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Summary. In this paper we consider the problem of mobile robot localization with range
sensors in outdoor environments. Our approach applies a particle filter to estimate the full
six-dimensional state of the robot. To represent the environment we utilize multi-level sur-
face maps which allow the robot to represent vertical structures and multiple levels in the
environment. We describe probabilistic motion and sensor models to calculate the proposal
distribution and to evaluate the likelihood of observations. Experimental results obtained with
a mobile robot in an outdoor environment indicate that our approach can be used to robustly
and accurately localize an outdoor vehicle. The experiments also demonstrate that multi-level
surface maps lead to a significantly better localization performance than standard elevation
maps.

1 Introduction

The problem of mobile robot localization with range sensorsin outdoor environ-
ments arises whenever GPS signals are missing because of occlusions caused by
buildings, bridges, or trees. In such situations, a mobile robot typically has to esti-
mate its position in the environment using its other sensorsand a map of the environ-
ment. In this paper, we consider the problem of localizing a mobile robot in outdoor
environments by matching laser range measurements to a given map of the environ-
ment. One of the most popular representations for outdoor environments are eleva-
tion maps [3, 9, 10, 13]. The key idea underlying elevation maps is to store the 212-
dimensional height information of the terrain in a two-dimensional grid, which cor-
responds to a representation of the horizontal surfaces of the environment. Whereas
the knowledge about the horizontal surfaces is well suited to support traversabil-
ity analysis and path planning, it provides only weak support for the localization
of the vehicle. Modeling only the horizontal surfaces, namely, means that vertical
structures, which are frequently perceived by ground basedvehicles, cannot be used
to support localization. To avoid this problem, multi-level surface (MLS) maps [16]
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Fig. 1. Elevation Map (left) and multi-level surface (MLS) map (right) of the Freiburg cam-
pus. The MLS map represents vertical structures more accurately and can deal with multiple
surfaces that can be traversed by the robot.

Fig. 2. Advantage of the MLS map approach in comparison to the standard elevation maps.
In contrast to the MLS map (right) the elevation map (left) lacks the ability to model vertical
structures, because it averages over all measured height values. Since the distance of the end-
point of a laser beam to the closest point in the elevation mapcan have substantial deviations
from the true distance, localization becomes harder.

have been introduced. They can be regarded as an extension ofthe classical elevation
maps as they additionally represent intervals corresponding to vertical objects in the
environment. A further disadvantage of elevation maps is that they cannot represent
multiple levels. This, for example, is important when mobile robots are deployed in
environments with bridges or underpasses.

Fig. 1 depicts examples of an elevation map (left) and the corresponding MLS
map (right) of the campus at the University of Freiburg. As can be seen from the
images, the MLS map is able to represent the environment moreaccurately than the
elevation map. In the MLS map, objects like trees and walls are represented properly.
Another example is shown in Fig. 2. Here the robot is located in front of a wall. In
the elevation map, the wall is not represented correctly, because the height values
obtained from beams reflected by the wall are averaged which is the typical approach
in elevation maps. This can lead to a poor estimate of the measurement likelihood at
the particular robot position. In contrast, when the MLS mapis used, one obtains a
better value of the likelihood, because the wall is modeled correctly.

In this paper we present an approach to use the multi-level surface maps for loca-
lization. We present probabilistic motion and observationmodels and describe how
these models can be utilized in a probabilistic localization scheme. We furthermore
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evaluate how the localization performance changes when standard elevation maps
are used instead of MLS maps.

This paper is organized as follows. After discussing related work in the next
section, we briefly describe Monte Carlo localization in Section 3. Our approach
to apply the MLS maps is presented in Sections 4 and 5. Finally, in Section 6, we
present experimental results illustrating the advantagesof applying MLS maps for
localization in outdoor environments.

