
HAL Id: inria-00275983
https://inria.hal.science/inria-00275983v2
Submitted on 27 Apr 2008 (v2), last revised 29 Apr 2008 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Encoding for Optimization
Nikolaus Hansen

To cite this version:
Nikolaus Hansen. Adaptive Encoding for Optimization. [Research Report] RR-6518, 2008. �inria-
00275983v2�

https://inria.hal.science/inria-00275983v2
https://hal.archives-ouvertes.fr

app or t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
??

??
--

FR
+E

N
G

Thème COG

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Adaptive Encoding for Optimization

Nikolaus Hansen

N° ????

Avril 2008

Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université

4, rue Jacques Monod, 91893 ORSAY Cedex
Téléphone : +33 1 72 92 59 00

Adaptive Encoding for Optimization

Nikolaus Hansen∗

Thème COG — Systèmes cognitifs
Équipe-Projet TAO

Rapport de recherche n° ???? — Avril 2008 — 18 pages

Abstract: This report describes a general method for rendering search co-
ordinate system independent, Adaptive Encoding (AE). Adaptive Encoding is
applicable to any continuous domain search algorithm and includes (incremen-
tal) changes of the coordinate system, that is, changes of the representation of
solutions. One attractive way to change the representation within AE is derived
from the Covariance Matrix Adaptation (CMA). We prove that adaptive encod-
ing recovers the CMA Evolution Strategy, when suitably applied to an evolution
strategy with cumulative step-size control. The proof implies that adaptive en-
coding provides the means to apply CMA-like representation changes to any
search algorithm in continuous domain.

Key-words: optimization, evolutionary algorithms, encoding, representa-
tion, coordinate system, covariance matrix adaptation, invariance

∗ INRIA Saclay, Project-team TAO, Université Paris-Sud, LRI, 91405 Orsay Cedex, France.
email:forename.name@inria.fr.

Encodage adaptif pour optimisation

Résumé : Pas de résumé

Mots-clés : Pas de motclef

Adaptive Encoding for Optimization 3

Contents

1 Introduction 3

2 Preliminary Notations and Definitions 4
Symbols . 5

3 Adaptive Encoding 5

4 Example Applications of Adaptive Encoding 7
4.1 The Scaling Adaptive Evolutionary Algorithm 7
4.2 EDA (Estimation of Distribution Algorithm) 9

5 A Universal Update Rule: AECMA 11
5.1 Choice of Parameters . 12
5.2 AECMA Recovers CMA-ES . 14
5.3 Application of AECMA-Update 17

6 Summary and Conclusions 17

1 Introduction

In optimization or search, the problem encoding, that is the choice of the repre-
sentation of the optimization problem is of upmost importance. A good repre-
sentation, if available, can render any search problem trivial—finding a proper
representation means essentially solving the problem. In an iterative search
procedure, in principle, a good problem representation can be iteratively ap-
proached, just as a good solution to the problem is approached in the itera-
tion sequence. Indeed, for example, variable metric methods like quasi-Newton
methods [3, 4], covariance matrix adaptation (CMA) [8], or estimation of distri-
bution algorithms (EDAs) [9] implicitely conduct a representational change. In
evolutionary algorithms, given an additive (mutation) operator, a linear change
of representation is equivalent with an appropriate linear transformation of the
additive mutation [5]. Linear transformations of additive mutation operators,
parameterized in step-sizes or covariance matrices, are well studied in evolution-
ary algorithms [1, 9].

In this report, we sketch an explicite framework for an iterative incremental
representation change, adaptive encoding. The framework by itself is just about
trivial. While the framework is quite general, this report considers only linear
changes of the representation in continuous domain.

Searching for a linear representational change in continuous domain comple-
ments the original n-dimensional search problem with a second search problem
of size n2. The advantage from adaptive encoding is that these two search prob-
lems are decoupled. Consequently, any efficient representation change can be
applied to any underlying search procedure.

