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Abstract: The Undo feature has been recognized as an important feature of collaborative
systems. The Operational Transformation (OT) is a suitable approach to maintain consis-
tency of shared documents. In all existing OT undo approaches, this feature is provided
by the system without a specific design. In this paper, we argue that such feature could
not always achieve the user’s undo intention. Therefore, we propose a new generic and
flexible undo framework called “Compensation”. This framework allows defining an ade-
quate modification to counterbalance any action performed by any user in the collaborative
system.

Key-words: Compensation, Transformation Operationnal, Group undo, Collaborative
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Un cadre flexible pour l’annulation dans l’édition
collaborative

Résumé : Les systèmes d’édition collaborative fournissent un mécanisme d’annulation qui
permet à un utilisateur de corriger ses erreurs ou de visionner des modifications précédentes.
Il est difficile de fournir une telle fonctionnalité dans un environnement collaboratif où tous
les utilisateurs sont autorisés à retirer les modifications effectuées par n’importe quel autre
utilisateur. L’approche des Transformées opérationnelles permet d’assurer la cohérence des
données partagées dans les systèmes d’édition collaborative. Toutes les approches existantes
proposent une annulation indépendante du type d’application. Nous montrons, dans cet ar-
ticle, que ce type d’annulation peut donner des résultats inattendus pour un utilisateur. Par
conséquent, nous proposons un nouveau framework générique et flexible pour l’annulation
appelé ”Compensation”. Notre approche permet de définir une action adaptée pour contre-
balancer les effets d’une modification.

Mots-clés : Compensation, Transformée operationnelle, Annulation de groupe, Édition
collaborative



A Flexible Undo Framework for Collaborative Editing 3

1 Introduction

Collaborative editing systems allow people distributed in time and space to work together
on shared documents. The major benefits of collaborative writing include reducing task
completion time, reducing errors, getting different viewpoints and skills, and obtaining an
accurate document [1, 2].

The undo mechanism has been recognized as an important feature of collaborative editing
systems [3, 4, 5, 6, 7]. In such systems, the most general model of undo mechanism allows
any user to undo any edit operation at any time. Preserving consistency of shared data with
the undo feature is a complex issue.

In collaborative editing, the Operational Transformation (OT) [7, 8] approach is recog-
nized as a suitable approach to maintain consistency of shared documents. This approach
has been applied to develop both real-time and asynchronous collaborative editors [?]. This
framework considers two main components: the transformation functions, which are specific
to an application, and the integration algorithm.

All undo algorithms proposed in the OT framework [9, 10, 11, 12] provide an undo at
the integration algorithm level. The main goal is to return to a state on which the undone
operation has never been performed. They are based on standard set of operations where
the inverse of each operation is already included in this set of operations [11]. For instance,
most of these algorithms are instantiated for operations insert and delete where the inverse
of delete is insert and the inverse of insert is delete. This kinds of undo mechanisms has
the advantage of not modifying the transformation functions specific to the application.
However, through two motivating examples, we show that:

1. introducing undo feature in a collaborative editing systems impacts the definition of
the operation set handled by the system,

2. a system undo may not achieve the user’s undo intention.

Firstly, we consider a text collaborative editor. A user can produce three kind of modifi-
cations: insert a character, delete a character and update character’s attributes (face, bold,
italic, ...). Let’s assume that a character “a” is inserted, put in bold “a” and finally deleted
“”. Now, a user wants to undo the deletion, the system generates the inverse operation, i.e.
an insertion of the character “a”. Obviously, the user expects to see the character “a” in
bold. Unfortunately, the result is the character “a” which is no more in bold.

From this example, we note that the deletion removes the effects of two modifications:
the insertion and the attribute update. Therefore, generating only an insertion to undo a
deletion is not sufficient to achieve the expected effect. Undo mechanisms should also update
the character attribute. Since existing undo approaches generate only one inverse operation,
a solution consists in modifying existing operations1. Modifying the operation set implies
to modify the transformation functions. Thus, to obtain a complete undo feature, even with

1Another solution may consist in generating many operations to undo one, but such a modification
introduces consistency issues that have never been addressed.

RR n° 6516



4 Weiss, Urso and Molli

an undo defined at the integration algorithm level, the modification of the operations and
transformation functions cannot be avoided.

Figure 1: Undo in a graphical editor

Secondly, under certain circumstances, the system functionality undo may not achieve
the expected undo effect from a user point of view. For instance, we consider a graphical
editor (Figure 1) in which the fill color of a circle can be updated. Initially, the circle is
black. Now, two users update its color at the same time: user 1 updates it to gray, while
user 2 updates it to white. Since the circle could have only one color, the system have to
arbitrary choose one color: let’s say the color gray.

