z11, Uot-1) = @ - P(Z¢ | Xt) - f P(Xt | Ut—1, Xt-1) - P(Xt-1) AX¢-1. (1)

Here, a is a normalization constant ensuring tha(; | z1t,Uot-1) sums up to
one over allx;. The terms to be described in Eqn. (1) are ghediction model
p(X; | U1, Xt—1) and thesensor model @; | x;). One major contribution of this paper
is an appropriate computation of these models in the casathdLS map is given.

For the implementation of the described filtering schemeyseea sample-based
approach which is commonly known Bonte Carlo localizatior{5]. Monte-Carlo
localization is a variant of particle filtering [6] where dggarticle corresponds to a
possible robot pose and has an assigned w&ighthebelief updatdrom Eqn. (1)
is performed by the following two alternating steps:

1. In theprediction step, we draw for each particle with weight a new particle
according tow; and to the prediction mod@kX; | Ut_1, Xt_1).

2. In thecorrection step a new observatiog; is integrated. This is done by as-
signing a new weighay; to each particle according to the sensor magufaf | ;).

Furthermore, the particle set needs to be re-sampled danga the assigned
weights to obtain a good approximation of the pose distidioutith a finite number
of particles. However, the resampling step can remove gantbkes from the filter
which can lead to particle impoverishment. Thus, we needni & criterion for
deciding when to perform the resampling step. In this papecalculate the number
Ny of effective particles according to the formula proposed by Doetal. [6]

_ 1
o (W2)

wherew; refers to the normalized weight of samplén particular, we only resam-
ple if Ngy drops below the threshold (g whereN is the number of samples. In
the past, this approach has already successfully beeredgplithe context of the
simultaneous mapping and localization (SLAM) problem [8].

Neg = )

4 Prediction Model for MLS Maps

The prediction modeb(x; | ut_1, Xt—1) we use is based on an approach introduced by
Eliazaret al.[7]. It reflects systematic errors such as drift, as well &suthcertainty
in the execution of an action = (X, Yu, 6u), Where &, yu) is the translation and
6y the rotation angle. To incorporate this 2D motion into our BBp we proceed
as follows. First, we obtain a possible outcomg Yy, 8) of the action by applying
the probabilistic model. Then, we adapt the motion vegter (x,, yy) to the shape
of the 3D surface traversed by the robot. This surface isimddafrom the given
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Fig. 3. Application of our prediction model to a series of 2D moticectors (black). They
are rotated to estimate the 3D motion vectors (red). TheathBhe indicates the tolerance
interval for thez-coordinate.

MLS map and consists of planar square patches. To adapt tiermector, we
discretize it into segments of lengthwhich is the cell size of the MLS map, in our
case 0L m. For each segment, we determine the corresponding syséchS and
rotate the segment according to the orientatief) ¢s) of the patch, wheres is the
rotation about the-axis andds the rotation about thg-axis. The patch orientation
is computed from the normal vectog of the patchS, which in turn is obtained by
fitting a plane into the local vicinity ofs. The normal vector computation is done
beforehand and constitutes an extension to the framewdvk & maps. In general,

it is not robust against noise and small errors in the MLS madpc¢h results in an
uncertainty of the patch orientation. In our approach, wel@hthis uncertainty by
adding Gaussian noise to the orientation parametgendds. Thus, our prediction
model expresses the uncertainty in 5 out of 6 position patensie-x, y andy by
the 2D motion model and and¥ by our 3D extension. For the last one — the height
valuez — we have the constraint that the robot must stay on the grothmetefore,
we adjust the-value manually whenever it is too high or too low. This isdffrated

in Fig. 3. Finally, after concatenating all transformed iootvector segments, we
obtain a new 3D motion vectdrwhich is added to the current estimate of the robot
positionx;_; to obtain a new position estimate

5 Endpoint Sensor Model for MLS Maps

In our sensor model, we treat each beam independently aachdat the likelihood
of a whole laser scan by factorizing over all beams. Thus, avwe h

K

pz1x) = [ [ p1%) (3)

k=1

whereK is the number of beams in each laser measurement Eqn. (3) and in
the following, we drop the indekfor convenience. Our sensor modg#k* | x) is
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based on an approach that has been introduced by Thrun [1#e#kood fields
(LF) or end point modelin particular, we formulate the sensor mogét | x) for
each particular beam as a mixture of thre@edent distributions:

D(Zk [ X) = anit phit(zk | X) + @rand prand(zk [ X) + a’maxpmax(zk [ X), 4)

wherepn; is a normal distributionV (0, o-?) that models situations in which the sen-
sor detects an obstacle. Random measurements are modelgdausniform dis-
tribution prana(Z* | X). Maximum range measurements are covered by a point mass
distribution pmax(Z* | X). These three distributions are weighted by the non-negati
parametersit, arand, @ndamax Which sum up to one. The values fefi, arang,
@max ando? used in our current implementation have been determinedriesaly.