2 Related Work

The problem of localization of mobile robots in outdoor environments with range
sensors or cameras has been studied intensively in the past.For example, Adamset
al. [1] extract predefined features from range scanners and apply a particle filter for
localization. Davison and Kita [4] utilize a Kalman filter for vision-based localization
with point features on non-flat surfaces. Recently, Agrawaland Konolige [2] pre-
sented an approach to robot localization in outdoor terrains based on feature points
that are tracked across frames in stereo images. Lingemannet al. [11] recently de-
scribed a method for fast localization in in- and outdoor environments. Their system
operates on raw data sets, which results in huge memory requirements. Additionally,
they apply a scan-matching routine for localization, whichdoes not facilitate global
localization. To reduce the memory requirements of outdoorterrain representations,
several researchers applied elevation maps [3, 9, 10, 13]. Aprobabilistic approach to
localize a planetary rover in such elevation maps has been described by Olson [12].
In this system, elevation maps were sufficient to robustly localize the vehicle, mainly
because the number of vertical and overhanging objects is negligible in environments
like on Mars. However, environments on earth contain many objects like buildings or
trees which have vertical or even overhanging surfaces. To address this issue, Pfaff et
al. [14] extended the elevation map approach by a cell classification. In this approach
the individual cells are divided into three classes: cells which have been observed
from above, cells with vertical objects, and cells with overhanging objects. This ex-
tension has been utilized to improve the data association during the scan matching
process and enabled the robot to traverse cells with overhanging objects. In contrast
to MLS maps, however, this approach still lacks the ability to store multiple surfaces
at one position, which prevents the robot from dealing with situations, in which it
has to traverse a bridge and move through the corresponding underpass. The goal of
this paper is to develop a probabilistic localization method based on MLS maps and
to demonstrate that the more accurate representation of theenvironment results in
improved localization capabilities.

3 Monte Carlo Localization

To estimate the posex = (x, y, z, ϕ, ϑ, ψ) of the robot in its environment, we consider
probabilistic localization, which follows the recursive Bayesian filtering scheme. The
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key idea of this approach is to maintain a probability density p(xt | z1:t, u0:t−1) of the
robot’s locationxt at time t given all observationsz1:t up to timet and all control
inputsu0:t−1 up to timet − 1. This posterior is updated as follows:

p(xt | z1:t, u0:t−1) = α · p(zt | xt) ·
∫

p(xt | ut−1, xt−1) · p(xt−1) dxt−1. (1)

Here,α is a normalization constant ensuring thatp(xt | z1:t, u0:t−1) sums up to
one over allxt. The terms to be described in Eqn. (1) are theprediction model
p(xt | ut−1, xt−1) and thesensor model p(zt | xt). One major contribution of this paper
is an appropriate computation of these models in the case that an MLS map is given.

For the implementation of the described filtering scheme, weuse a sample-based
approach which is commonly known asMonte Carlo localization[5]. Monte-Carlo
localization is a variant of particle filtering [6] where each particle corresponds to a
possible robot pose and has an assigned weightwi . Thebelief updatefrom Eqn. (1)
is performed by the following two alternating steps:

1. In theprediction step, we draw for each particle with weightwi a new particle
according towi and to the prediction modelp(xt | ut−1, xt−1).

2. In thecorrection step, a new observationzt is integrated. This is done by as-
signing a new weightwi to each particle according to the sensor modelp(zt | xt).

Furthermore, the particle set needs to be re-sampled according to the assigned
weights to obtain a good approximation of the pose distribution with a finite number
of particles. However, the resampling step can remove good samples from the filter
which can lead to particle impoverishment. Thus, we need to find a criterion for
deciding when to perform the resampling step. In this paper,we calculate the number
Neff of effective particles according to the formula proposed by Doucet et al. [6]

Neff =
1

∑N
i=1

(

w̃i
2
) , (2)

wherew̃i refers to the normalized weight of samplei. In particular, we only resam-
ple if Neff drops below the threshold ofN2 whereN is the number of samples. In
the past, this approach has already successfully been applied in the context of the
simultaneous mapping and localization (SLAM) problem [8].

4 Prediction Model for MLS Maps

The prediction modelp(xt | ut−1, xt−1) we use is based on an approach introduced by
Eliazaret al. [7]. It reflects systematic errors such as drift, as well as the uncertainty
in the execution of an actionu = (xu, yu, θu), where (xu, yu) is the translation and
θu the rotation angle. To incorporate this 2D motion into our 3Dmap we proceed
as follows. First, we obtain a possible outcome (xv, yv, θv) of the action by applying
the probabilistic model. Then, we adapt the motion vectorv = (xv, yv) to the shape
of the 3D surface traversed by the robot. This surface is obtained from the given
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Fig. 3. Application of our prediction model to a series of 2D motion vectors (black). They
are rotated to estimate the 3D motion vectors (red). The dashed line indicates the tolerance
interval for thez-coordinate.