Now, user 1 wants to undo his operation. The system functionality undo generates a
state on which only user 2’s update was performed. Therefore, the circle turns into white.
Depending on the context, this result could be desired. However, if we assume that a user
is able to imagine the effect of its undo, user 1 will find this result surprising. Indeed, user
1 has seen the circle black and puts it in gray, so when he undoes his update, his intention
is probably to obtain a black circle and not a white one as shown in Figure 1. On another
hand, if it’s the user 2 who undoes the “put in gray” operation after seeing the circle in
white, his intention is probably to obtain a white circle.

This example illustrates that, depending on the context, the undo effect expected by a
user could be different than a system undo effect. As a consequence, we claim that an undo
framework must allow building any kind of undo effect: the regular one which we call system
undo and other undo effects we call user undo. Based of these observations, we claim that
an undo feature for an OT collaborative editing system must be designed specifically for
an application. Thus, we introduce a novel undo approach, called Compensation, defined
at the transformation function level. As suggested in [3], our framework allows designing a
user undo as well as a system undo.

In the compensation approach, we generate a new operation to counterbalance the effect
of another one. For instance, in the text editor previously defined, we could add an operation
“insertFormatted” to compensate the deletion of a bold character. Similarly, in the graphical
editor, we can compensate user 1’s operation by an operation which updates the circle’s color
to black.

INRIA



A Flexible Undo Framework for Collaborative Editing 5

With the compensation approach, we can have the same result obtained in current undo
approaches: we can define the compensation effect in a way that it rolls back the modifica-
tion. Therefore, we can consider that system undo is a particular case of compensation.

The compensation approach brings the followings advantages. There is no specific mech-
anism required to integrate compensation operations when received on remote sites. The
compensation relies only on a simple scheme which can be introduced in all existing OT
algorithms. And finally, unlike existing undo approaches, the compensation does not limit
the usage of log truncation algorithms [7] defined for approaches without undo feature.

As a proof of concept, we apply the compensation framework to the Tombstone Trans-
formation Functions (TTF) [13]. Using the compensation, we design two different ways
of undoing in the TTF approach: a system undo and a user undo. The correction of the
obtained models is proved formally by the automated proof environment VOTE [14].

Based on this approach, we build Graveyard, a collaborative real-time text editor pro-
totype. Graveyard combines a SOCT2 [15] algorithm that does not provide a native undo
feature, with the TTF transformation functions extended with compensation operations.
Finally, we obtain a reliable decentralized collaborative editor with an undo mechanism.

In this paper, we present our framework for compensation. We first describe the OT
approach and its correctness criteria in the second section. Then, we present the compensa-
tion approach and show how it could be applied in section “Compensation approach”. This
section also deals with correctness issues and finally we show how our approach can be used
with main integration algorithms. In the third section, we instantiate the compensation
framework with the TTF transformation functions to obtain two different undo mechanisms
for linear structures. We presents the Graveyard prototype which implements the approach
in the forth section. Finally, we compare our approach with existing undo approaches in the
fifth section.

2 The Operational Transformation (OT) approach

In the OT approach, shared documents are replicated. Each site contains its own copy of
the document, and a user is supposed to work at one site. OT approach allows any user to
modify at any time his own copy of the document. Therefore, different copies of the same
document can be modified in parallel. In the OT model, a modification is represented as an
operation. Each site sends all the locally generated operations to the other sites. On these
other sites, such operations are seen as remote operations which have to be integrated for
execution.

The CCI Model [7] considers an OT system correct if it preserves Causality, Convergence
and Intention.

Causality This criterion ensures that all operations ordered by a precedence relation, in
the sense of the Lamport’s happened-before relation [16], will be executed in the same
order on every copy.

Convergence The system converges if all copies are identical when the system is idle.

RR n° 6516



6 Weiss, Urso and Molli

Intention The expected effect of an operation should be observed on all copies.

To ensure these criteria, several integration algorithms were proposed [9, 15, 17, 18, 12, ?].
Causality preservation is mainly achieved by the use of state vectors or a central time-
stamper.

To ensure convergence, these algorithms use transformation functions to modify remote
operations according to local ones. For instance, we consider two sites sharing the same text
document (Figure 2). The initial state of the document is “Compnsation”. On Site1, a user
wants to insert a character ‘e’ to obtain “Compensation”. Concurrently, on Site2, another
user wants to insert a ‘s’ at the end of the word. Each site sends its local operation to the
other one. If Site1 and Site2 directly execute its remote operation, they do not obtain the
same document. On Site1, the character ‘s’ should have been inserted at position 12 instead
of 11. In the OT model, a transformation functions T is devised in order to transform
remote operations regarding concurrent operations. We call T (op1, op2) the operation op1

transformed against the operation op2.