In the next section we give the preliminary notations and definitions. In Sec-
tion 3 the general idea of adaptive encoding is introduced. Section 4 explicates
a few examples. In one of them adaptive encoding recovers an EDA. Section 5
proposes a universal, efficient update rule, AECMA, for the representation. We
prove that AECMA-CSA-ES recovers CMA-ES.

RR n° 0123456789

4 Nikolaus Hansen

2 Preliminary Notations and Definitions

Let f : Rn → R be an objective function to be minimized. Let a search algorithm
propose new candidate solutions, x, in an iterative procedure and typically
evaluate them on f . Let further denote

S the state space of the search algorithm;

A : S → S an iteration step of the search algorithm A;

TB : S → S an invertible transformation, the encoding of the state space or
change of representation. The transformation TB is here parameterized
by a matrix B and uniquely depends on the values in B. The inverse T−1

B

denotes the decoding of the state space;

B ∈ Rn×n a full rank matrix. Columns of B represent a new coordinate sys-
tem and B represents the respective a coordinate system transformation
in Rn;

U : Rn×n × S → Rn×n, (B, s) 7→ U(B, s) = Bnew the change of representation
by updating the matrix B. For convenience, we assume that all available
and necessary information to update B is included in algorithm state s
and we will regularly write U(B) instead of U(B, s);

From these definitions we first remark, that an iteration step of an algorithm
can be surrounded by an encoding-decoding step according to

AB ≡ TB ◦ A ◦ T−1
B , (1)

defining a new algorithmAB : S → S. If TB is the identity the original algorithm
A is recovered.

By definition, encoded solutions (phenotypes) are represented in the given
coordinate system, where also f is evaluated. Accordingly, the algorithm op-
erates, by definition, on decoded solutions (genotypes). We assume, for conve-
nience and w.l.o.g., that recently evaluated solutions are part of the algorithms
state.

Remark 1 (Evaluation of solutions). In order to make use of Eq. (1), we
have to ensure that candidated solutions are evaluated according to their original
representation. Solutions must be encoded before evaluation. In other words, A
operates on f ◦B.

Considering Remark 1, we can execute the algorithm A in any coordinate
system of our choice. The new coordinate system, where the operations of A
are conducted, is given by B. We can additionally adapt B (which completely
determines TB). In this way, Eq. (1) can render the algorithm AB indepen-
dent from any given coordinate system (if the adaptation for B is formulated
independent of the coordinate system).

Finally, we assume to have a performance measure when running an algo-
rithm on a function.

Remark 2 (Performance measure). In the following, we assume to have a
performance measure for running a search algorithm on the objective function
f .

INRIA

Adaptive Encoding for Optimization 5

The performance measure determines whether one algorithm is better than
another. For example, a typical, quantitatively useful measure is the number of
candidate solutions evaluated on f until a target function values is reached.

Further symbols which will be used repeatedly in this report are given in the
next paragraph.

Symbols

◦ the composition of mappings, e.g., (f ◦B)(x) = f(B(x)) for all x.

← the assignment operation. We will write, for example,

BBT ← C ,

meaning we assign B to a value such that BBT = C. If the asignment is
not unique under the definition for B, any compliant value is assigned.

µ, λ integers denoting the number of parental solutions and offspring solutions
respectively.

µw = 1∑µ
i=1 w2

i
≥ 1 the effective parent number, also denoted as variance effective

selection mass [6].

I the identity n× n unit matrix.

i(f) the index of the i-the best solution in respect to function value f .

Ni (0,C) a multi-variate normal distribution with zero mean and covariance
matrix C. The index i denotes a certain realization.

Ri ∈ Rn a random vector.

BT the transpose of B.

wi = ln(µ+1)−ln i
µ ln(µ+1)−

∑µ
j=1 ln j

, for i = 1, . . . , µ, positive weights summing to one.