In the end point model, the probabilifyit(z | X) only depends on the distance
d“ between the end point of theth laser beam and the closest obstacle in the map.
Thus, the physical property of the laser beam is ignoredaleethe model just uses
the end pointand does not consider the beam charactefittie laser. Therefore, we
need to calculate the global coordinates for a beam end.pbim¢ denote the angle
of thek-th beam relative to the zero angle with then the end poirfi = (&, §%, )7
of that beam in the robot’s own coordinate frame is calcdlate

2\ (X cos()
[yk]z[y]+Ri<[sin@k)], ®
*) \z 0

where(%,¥,2)" denotes the position of the sensor at tine@dR is a rotation matrix
that expresses the 3D sensor orientation in the robot'sdowate frame. For a given
robot posex = (x, Y, z ¢, 9, ) at timet we can compute the global coordinapés=
(X<, y%, 2T of thek-th beam end point* as follows

XK Y (x
ol
& # |z

whereR(p, ¥, ) denotes the rotation matrix for the given Euler angles, andy.
In MLS maps, obstacles are representedesical surface patchesvhich can be
seen as vertical segments of occupied space. Unfortuntitely is no ficient way
to find the closest of all vertical segments to a given beampeirt. Therefore, we
use an approximation by uniformly sampling a $evf 3D points from all vertical
patches. The distanc¥ of thek-th beam end point* to the closest obstacle is then
approximated as the Euclidean distani{pX, ) betweenpX and®. This distance
can be #iciently calculated by storing all points frofain akD-tree.

Equations. (5) and (6) describe a 3D transfdr(d‘; x) of the measuremeut at
positionx. Using this and the fact tha,; is Gaussian, we can compuytg; as

Kk 2
R — exp[—% (e-2) ) )

wherepX = T(Z;x). Plugging this into Egn. (4) and the result into Eqn. (3), we
obtain the entire sensor model.
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Fig. 4. Robot Herbert used for the experiments.
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Fig. 5. Convergence of the particles to the true position of the trabth (a) 500,000 and (b)
1,000,000 particles. Theaxes depict the number of resampling steps, while/thres show
the percentage of particles that are closer thandlthe true position.

6 Experimental Results

The sensor and prediction models have been implemented amtiale filter algo-
rithm and evaluated on real data acquired with a mobile roliat robot is a Pioneer

Il AT system equipped with a SICK LMS laser range scanner andM TEC wrist
unit, which is used as a p#itt device for the laser (see Figure 4). During the experi-
ments described in this section, the laser was directeddmally. The experiments
are designed to investigate if the MLS map approach fathtanobile robot local-
ization and whether it yields better localization perfonoathan the elevation maps.

6.1 Global Localization

The first set of experiments is designed to evaluate the peéioce of the MLS map
approachin the context of a global localization task. Fégudepicts the convergence
of the particles to the true position of the robot with 50@@ad 1,000,000 particles.
Whereas the x-axis corresponds to the resampling step;abhesyshows the number
of particles in percent that are closer than 1 m to the trugiponswhich has been



8 Rainer Kiimmerle, Rudolph Triebel, Patrick BfaVolfram Burgard

0.6

MLS Map —=— MLS Map -

Elevation Map Elevation Map
100 - % 0.5 - i
- i

g sof ] = 04 ! i
B g
® 51
2 60 - 1 .5 0.3
3 x k<t
S 40t 2 02
@ g

20 + b 0.1

0 L L 0 L 1 L bt i I "
250000 500000 750000 1000000 0 100 200 300 400 500 600
particles time step

Fig. 6. The left image depicts the number of successful localinatafter 15 resampling steps
for the two diferent map representations for particle numbers from 250,@0o 1,000,000.
The right image shows the average localization error odguaaticles for a tracking experi-
ment with 1,000 particles. In average the use of the MLS megdd to smaller errors.

computed by a tracking experiment with 100,000 particlésvd are the evolutions
of these numbers when the MCL is applied on standard elevateaps and on MLS
maps. Note that the elevation map does not reach 100%. Tdiseiso the fact that
the sensor model for the standard elevation map relies ogtdyhbémoothed likeli-
hood function, which is good for global localization but da®t achieve maximal
accuracy during tracking. The application of a more peakedar model in the case
of the standard elevation map would lead to much higher daemce rates. In both
cases, a t-test showed that it is significantly better toyagiid MLS maps than the
standard elevation maps for the global localization tasipeEiments with 250,000
and 750,000 particles showed the same behavior. Figurevsgshe number of suc-
cessful localizations for the twofiierent map representations and fdfelient num-
bers of particles. Here, we assumed that the localizatisachieved when every
particle difered by at most 1 m from the true location of the robot. We cartisat
the global localization performs more robust on the MLS nfemton the standard
elevation map.

6.2 Tracking

We also carried out experiments, in which we analyzed theracy of the MLS map
approach in the context of a position tracking task. To obttaé corresponding data
set, we steered along a loop in our campus environment. Blierged trajectory
has a length of 284 meters. Figure 7 depicts a top view of th& Miap of our test
environment. The blugdark grey line shows the localized robot poses. The yellow
/ light grey line shows the pure odometry. Figure 6 depictsatierage localization
error for a tracking experiment with 1,000 particles. As te@nseen from the fig-
ure, the MLS map approach outperforms the standard elevatap approach. The
tracking experiments have been computed online on a stm@rwith an AMD
Athlon 64 3206 processor. In the practical experiments we found that teetithe
MLS maps results in a computational overhead of no more g6 dompared to
elevation maps.
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Fig. 7. MLS map used for the localization experiments. The areaesgmted by this map
spans approximately 195 by 146 meters. The Bldark grey line shows the localized robot
poses. The yellow light grey line shows the pure odometry. The traversed dtajg has a
length of 284 meters.

7 Conclusions

In this paper, we presented an approach to Monte-Carloifatain (MCL) using
multi-level surface (MLS) maps. We applied the main conseptMCL to this new
3D map representation by adapting the prediction model hadsénsor model to
MLS maps. Furthermore, we showed in experiments that ML Ssraegpbetter suited
for the task of local and global localization than standdedaion maps. The slightly
increased runtime due to the higher accuracy of MLS mapsrigpensated with a
significantly faster convergence of the particle filter. fhiakes MLS maps useful
for outdoor localization in cases in which no GPS signal milable.
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