Site1
”Compnsation”

Site2
”Compnsation”

Ins(4, ‘e′)

&&MMMMMMMMMMMMMMMMMM Ins(11, ‘s′)

xxqqqqqqqqqqqqqqqqqq

”Compensation” ”Compnsations”

Ins(11, ‘s′) Ins(4, ‘e′)

”Compensatiosn” ”Compensations”

Figure 2: Divergence scenario

However, defining transformation functions is not sufficient to ensure convergence. In
the OT approach, the correctness is based on two standard properties called TP1 and TP2.
Some algorithms only require TP1 such as SOCT4 [18], MOT2 [?] or COT [12], while others
require TP1 and TP2 such as Adopted [9], GOTO [17], SOCT2 [15].

The transformation property TP1 defines a state equality. The state obtained by the
execution of an operation op1 on a state S followed by the execution of the operation
T (op2, op1) should be equal to the state obtained by the execution of op2 on a state S
followed by the execution of T (op1, op2) :

TP1 : S ◦ op1 ◦ T (op2, op1) = S ◦ op2 ◦ T (op1, op2)

The property TP2 ensures that the transformation of an operation against a sequence
of operations does not depend on the transformation order of operations in this sequence.

TP2 : T (op3, op1 ◦ T (op2, op1)) = T (op3, op2 ◦ T (op1, op2))

INRIA



A Flexible Undo Framework for Collaborative Editing 7

Finally, convergence and causality are not sufficient. For instance, in Figure 2, both sites
could reach the state “Compensatiosn”. Unfortunately, site2 ’s intention, which is to add
the ‘s’ after the ‘n’, is no more respected. The transformation functions have to be designed
in order to ensure the intention preservation. Although a generic definition for intention has
never been formalized, we assume that particular definitions can be expressed and verified
for a given transformation functions set.

3 Compensation approach

The compensation is a generic framework which allows defining how an operation should
be counterbalanced. To obtain any kind of effect when the user undoes an operation, we
produce a new operation which has the wished effect. This new operation is treated as
regular ones when integrated on local and remote sites.

In existing OT undo mechanisms, the undo effect is to return to a state on which the
undone operation was never performed. We name such undo a system undo. If we want
to obtain such a system undo, we can automatically prove that the operations and the
transformation functions designed for such a compensation ensure this effect thanks to a
formal property we call TPC.

In contrast to system undo, a user undo allows generating a new state which fits to
user’s expectation. The correctness of the transformation functions thereby relies on the
intention preservation which, unfortunately, cannot be formally defined on a generic pur-
pose. However, this intention preservation should be defined and verified for the considered
transformation functions.

Given a set of operations, an instance of the compensation framework is built in three
steps. Firstly, define the (possibly new) operations that counterbalance original ones. Sec-
ondly, define the transformation function for the new operations, if any. Thirdly, formally
verify the properties required by the targeted integration algorithm.

3.1 Compensation mechanism

We call C(op) the compensation operation of op, i.e. the operation which counterbalances
the effect of op, if op is the last executed operation. C(op) can be either a newly defined
operation or an operation from the initial set.

C(op) is not necessary the inverse operation of op even in the case of system undo. For
instance, in the text editor introducing example, the operation “insertFormatted” is not
the inverse operation of the deletion, nevertheless, after its application, the document is in
the state that we should have obtained if the deletion was never performed. In fact, the
compensation in this example is a complete system undo.

However, since op may not be the last executed operation, we need to compute an
operation C(op)′ which is defined on the current state. C(op)′ is the transformation of
C(op) according to all operations which have been executed on the local site since the
execution of op. Therefore, C(op)′ is treated as any other newly generated operation (i.e.

RR n° 6516



8 Weiss, Urso and Molli

sent to all remote sites in order to be integrated). To compute C(op)′, we use the naive
undo algorithm [10], see Figure 3.

site 1

C(op)

55555
op

��

op1

. . .

opn

C(op)′ = T (C(op), op1 ◦ . . . ◦ opn)

Figure 3: Algorithm of the compensation

3.2 Instantiation

The first step to instantiate the compensation framework is to define all operations C(op).
We need to define each operation C(op) in such a way that S ◦ op ◦ C(op) is a state where
the effect of op has been counterbalanced.

When the definition of C(op) introduces new operation(s), the following step is to write
transformation functions for each new operation(s). These transformation functions are
standard transformation functions, and thus must be proven correct according to CCI cri-
teria.

In the OT approach, the correctness is ensured by a set of properties that must be
satisfied by the transformation functions. Since compensation operations are integrated as
regular operations, we have to demonstrate that the new set of operations and transformation
functions respect the standard properties for convergence and intention.

The transformation functions defined for regular and compensation operations have to
ensure:

� TP1 and TP2 (or only TP1, depending on the integration algorithm) are required for
consistency,

� The intention preservation: Like regular operations, we have to verify that the effect
of a compensation operation will be preserved.