3 Adaptive Encoding

Equation (1) represents an iteration step of a search algorithm with an addi-
tional encoding-decoding procedure. The encoding is, throughout this report,
parameterized by a n× n-matrix; it therefore introduces n2 additional degrees
of freedom to the iteration step of the algorithm. Obviously, the idea is to find
a “good” encoding for algorithm A.

Aim 1 (static encoding). The goal of finding a good encoding is to find a trans-
formation TB, such that

TB ◦ A ◦ T−1
B outperforms A on f

The static encoding is usually part of the design of the objective function.
Equivalently, the algorithm can be modified specifically in regard to the given
objective function (the encoding-decoding can certainly be interpreted as mod-
ification of the algorithm). The formalism of Aim 1 is not very interesting. To
get a more interesting situation, we need to consider an update or adaptation
of the encoding TB .

RR n° 0123456789

6 Nikolaus Hansen

Definition 1. (Adaptive Encoding) Given an algorithm, A, an encoding, TB,
determined by B, and an update, U , the iteration step of an adaptively encoded
algorithm in state s ∈ S is defined as

s ← TB ◦ A ◦ T−1
B (s) (2)

B ← U(B, s) (3)

where← denotes the assignment operator and TB◦A◦T−1
B (s) = TB(A(T−1

B (s))).
We write

TB ◦ A ◦ T−1
B ; U(TB) (4)

to denote the iteration step defined by Equations (2) and (3).

Obviously, any iterative algorithm A can be plugged into the adaptive en-
coding mechanism.

Proposition 1. (Adaptive Encoding is universal) The Adaptive Encoding from
Definition 1 can be applied to any search algorithm.

Proof. The proposition follows directly from the definition of TB as invertible
mapping from S to S.

Even though Proposition 1 is just about trivial, it is of utmost importance for
the implications of our results, because it establishes the general applicability
of an effective adaptive encoding update rule.

Analogous to Aim 1, we consider the merits of an adaptive encoding.

Aim 2 (adaptive encoding). Find an update U , such that for a given T0 and a
given (initial) TB

TB ◦ A ◦ T−1
B ; U(TB) outperforms T0 ◦ A ◦ T−1

0 on f .

The left iteration step updates the encoding, the right iteration step applies a
constant encoding, T0, to algorithm A.

Taking only a single iteration step, Aim 2 does not depend on the update U
and it reduces to Aim 1. Consequently, Aim 2 becomes only interesting, when
an iteration sequence is considered. Indeed, in a realistic automated scenario,
Aim 2 can only be achieved in the iteration sequence.

Finally, we define three cases/scenarios when considering Aim 2.

Scenario 1. (Standard scenario) The initial TB equals to T0. Aim 2 shall be
satisfied for most given T0.

Scenario 2. (Ambitious scenario) The initial TB equals to T0. Aim 2 shall be
satisfied for all given T0.

Satisfying the ambitious scenario implies that no fixed optimal encoding TB

exists and a changing encoding can, in principle, be better than any fixed encod-
ing. Both, the standard and the ambitious scenario are reasonable objectives,
depending on the given objective function.

Scenario 3. (Unrealistic scenario) For all TB 6= T0, Aim 2 shall be satisfied.

As we might be able to choose TB arbitrarily bad, it seems unrealistic that
Aim 2 can be satisfied for any TB 6= T0 in general.

The remainder of this report further investigates the idea of adaptive encod-
ing as given in Definition 1.

INRIA

Adaptive Encoding for Optimization 7

4 Example Applications of Adaptive Encoding

In this section, we give two examples of how an evolutionary algorithm is re-
formulated as a simple base algorithm with adaptive encoding.

In order to define an adaptive encoding, we need to specify the encoding of
the algorithms state space, TB : S → S, and the update of the encoding, U .
Both mappings depend, to a certain extend, on the baseline algorithm they are
applied to.