MLS map and consists of planar square patches. To adapt the motion vector, we
discretize it into segments of lengthc, which is the cell size of the MLS map, in our
case 0.1 m. For each segment, we determine the corresponding surface patchS and
rotate the segment according to the orientation (ϕS, ϑS) of the patch, whereϕS is the
rotation about thex-axis andϑS the rotation about they-axis. The patch orientation
is computed from the normal vectornS of the patchS, which in turn is obtained by
fitting a plane into the local vicinity ofS. The normal vector computation is done
beforehand and constitutes an extension to the framework ofMLS maps. In general,
it is not robust against noise and small errors in the MLS map,which results in an
uncertainty of the patch orientation. In our approach, we model this uncertainty by
adding Gaussian noise to the orientation parametersϕS andϑS. Thus, our prediction
model expresses the uncertainty in 5 out of 6 position parameters –x, y andψ by
the 2D motion model andϕ andϑ by our 3D extension. For the last one – the height
valuez – we have the constraint that the robot must stay on the ground. Therefore,
we adjust thez-value manually whenever it is too high or too low. This is illustrated
in Fig. 3. Finally, after concatenating all transformed motion vector segments, we
obtain a new 3D motion vectorv̂ which is added to the current estimate of the robot
positionxt−1 to obtain a new position estimatext.

5 Endpoint Sensor Model for MLS Maps

In our sensor model, we treat each beam independently and determine the likelihood
of a whole laser scan by factorizing over all beams. Thus, we have

p(z | x) =
K

∏

k=1

p(zk | x) (3)

whereK is the number of beams in each laser measurementz. In Eqn. (3) and in
the following, we drop the indext for convenience. Our sensor modelp(zk | x) is
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based on an approach that has been introduced by Thrun [15] aslikelihood fields
(LF) or end point model. In particular, we formulate the sensor modelp(zk | x) for
each particular beam as a mixture of three different distributions:

p(zk | x) = αhit phit(zk | x) + αrandprand(zk | x) + αmaxpmax(zk | x), (4)

wherephit is a normal distributionN(0, σ2) that models situations in which the sen-
sor detects an obstacle. Random measurements are modeled using a uniform dis-
tribution prand(zk | x). Maximum range measurements are covered by a point mass
distributionpmax(zk | x). These three distributions are weighted by the non-negative
parametersαhit, αrand, andαmax, which sum up to one. The values forαhit, αrand,
αmax, andσ2 used in our current implementation have been determined empirically.

In the end point model, the probabilityphit(zk | x) only depends on the distance
dk between the end point of thek-th laser beam and the closest obstacle in the map.
Thus, the physical property of the laser beam is ignored, because the model just uses
the end point and does not consider the beam characteristic of the laser. Therefore, we
need to calculate the global coordinates for a beam end point. If we denote the angle
of thek-th beam relative to the zero angle withζk, then the end point̃pk = (x̃k, ỹk, z̃k)T

of that beam in the robot’s own coordinate frame is calculated as

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where(x̂, ŷ, ẑ)T denotes the position of the sensor at timet andR is a rotation matrix
that expresses the 3D sensor orientation in the robot’s coordinate frame. For a given
robot posex = (x, y, z, ϕ, ϑ, ψ) at timet we can compute the global coordinatespk =

(xk, yk, zk)T of thek-th beam end pointpk as follows
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whereR(ϕ, ϑ, ψ) denotes the rotation matrix for the given Euler anglesϕ, ϑ, andψ.
In MLS maps, obstacles are represented asvertical surface patches, which can be
seen as vertical segments of occupied space. Unfortunately, there is no efficient way
to find the closest of all vertical segments to a given beam endpoint. Therefore, we
use an approximation by uniformly sampling a setP of 3D points from all vertical
patches. The distancedk of thek-th beam end pointpk to the closest obstacle is then
approximated as the Euclidean distanced(pk,P) betweenpk andP. This distance
can be efficiently calculated by storing all points fromP in akD-tree.