� In case of system undo, we also need to satisfy a Transformation Property for Com-
pensation2 (TPC). This property ensures that the compensation effect will always

2We discuss of this property for a user undo is section “Comparing system undo and user undo”

INRIA
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Site1 Site2

C(op)

((

opoo

++VVVVVVVVVVVVVVVV Seq

sshhhhhhhhhhhhhhh

Seq′ = T (Seq, op) op′ = T (op, Seq) //C(op′)

uu
C(op)′ = T (C(op), Seq′) C(op′) = C(T (op, Seq))

Figure 4: Respect of the system undo effect

be the same, even if the operation compensated is not the last executed one. This
condition is similar to the condition C4 [10] and the condition IP3 [12, 19, 11]. The
condition TPC is formally defined as:

TPC : T (C(op), T (seq, op)) = C(T (op, seq))

Figure 4 explains the TPC property. Two sites make concurrent operations. Site1
generates op while site 2 generates a sequence of operations seq. Both sites receive
remote operations, transform and integrate them. Now, they are on the same state.
Consequently, if they want to compensate the same operation on the same state, they
must obviously generate the same operation. Site1 generates C(op) and transforms it
against following operations T (seq, op). Site2 compensates the last received operation
which is T (op, seq). These two compensation operations are defined on the same state,
they compensate the same operation, so the resulting operation must be the same. The
verification of this property ensures that whenever an operation is compensated, the
compensation effect remains the same.

So, there are properties to verify in order to ensure a correct OT system with compen-
sation. Due to their conciseness, these properties are theoretically easy to prove. However,
one of the particularity of the OT approach is the huge numbers of cases to check.

In such conditions, a hand proof is error-prone, and many transformation functions
supposed hand-proven finally revealed themselves false (all counter examples can be found
in [13]).

On another hand, each of the cases to check can be easily handled by an automated
formal theorem prover. Consequently, we choose to use the proof environment VOTE [14]
based on the theorem prover Spike [20, 21] which generates all the cases and ensures the
verification of all properties.

We have now defined a complete and generic framework to provide compensation in
the OT approach. This framework could be applied to many transformation functions and
integration algorithm. The following section will discuss about compensation and existing
integration algorithms.

RR n° 6516



10 Weiss, Urso and Molli

3.3 Integrating the compensation in existing integration algorithms

In the OT framework, integration algorithms (SOCT2, SOCT4, GOTO, COT, MOT2) are
defined for operations (with no assumption about the number or the kind of operations) and
need transformation functions to deal with these operations.

The compensation framework extends a set of operations and transformation functions
to support a recovery mechanism. We obtain a new set of operations and transformation
functions. Consequently, the resulting set can be handled by any existing integration algo-
rithm.

Our framework also requires a compensation algorithm. To compensate an operation
op, we generate a compensation operation C(op). The compensation algorithm transforms
C(op) against all operations which have been executed after op. For this stage, C(op) is
considered as concurrent to all operations after op. Fortunately, the main goal of every
integration algorithm is to transform an operation against a set of concurrent operations.

Consequently, any OT integration algorithm can determine the compensation operation.
The resulting operation is treated as a normal operation. Thus, the compensation algorithm
can be easily integrated in any integration algorithm.

In the following section, we instantiate the compensation approach on the Tombstone
Transformation Functions (TTF). The TTF have two particularities: they have non-inversible
operations and are the only transformation functions that ensure TP1 and TP2 [13].

4 Compensation in the TTF approach

In order to illustrate the compensation approach, we choose to apply it on the TTF functions.
We present the TTF functions in the following and then, apply the compensation. In the
first place, we apply the compensation to build a system undo. This kind of recovery is
suitable for patch undo and , especially, for vandalism reverting. In the second place, we
propose the compensation as a user undo which fits differently to user’s intention.

4.1 The Tombstones Transformation Functions

The TTF approach is divided in two parts: the model and the transformation functions. A
detailed explanation of the TTF approach and its correctness can be found in [13].

The main idea of the model is to keep deleted characters as tombstones. The document’s
view only shows visible characters: tombstones are hidden. Consequently, the model differs
from the view. Figure 5 illustrates this. Assume that a document is in a state “abcd”.
Now, a user deletes the character ‘b’. In the TTF model, the character is replaced by a
tombstone (i.e. the character with a visibility flag set to false). The view differs from the
model as the view only contains “acd” while the model contains “ab/cd”. Since tombstones
are necessary to achieve consistency, they cannot be removed and thus, the operation “Ins”
is not inversible.