4.1 The Scaling Adaptive Evolutionary Algorithm

We define in Algorithm 1 a “Baseline (µ, λ)-EA” with µ parental solutions, a
recombination operator reco, λ offspring which are generated by adding a ran-
dom vector Ri ∈ Rn, and a selection operator. The (µ, λ)-selection was chosen
for notational simplicity. The results generalize to any selection operator that
uses only the objective function values to take decisions (and not the parameter
values of the candidate solutions itself).

The adaptive encoding of the baseline (µ, λ)-EA, AE-(µ, λ)-EA, is given in
Algorithm 2. It adds a decoding step in the beginning, encodes solutions for
evaluation, adds an encoding step at the end and finally updates the encoding.

Remark 3. The encoding TB in the adaptively encoded (µ, λ)-EA (Algorithm 2)
is of the form

TB : (x1, . . . ,xµ, σ, y) 7→ (Bx1, . . . ,Bxµ, σ, y) , (5)

where y denotes remaining state variables.

We aim at investigating the relation of the adaptive encoding of the baseline
(µ, λ)-EA to conventional adaptations in evolutionary algorithms. Algorithm 3
complements the baseline (µ, λ)-EA with an adaptive scaling of mutations. We
will prove in the following that, given the appropriate TB and U , the adap-
tively encoded algorithm (Algorithm 2) is equivalent to the scaling adaptive
Algorithm 3, where mutations are scaled according to a diagonal matrix σ.

Assumption 1. Let select pick solutions only depending on the function val-
ues (not depending on the actual solutions), and let reco commute with B, in
that

B · reco(x1, . . . ,xµ) = reco(Bx1, . . . ,Bxµ) (6)

for all B and all x1, . . . ,xµ.

Algorithm 1: Baseline (µ, λ)-EA
The Ri ∈ Rn denote random vectors

let µ, λ positive integers and µ < λ1

initialize {x1, . . . ,xµ} ∈ Rn (a set of candidate solutions)2

repeat3

xi = reco(x1, . . . ,xµ) + Ri , for i = 1, . . . , λ4

fi = f(xi) , for i = 1, . . . , λ5

{x1, . . . ,xµ} ← select({xi, fi}i=1,...,λ)6

until stopping criterion is met7

RR n° 0123456789

8 Nikolaus Hansen

Theorem 1. Given Assumption 1, the adaptively encoded (µ, λ)-EA (Algo-
rithm 2) implements the scaling adaptive (µ, λ)-EA (Algorithm 3), if

U(σ) = adaptσ(σ) (7)

holds with probability one.

Proof. Let initialize B = σ in Algorithm 2 and let the initial xi be identical in
both algorithms. We consider one iteration step of both algorithms.

First, we show that the same solutions are evaluated in both algorithms and
consequently f ′i = fi. That means, we have to prove that Bx′i in line 7 of

Algorithm 2: Adaptively Encoded (µ, λ)-EA
Shaded areas implement the adaptive encoding. The begin-end block im-
plements the baseline (µ, λ)-EA minimizing f ◦B.

initialize {x1, . . . ,xµ} ∈ Rn (a set of solutions)1

initialize B ∈ Rn×n (a transformation matrix)2

repeat3

x′i = B−1xi , for i = 1, . . . , µ // decode state4

begin5

x′i = reco(x′1, . . . ,x
′
µ) + Ri , for i = 1, . . . , λ6

f ′i = f ◦B (x′i) = f(B x′i), for i = 1, . . . , λ // encode to eval7

{x′1, . . . ,x′µ} ← select({x′i, f ′i}i=1,...,λ)8

end9

xi ← Bx′i , for i = 1, . . . , µ // encode10

B ← U(B) // adapt encoding11

until stopping criterion is met12

Algorithm 3: Scaling Adaptive (µ, λ)-EA
The shaded areas add to the baseline (µ, λ)-EA

initialize {x1, . . . ,xµ} ∈ Rn (a set of solutions)1

initialize diagonal matrix σ (a scaling)2

repeat3

xi = reco(x1, . . . ,xµ) + σ×Ri , for i = 1, . . . , λ4

fi = f(xi) , for i = 1, . . . , λ5

{x1, . . . ,xµ} ← select({xi, fi}i=1,...,λ)6

σ ← adaptσ(σ)7

until stopping criterion is met8

INRIA

Adaptive Encoding for Optimization 9

Algorithm 2 equals to xi in line 5 of Algorithm 3, for all i = 1, . . . , λ.