Equations. (5) and (6) describe a 3D transformT(zk; x) of the measurementzk at
positionx. Using this and the fact thatphit is Gaussian, we can computephit as

phit(zk | x) ≈ 1
√

2πσ2
exp


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


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2
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σ
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

, (7)

wherepk = T(zk; x). Plugging this into Eqn. (4) and the result into Eqn. (3), we
obtain the entire sensor model.
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Fig. 4. Robot Herbert used for the experiments.
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Fig. 5. Convergence of the particles to the true position of the robot with (a) 500,000 and (b)
1,000,000 particles. Thex-axes depict the number of resampling steps, while they-axes show
the percentage of particles that are closer than 1m to the true position.

6 Experimental Results

The sensor and prediction models have been implemented in a particle filter algo-
rithm and evaluated on real data acquired with a mobile robot. The robot is a Pioneer
II AT system equipped with a SICK LMS laser range scanner and an AMTEC wrist
unit, which is used as a pan/tilt device for the laser (see Figure 4). During the experi-
ments described in this section, the laser was directed horizontally. The experiments
are designed to investigate if the MLS map approach facilitates mobile robot local-
ization and whether it yields better localization performance than the elevation maps.

6.1 Global Localization

The first set of experiments is designed to evaluate the performance of the MLS map
approach in the context of a global localization task. Figure 5 depicts the convergence
of the particles to the true position of the robot with 500,000 and 1,000,000 particles.
Whereas the x-axis corresponds to the resampling step, the y-axis shows the number
of particles in percent that are closer than 1 m to the true position, which has been
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Fig. 6.The left image depicts the number of successful localizations after 15 resampling steps
for the two different map representations for particle numbers from 250,000 up to 1,000,000.
The right image shows the average localization error over all particles for a tracking experi-
ment with 1,000 particles. In average the use of the MLS maps leads to smaller errors.

computed by a tracking experiment with 100,000 particles. Shown are the evolutions
of these numbers when the MCL is applied on standard elevation maps and on MLS
maps. Note that the elevation map does not reach 100%. This isdue to the fact that
the sensor model for the standard elevation map relies on a highly smoothed likeli-
hood function, which is good for global localization but does not achieve maximal
accuracy during tracking. The application of a more peaked sensor model in the case
of the standard elevation map would lead to much higher divergence rates. In both
cases, a t-test showed that it is significantly better to apply the MLS maps than the
standard elevation maps for the global localization task. Experiments with 250,000
and 750,000 particles showed the same behavior. Figure 6 shows the number of suc-
cessful localizations for the two different map representations and for different num-
bers of particles. Here, we assumed that the localization was achieved when every
particle differed by at most 1 m from the true location of the robot. We can see that
the global localization performs more robust on the MLS map than on the standard
elevation map.

6.2 Tracking

We also carried out experiments, in which we analyzed the accuracy of the MLS map
approach in the context of a position tracking task. To obtain the corresponding data
set, we steered along a loop in our campus environment. The traversed trajectory
has a length of 284 meters. Figure 7 depicts a top view of the MLS map of our test
environment. The blue/ dark grey line shows the localized robot poses. The yellow
/ light grey line shows the pure odometry. Figure 6 depicts theaverage localization
error for a tracking experiment with 1,000 particles. As canbe seen from the fig-
ure, the MLS map approach outperforms the standard elevation map approach. The
tracking experiments have been computed online on a standard PC with an AMD
Athlon 64 3200+ processor. In the practical experiments we found that the use of the
MLS maps results in a computational overhead of no more than 10% compared to
elevation maps.
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Fig. 7. MLS map used for the localization experiments. The area represented by this map
spans approximately 195 by 146 meters. The blue/ dark grey line shows the localized robot
poses. The yellow/ light grey line shows the pure odometry. The traversed trajectory has a
length of 284 meters.

7 Conclusions

In this paper, we presented an approach to Monte-Carlo localization (MCL) using
multi-level surface (MLS) maps. We applied the main concepts of MCL to this new
3D map representation by adapting the prediction model and the sensor model to
MLS maps. Furthermore, we showed in experiments that MLS maps are better suited
for the task of local and global localization than standard elevation maps. The slightly
increased runtime due to the higher accuracy of MLS maps is compensated with a
significantly faster convergence of the particle filter. This makes MLS maps useful
for outdoor localization in cases in which no GPS signal is available.
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