INRIA



A Flexible Undo Framework for Collaborative Editing 11

Initial state: ‘a’ ‘b’ ‘c’ ‘d’

Model
after Del(2, sid) ‘a’ ‘b/’ ‘c’ ‘d’

View
after Del(2, sid) ‘a’ ‘c’ ‘d’

Figure 5: Model in the TTF approach.

The TTF transformation functions (Figure 6) can only be used with the TTF model. In
other OT approaches, the deletion of a character decreases the position of all the following
characters. The TTF model’s particularity is that a character’s position can only grow.
Therefore, transforming an operation against any “Del” operation will never modify it.

T( Ins(p1, c1, sid1), Ins(p2, c2, sid2)):
if (p1 < p2) return Ins(p1, c1, sid1)
else if (p1 = p2 and sid1 < sid2) return Ins(p1, c1, sid1)
else return Ins(p1 + 1, c1, sid1)

end

T( Ins(p1, c1, sid1),Del(p2, sid2)):
return Ins(p1, c1, sid1)

end

T( Del(p1, sid1), Ins(p2, c2, sid2)):
if (p1 < p2) return Del(p1, sid1)
else return Del(p1 + 1, sid1)

end

T( Del(p1, sid1), Del(p2, sid2)):
return Del(p1, sid1)

end

Figure 6: TTF transformation functions

4.2 Compensation as a “system undo”

The first step in applying the compensation framework is to define the compensation oper-
ations and their effect.

RR n° 6516



12 Weiss, Urso and Molli

A system undo returns the system to a state on which the undone operation was never
performed. In our context, this definition implies that a character deleted concurrently by
N sites should not be visible unless each of these N delete operations are compensated.

To achieve a such behavior, we propose to associate, to each character, a visibility level.
This visibility level is an integer. Initially, an inserted character has a visibility level of 1.
Each time we compensate an insertion operation, the visibility level of the corresponding
character is decreased. Each time we compensate a deletion, we increase the visibility level
of this character.

A character is said “visible” and appears in the document’s view if its visibility level is
at least 1. Similarly, a character is said “invisible” and does not appear in the document’s
view if its visibility level is less than 1.

We choose to compensate the insertion with an operation “Del(p, sid)” which effect is
to decrease the visibility level of the character at position “p”. To compensate a deletion,
we should increase the visibility level of the character. Since neither the operation “Ins”,
nor the operation “Del” could provide this effect, we add a new operation “Undel(p, sid)”
which effect is to increase the visibility level of the character at position “p”. Similarly, the
compensation of an operation “Undel” have to decrease the visibility level. Fortunately, the
operation “Del” produces this effect and can be used to compensate an operation “Undel”.

Site1
”a1b1c1”

Site2
”a1b1c1”

Del(0, sid1)

""EEEEEEEEEEEEEE

compens.

))

Del(0, sid2)

���������������������������

“a/0b1c
′′
1 “a/0b1c

′′
1

Undel(0, sid1)

""EEEEEEEEEEEEEE Del(0, sid1)

“a1b1c
′′
1 “a/−1b1c

′′
1

Del(0, sid2) Undel(0, sid1)

“a/0b1c
′′
1 “a/0b1c

′′
1

Figure 7: Visibility level

The use of visibility levels is illustrated in Figure 7.
The function C(op) links normal operations to compensation operations. As we have

defined compensation operations, we can now write the function C(op).

C(op):

INRIA



A Flexible Undo Framework for Collaborative Editing 13

IF op = Ins(p, c, sid) THEN C(op) := Del(p, sid)
IF op = Del(p, sid) THEN C(op) := Undel(p, sid)
IF op = Undel(p, sid) THEN C(op) := Del(p, sid)

The second step is to write transformation functions for all operations. The definition of
the transformation functions for the operations “Ins” and “Del” are the same as presented
in Figure 6.

As the operations “Del” and “Undel” just influence the fact that a character is visible in
the view or not, they do not modify the position of the document’s characters stored in the
model. Consequently, an operation transformed against any “Undel” (or “Del”) operation
is not modified.

T( Ins(p1, c1, sid1),Undel(p2, sid2)):
return Ins(p1, c1, sid1)

end

T( Del(p1, sid1), Undel(p2, sid2)):
return Del(p1, sid1)

end

T( Undel(p1, sid1), Ins(p2, c2, sid2)):
if (p1 < p2) return Undel(p1, sid1)
else return Undel(p1 + 1, sid1)

end

T( Undel(p1, sid1), Undel(p2, sid2)):
return Undel(p1, sid1)

end

T( Undel(p1, sid1), Del(p2, sid2)):
return Undel(p1, sid1)

end

Since these transformation functions are bijective, they can easily be reversed and con-
sequently allow us to apply our approach with integration algorithms as SOCT2, GOTO
which require reversible transformation functions.