Bx′i = B (reco(x′1, . . . ,x
′
µ) + Ri)

= B reco(B−1x1, . . . ,B
−1xµ) + BRi

= reco(BB−1x1, . . . ,BB−1xµ) + σ ×Ri

= reco(x1, . . . ,xµ) + σ ×Ri

= xi for i = 1, . . . , λ (8)

Second, we prove that all xi are identical after one iteration step in both
algorithms. According to Eq. (8), Bx′i in line 7 of Algorithm 2 equals to xi and
therefore f ′i = fi. Because select only depends on the function values, the
individuals with the same indices are selected in both algorithms, respectively.
Decoding in line 10 of Algorithm 2 assigns the desired equality.

Third, we remark that Eq. (7) implies that B = σ remains valid after the
iteration step.

We have proven that under Assumption 1, adaptive encoding can equiva-
lently replaced adaptively scaled mutations. We conclude by a few remarks on
the applicability of this result.

Remark 4. The update, U , can always be chosen, such that Eq. (7) holds, if
all necessary information is included in the algorithms state.

Remark 5. Some typical recombination operators [1] commute with linear
transformations.

Remark 6. The diagonal matrix σ in the scaling adaptive algorithm resembles
(overall) step-size adaptation, if all diagonal entries remain identical.

4.2 EDA (Estimation of Distribution Algorithm)

Algorithm 4 implements a very simple Estimation of Distribution Algorithm
(EDA) [9], denoted as sEDA in the following. Only the mean vector of the
distribution is estimated for the next generation. Adaptive encoding for the
sEDA is elementary and outlined in Algorithm 5. Only the mean vector m
needs to be transformed according to T−1

B (m) = B−1m. The adaptation of
the encoding is given in line 11 of Algorithm 5. The adaptation resembles the
estimation of a covariance matrix in a common EDA. The common EDA is given
in Algorithm 6, where the empirical covariance matrix is computed in line 7.

Algorithm 4: Simple EDA (sEDA)
N (0, I) denotes a normal distribution with covariance matrix I; i(f) in-
dicates the index of the i-th best solution

initialize m ∈ Rn (distribution mean)1

repeat2

xi = m +Ni (0, I) , for i = 1, . . . , λ3

fi = f(xi) , for i = 1, . . . , λ4

m← 1
µ

∑µ
i=1 xi(f)5

until stopping criterion is met6

RR n° 0123456789

10 Nikolaus Hansen

The next theorem states that the adaptively encoded sEDA unconditionally
implements the common EDA.

Theorem 2. The adaptively encoded sEDA (Algorithm 5) implements the com-
mon EDA (Algorithm 6).

Proof. We assume that initially BBT = C and that the initial m is the same
in both algorithms. We prove that the same holds true after one iteration step.

Algorithm 5: Adaptively Encoded sEDA
Shaded lines implement the adaptive encoding; the begin-end block em-
braces the sEDA; i(f)′ indicates the index of the i-th best solution accord-
ing to f ′i