The last step is to prove the correctness of the previous transformation functions.
Using the proof environment VOTE [14], we have proven that our transformation func-

tions verify the properties TP1, TP2 and TPC. The system specification given to the
theorem prover Spike3 can be reviewed and tested at the following url: http://graveyard.
sf.net/.

3http://lita.sciences.univ-metz.fr/~stratula
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14 Weiss, Urso and Molli

4.3 Compensation as a “user undo”

The first step in applying the compensation framework is to define the compensation oper-
ations and their effect.

In this case, we assume that, when a user compensates a deletion, the expected effect is
to see the deleted character even if it has been deleted many times. In other words, user’s
intention is: “make this character visible”.

As a result, an insertion is compensated by an operation “Del(position, id, sid)” which
makes the character invisible. A deletion is compensated by making the character visible.
Since no operation achieves this effect, we add a new operation “Undel(position, id, sid)”.

Compensating an operation “Undel(position, id, sid)” consists in making the character
invisible, then we use the operation “Del(position, id, sid)”. The field “id” is an integer
which indicates whether the operation has an effect or not. If “id” is superior to 0, the
operation has no more effect since a concurrent operation has already achieve the expected
effect.

Then we define the function C:

C(op):
IF op = Ins(p, c, sid) THEN C(op) := Del(p, 0, sid)
IF op = Del(p, i, sid) THEN C(op) := Undel(p, i, sid)
IF op = Undel(p, i, sid) THEN C(op) := Del(p, i, sid)

The second step is to write transformation functions for all operations ( Figure 84).
Figure 9 illustrates the behavior of this user undo. This scenario is similar to Figure 7

and emphasizes the difference between system undo and user undo. Site1 and Site2 generate
concurrently an operation to delete the character ‘a’. When Site1 cancels his deletion by
generating an operation “Undel(0, 0, sid1)”, the user at this site expects to see the character
‘a’. After integrating remote operations, Site1 and Site2 are in the same state and the user
at Site1 sees the expected result.

The last step consists in proving the correctness of our transformation function.
Using the proof environment VOTE [14], we have proven that our transformation func-

tions verify the properties TP1 and TP2. The system specification given to the theorem
prover Spike can be reviewed and tested at the following url : http://graveyard.sf.net/.

In this approach, we define the following intentions for the operations :

“Ins” The order relationships between characters must be preserved. In [13], the authors
prove that the TTF functions preserve these order relationships. The operations “Del”
and “Undel” only modify the visibility of a character, not the position. Therefore, our
approach preserves these relationships.

“Del” The intention of the “Del” operation is to obtain the character invisible. From the
definition of the execution of “Del”, del(p, i, sid) has an effect only if i = 0. When
generated by the user, we get i = 0, and the effect is realized. When transformed,

4Some transformation functions are similar to TTF functions and hence, are not reported on this figure.
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T( Ins(p1, c1, sid1), Del(p2, i2, sid2)):
return Ins(p1, c1, sid1)

end

T( Ins(p1, c1, sid1), Undel(p2, i2, sid2)):
return Ins(p1, c1, sid1)

end

T( Undel(p1, i1, sid1), Ins(p2, c2, sid2)):
if (p1 < p2) return Undel(p1, i1, sid1)
else return Undel(p1 + 1, i1, sid1)

end

T( Del(p1, i1, sid1), Ins(p2, c2, sid2)):
if (p1 < p2) return Del(p1, i1, sid1)
else return Del(p1 + 1, i1, sid1)

end

T( Del(p1, i1, sid1), Del(p2, i2, sid2)):
if (p1 = p2 and i2 = 0) return Del(p1, i1 + 1, sid1)
else return Del(p1, i1, sid1)

end

T( Del(p1, i1, sid1), Undel(p2, i2, sid2)):
return Del(p1, i1, sid1)

end

T( Undel(p1, i1, sid1), Undel(p2, i2, sid2)):
if (p1 = p2 and i2 = 0) return Undel(p1, i1 + 1, sid1)
else return Undel(p1, i1, sid1)

end

T( Undel(p1, i1, sid1), Del(p2, i2, sid2)):
return Undel(p1, i1, sid1)

end

Figure 8: TTF transformation functions with a “user undo”

i = 0 remains true except if the del(p, i, sid) operation is transformed against another
del(p, 0, sid′), i.e. if the intention is already realized.

“Undel” The intention of the “Undel” operation is to obtain the character visible. Since
the definitions of “Del” and “Undel” are the symmetric, the intention of “Undel” is
also respected.
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Site1
”abc”

Site2
”abc”

Del(0, 0, sid1)

##HHHHHHHHHHHHHHHH

compens.