initialize m ∈ Rn (distribution mean)1

initialize B = I2

repeat3

m′ = B−1m4

begin5

x′i = m′ +N (0, I) , for i = 1, . . . , λ6

f ′i = f(B x′i) , for i = 1, . . . , λ7

m′ ← 1
µ

∑µ
i=1 x′i(f)′8

end9

m← Bm′
10

BBT ← 1
µ

∑µ
i=1(Bx′i(f)′ −m)(Bx′i(f)′ −m)T

11

until stopping criterion is met12

Algorithm 6: Common EDA
Shaded areas add to the simple EDA

initialize m ∈ Rn (distribution mean)1

initialize C = I (empirical covariance matrix)2

repeat3

xi = m +Ni

(
0, C

)
, for i = 1, . . . , λ4

fi = f(xi) , for i = 1, . . . , λ5

m← 1
µ

∑µ
i=1 xi(f)6

C ← 1
µ

∑µ
i=1(xi(f) −m)(xi(f) −m)T

7

until stopping criterion is met8

INRIA

Adaptive Encoding for Optimization 11

First, we recognize that the same solutions are evaluated in both algorithms,
because

Bx′i = B(m′ +Ni (0, I)) in line 7 in Alg. 5

= BB−1m + BNi (0, I)

= m +Ni

(
0,BBT

)
= m +Ni (0,C)
= xi (9)

The equation holds almost surely, if the random number realizations are chosen
correspondingly in both algorithms. Consequently, f ′i = fi and i(f) = i(f)′

for all i = 1, . . . , λ. Therefore, the same solutions are used in the remaining
operations and we find

mAlg. 5
line 10 = Bm′ = B

1
µ

µ∑
i=1

x′i(f)′ =
1
µ

µ∑
i=1

Bx′i(f)′ =
1
µ

µ∑
i=1

xi(f) = mAlg. 6
line 6 .

(10)

It remains to be shown that after the iteration step BBT = C. This follows
directly from the choice of the update rule.

BBT ← 1
µ

µ∑
i=1

(Bx′i(f)′ −m)(Bx′i(f)′ −m)T

=
1
µ

µ∑
i=1

(xi(f) −m)(xi(f) −m)T

= C (11)

5 A Universal Update Rule: AECMA

In order to define an adaptive encoding, we needed to specify the encoding of
the algorithms state space, TB : S → S, and the update rule, U , of the encoding
matrix B. In this section, our aim is to derive a universal update U , leaving
only the choice of TB as remaining, algorithm specific design issue.

Previously, we have used two update rules, both in order to recover a known
evolutionary algorithm. In the first case, we had chosen U = adaptσ without
further specification. In the second case, we had computed the decomposition of
an empirical covariance matrix to derive B. The latter depends in particular on
a sufficiently large number of solutions µ. In the following, we explicate a more
universal update rule for the representation matrix B. The update is derived
from the equations for the covariance matrix update in the (µ/µw, λ)-CMA-ES
[6, 8], denoted as AECMA, and explicated in Algorithm 7 AECMA-Update.

All parameters and coefficients of AECMA-Update are in detail discussed in
Section 5.1. The state variables are m, p and C. The mean m is initialized to
the mean of initial solutions of the search algorithm to which AECMA-Update is
applied, and initially p = 0 and C = I. The covariance matrix update is based
on differences between new solutions and the (former) mean.

RR n° 0123456789

12 Nikolaus Hansen

Proposition 2. Let σ denote a step-size and µ−1
w =

∑µ
i=1 w2

i . Let αp = 1,
α0 =

√
µw

σ and αi = σ−1, for i = 1, . . . , µ. Then, the algorithm AECMA-Update
implements the update equations for the evolution path, p, and the covariance
matrix, C = BBT, in the (µ/µw, λ)-CMA-ES.

Proof. Assuming that x1, . . . ,xµ are the µ best solutions in the recent iteration
step, line 5 computes m according to Eq.(3) in [6]. Lines 7 and 10 of Algo-
rithm 7 AECMA-Update replicate the covariance matrix update equations (17)
and (22) in [6] with added or renamed normalization coefficients, denoted as α.
Substituting the coefficients as given results in the original equations.

The Algorithm 7 AECMA-Update implements the covariance matrix update
of CMA-ES with additional coefficients α to be specified (see Section 5.1). In
the context of CMA-ES, this update works well for any choice of µ [6].

Depending on the application of AECMA-Update, a slow change of B might
be desirable (see also Section 5.3). While C will only change slowly, as long as
c1 and cµ are small, the decomposition of C does not ensure a similar behavior
for B◦ and D. For this reason, the diagonal elements are sorted in D. We
conjecture, that lines 11 to 13 can be replace by a cholesky decomposition, or,
more promising, by an incremental cholesky update that ensures small changes,
as long as c1 and cµ are small. In this case, it might be sufficient to only encode
the solutions for the function evaluation and, as an approximation, completely
abandon the encoding-decoding of the algorithms state.

In the next section, we will discuss the choice of the coefficients and of the
remaining parameters of the procedure. Section 5.2 shows how AECMA-Update
recovers CMA-ES.

Algorithm 7: AECMA-Update({x1, . . . ,xµ})
updates the encoding matrix B using the µ recent best-ranked candidate
solutions

given parameters wi, cp, c1, cµ from Section 5.11

given m ∈ Rn, p ∈ Rn and C ∈ Rn×n from last iteration2

let matrices B◦ orthogonal, and D diagonal, with diagonal elements3

sorted in ascending order
m− = m4

m←
∑µ

i=1 wixi // Eq.(3) in [6]5

set scalars αi ≥ 0, for i = 0, . . . , µ, cf. Sect. 5.16

p← (1− cp) p +
√

cp (2− cp) α0(m−m−) // Eq.(17) in [6]7

Cµ =
∑µ

i=1 wi α2
i (xi −m−)(xi −m−)T // rank-µ matrix8

set scalar αp ≥ 0, cf. Sect. 5.19

C ← (1− c1 − cµ) C + c1αp ppT + cµCµ // Eq.(22) in [6]10

B◦DDB◦ ← C // eigendecomposition11

optionally normalize D12

B ← B◦D // encoding matrix13

INRIA

Adaptive Encoding for Optimization 13

5.1 Choice of Parameters

In Algorithm 7, the scalars αp and αi for i = 0, . . . , µ, need to be chosen.
They normalize the input entries for the covariance matrix update (most of
them are the difference between a new solution and the former mean). In the
original CMA, we can derive the expected lengths of the input entries from
the sampling procedure. Under random selection the normalized entries are
distributed according to

N (0,C) = BN (0, I) . (12)

In general, we cannot assume to know the expected lengths of the input entries,
therefore we need to normalize them. In Eq. (12), the expected squared length
of the decoded input entry, E‖B−1BN (0, I) ‖2, computes to n suggesting a
normalization to length

√
n. Keeping this in mind, we discuss the choice of the

scalar coefficients in turn.1

α0 =
√

n
‖B−1(m−m−)‖ , normalizes the difference B−1(m −m−) to length

√
n.

Consequently, only the direction is relevant and the absolute size of the
difference is disregarded.

αi =
√

n
‖B−1(xi−m−)‖ , for i = 1, . . . , µ, is the conservative choice, where the
length of the difference B−1(xi − m−) is disregarded. In general, we
recommend to choose

αi =
√

n

max
(

li
β

,median
j=1,...,µ

(lj)
) for i = 1, . . . , µ , (13)

where li = ‖B−1(xi−m−)‖. In this way, the median is set to “length”
√

n
and the maximal length is set to β

√
n with β ≥ 1. We recommend β = 2.

Unusual large entries may, for example, occur if solutions are originally
sampled from a distribution with heavy tails. By chance, an outranging
solution could enter the procedure despite a bad objective function value
and an unjustified very large change of B would result.

αp = 1 will be the usual choice, while αp =
√

n
‖p‖ is a conservative alternative

and will not allow to utilize the evolution path effectively; αp = 0 would
be even more conservative.