))

Del(0, 0, sid2)

��																									

“a/bc′′ “a/bc′′

Undel(0, 0, sid1)

##HHHHHHHHHHHHHHHH Del(0, 1, sid1)

“abc′′ “a/bc′′

Del(0, 2, sid2) Undel(0, 0, sid1)

“abc′′ “abc′′

Figure 9: User undo

4.4 TPC and user undo

In the system undo strategy, we assume that the expected undo effect is to remove an
operation from the system. On the contrary, in the user undo strategy, we remove an effect
from the document. Thus TPC may contradict user intention in the case of a user undo.

An example of this contradiction is show in figure 105. In this example, two users delete
concurrently intersecting parts of the document “abc”. User1 deletes “ab” while User2
deletes “bc”.

� For User2, the observed effect of User1’s operations is only to remove “a”; and if he
undoes these operation, he wants only “a” to appear.

� For User1, the effect of his actions is obviously to remove “ab”; and if he undoes them,
he wants “ab” to appear.

So, two user’s undo intention of the same operation could lead to two different operations.
Thus, TPC contradicts users’ intentions in this case.

5 Implementation

In order to validate our approach, we have built the Graveyard prototype. Graveyard is
a real-time collaborative text editor (cf. figure 11). It relies on the SOCT2 algorithm for

5This scenario does not lead to inconsistency, since sites will eventually converge when both set of undelete
operation will remotely be integrated.
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User1
”abc”

User2
”abc”

Del(0, 0, s1)
Del(1, 0, s1)

◦

  BBBBBBBBBBBBBB

compens.

��

Del(1, 0, s2)
Del(2, 0, s2)

◦

~~||||||||||||||

“a/b/c′′ “ab/b/′′

Del(1, 1, s2)
Del(2, 0, s2)

◦ Del(0, 0, s1)
Del(1, 1, s1)

◦

compens.

{{

“a/b/c/′′ “a/b/c/′′

Undel(0, 0, s1)
Undel(1, 0, s1)

◦ Undel(0, 0, s1)
Undel(1, 1, s1)

◦

“abc/′′ “ab/c/′′

Figure 10: TPC and user undo

Figure 11: Graveyard real-time editor

integrating concurrent operations. SOCT2 does not provide natively undo capabilities. We
used the TTF transformation functions with related compensation operations to obtain a
real-time collaborative with undo feature. The general architecture of graveyard is described
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in figure 12. For this implementation, we used SOCT2 however we can replace SOCT2 by
SOCT4, MOT2, adOPTed or GOTO and obtain the same result.

Figure 12: Graveyard architecture

The TTF transformation functions require to change the data model of the editor. For-
tunately, the Model-View-Controller architecture of the Java Swing Framework 6 offers this
functionality. Programmers can plug-in their own data model into the abstract document
model of the text editor. The Eclipse RCP framework 7 offers the same functionality. By
this way, the programmer model is notified of all changes requested by the controller i.e.
typing a character, but also copy, paste and undo request.

So, we wrote the TTF document that extends the Swing text editor abstract document.
This document manages invisible characters when inserting and removing characters. This
model also forward local operations to the other connected editors through the workspace
manager.

The workspace manager sends local operations to other sites and handles remote opera-
tions reception. When a remote operation is received and is causally ready, this operation is
transformed against concurrent operations using the SOCT2 algorithm and TTF transfor-
mation functions. The resulting operation is executed on the TTF document. This update
is notified to the swing text editor. For managing membership and network broadcast, we
use the JGroups 8 toolkit. This toolkit allows us to test various broadcast protocols.

The undo feature is accessible in graveyard with traditional keys. By typing ‘control-z’,
the user can undo his operations that are not always the last executed operations. The undo

6http://en.wikipedia.org/wiki/Swing_(Java)
7http://www.eclipse.org/
8http://www.jgroups.org
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panel at the left (see figure 11) contains all operations integrated on the local site. The user
can select any operation and compensate them by clicking on the button “Undo”.

The graveyard prototype is available under the GPL license on sourceforge9.

6 Related Work

In [22], the authors present an undo specific to the adOPTed algorithm by adding two
functions called “mirror” and “fold”. Unfortunately, this solution cannot allow undoing
any operation at anytime. Since the adOPTed algorithm requires transformation functions
satisfying TP1 and TP2, we can use the TTF functions in association with the compensation
approach. Therefore, we can instantiate adOPTed and provide an undo for any operation.

The ANYUNDO algorithm [11] is associated with the GOTO integration algorithm. This
approach introduces three undo properties called IP1, IP2 and IP3. The property IP3 is
similar to the property TPC. The property IP1 illustrates the neutrality of do-undo pairs
toward the document state while the property IP2 illustrates the neutrality of do-undo
pairs toward transformation functions. The properties IP2 and IP3 are enforced by the
ANYUNDO algorithm. Therefore, the GOTO-ANYUNDO approach needs transformation
functions which satisfy three properties TP1, TP2 defined for operation satisfying IP1.
Unfortunately, transformation functions satisfying IP2 and IP3 defined for operations sat-
isfying IP1 have never been published. The TTF approach satisfies TP1 and TP2 but is
defined for operations which do not satisfy IP1. However, we can still provide compensation
in GOTO. Operations and transformation functions described in this paper can be used in
the GOTO integration algorithm to provide either a system undo or a user undo without
using the ANYUNDO algorithm.

In [10], the authors define two properties C3 and C4 which are similar to IP2 and IP3.
To ensure the verification of these two properties, the authors introduce a specific opera-
tion “undo(op)”. This approach defines generic transformation functions for this operation
“undo(op)” using the proposed transformation functions. The main idea to enforce C4 is to
swap the operations and undo the resulting operation. Unfortunately, the authors do not
discuss the case of causally dependent operations. This leads to incorrect results.

In the COT approach [12], an undo operation is defined on the generation state of the
operation that we want to undo. The state is represented by a “context vector” associated
to each sent operation. Unlike state vectors which only capture normal operations , context
vectors are designed to capture also undo operations. Unfortunately, context vector’s size
grows linearly with the number of undone operations. Therefore, the use of context vector
limits the number of undo which can be performed during an editing session. One can use
the compensation approach with the COT’s integration algorithm. This allows obtaining
an undo mechanism in the COT approach without using “context vectors”.

From a generic point of view, existing undo mechanisms place into the operation log undo
operations directly next to original one in order to form do-undo-pairs [22, 11, 10, 12]. This

9http://graveyard.sf.net
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behavior limits the supports of log truncation features. Indeed, if the original operation is
dropped, undo operation cannot be integrated. Since compensation operations are treated
as do operation, every operation in the log of the local site can be compensated and remotely
integrated even if it has been dropped by the other sites.

From a correctness point of view, the existing undo mechanisms rely on some properties
that the transformation functions must ensure or that the undo mechanism enforces. These
properties are designed to resolve some known undo puzzles. Mechanisms which enforce such
properties could break causality, convergence or intentions. However, since compensation
operations are integrated as other operations, their correctness rely directly on the CCI
criteria:

� Causality is ensured by the integration algorithm

� Convergence is ensured by the respect of TP1 and, if required, TP2.

� Intention must be ensured by the execution of the operations and their transformation
as well for compensation operation as for standard operation10. Unfortunately, OT
framework does not provide a generic scheme to show that an operation’s intention is
respected. This issue must be addressed for each set of operations as we done for the
instances of compensation for TTF.

However, compared to undo built at the integration level, the compensation approach
has a drawback. The compensation implies an additional development cost on account
of the addition of new operations. But, this additional cost cannot be avoided if original
operations are not inversible – such as TTF operations – or if the original set of operations
is not sufficient to produce a complete undo – such as the “insertFormatted” example.
This cost is mostly a property verification cost and can be reduced thanks to automated
verification techniques [?].

Finally, compared to the above approaches, the use of the compensation approach brings
several improvements: it improves the performances, extends the undo functionality add/or
even replaces a non-instantiable undo mechanism. One main characteristic of compensation
approach is to realize the undo feature at the transformation functions level. It makes the
undo feature independent of the integration algorithm. So the compensation approach can
be used with any integration algorithm.

7 Conclusions

In all existing OT approaches, undo is designed at the integration algorithm level and
proposes a system undo. In this paper, we introduced our compensation framework which
provides the system undo and, furthermore, a new way to undo called user undo. The user
undo allows expressing the user’s intention undo [3, 23].

10Even with traditional undo properties (IP2/IP3 or C3/C4) or our property TPC, intention preservation
is never formally proved to be ensured in any case.
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With a little additional design cost – that may not be avoided to build a correct undo –
our framework allows defining any adequate action to counterbalance the effect of an opera-
tion. Since system undo is just one of these possible actions, we claim that the compensation
is more generic than existing undo approaches. An important feature of our approach is
that the resulting transformation functions remain generic towards integration algorithms.
Consequently, we can apply these functions with COT, SOCT2, SOCT4, MOT2, GOTO
and adOPTed. We have a complete solution to build correct decentralized text editors with
a flexible undo capability and a log truncation feature. The TTF transformation func-
tions with the system undo proposed in this paper has been implemented in the Graveyard
collaborative text editor.

In future work, we will integrate the TTF transformation functions with the user undo.
Thus, a user study will be settled to determine which undo strategy is the most adequate
depending on the context. The major drawback of the compensation as a user undo, which
is shared with the OT approach in general, is the lack of a formal definition and generic
properties to ensure user’s intention. As a result, we will try to obtain a formalization of
user’s intention.
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