Finally, we give the default settings for the constants used in AECMA-Update
and discuss the choices in turn.

cp = 1√
n

is the learning constant for the evolution path, which should be usually
between 1√

n
and 2

n+1 [8]. For larger cp, the effect of the evolution path will
attenuate. The backward time horizon for the evolution path is roughly
cp
−1. We choose as default the “conservative” limit of the useful range, i.e.

a comparatively large cp. The most conservative choice would be cp = 1.

1We ignore the case of denominators being zero, where the respective coefficient α can be
set to any positive number.

RR n° 0123456789

14 Nikolaus Hansen

wi = ln(µ+1)−ln i
µ ln(µ+1)−

∑µ
j=1 ln j

, for i = 1, . . . , µ are the recombination weights. They

(must) sum to one and obey w1 ≥ · · · ≥ wµ ≥ 0. Generally, we choose
µ being half of the overall generated number of solutions per iteration
(before selection).

c1 = αc
0.2

(n+1.3)2+µw
is the learning rate for the rank-one update in line 10 of

AECMA-Update (middle summand), with αc = 1 as default. The denomi-
nator being quadratic in n reflects the degrees of freedom in the encoding
matrix B. The formula is derived as a simplification from the original
formulation in [6].

cµ = αc
0.2 (µw−2 + 1

µw
)

(n+2)2+αµµw
is the learning rate for the rank-µ update (right sum-

mand in line 10), with αc = 1 and αµ = 0.2 as default. With increasing
µw, the learning rate increases and gets close to one.

αc = 1 must be chosen positive and such that c1 + cµ ≤ 1. The default value of
one is about ten times smaller, i.e. considerably more conservative, than
for CMA-ES. Too large values for αc potentially lead to a failure. Too
small values slow down the adaptation. In any case, at least a minimalistic
parameter study for αc is recommended.

The final parameter setting needs to be decided specifically for a given al-
gorithm. We believe that the given guidelines will be usually sufficient to find
good settings with reasonable effort. For AECMA-CSA-ES (meaning CMA-ES),
a good setting works across many objective functions and the identification
needed to be conducted only once on a few simple test functions.

5.2 AECMA Recovers CMA-ES

The CMA-ES implements two separate adaptation mechanisms, one for step-
size control and another for covariance matrix adaptation. Our next application
of AECMA is based on cumulative step-size adaptation (CSA, also denoted as
path length control). The (µ/µw, λ)-CSA-ES is explicated in Algorithm 8. Its
default parameters are

cσ =
µw + 2

n + µw + 3
and dσ = 1 + 2 max

(
0,

√
µw − 1
n + 1

− 1

)
+ cσ . (14)

For applying adaptive encoding, we choose the following encoding for the
state variables in CSA-ES,

TB : (m,pσ, σ) 7→ (Bm,B◦pσ, σ) . (15)

The AECMA-(µ/µw, λ)-CSA-ES applies adaptive encoding according to Algo-
rithm 7, AECMA-Update, to the (µ/µw, λ)-CSA-ES and is given in Algorithm 9.
The µ best (encoded) solutions are used as input to AECMA-Update (line 18 in
Algorithm 9). The encoding TB solely depends on the matrix B, as B◦ can be
computed from B by normalizing its columns to length one.

Theorem 3 (Recovery of CMA-ES). Given TB as in Eq. (15) and the scalars
for Algorithm 7 AECMA-Update in each iteration as given in Proposition 2, then
the AECMA-(µ/µw, λ)-CSA-ES (Algorithm 9) implements the (µ/µw, λ)-CMA-
ES.

INRIA

Adaptive Encoding for Optimization 15

Proof. As in our previous proofs, we assume the same initial state for AECMA-
(µ/µw, λ)-CSA-ES and (µ/µw, λ)-CMA-ES and first consider the sampled and

Algorithm 8: CSA-ES
initialize m ∈ Rn (distribution mean)1

initialize pσ = 0 (evolution path)2

initialize σ > 0 (step-size)3

repeat4

xi = m + σNi (0, I) , for i = 1, . . . , λ5

fi = f(xi) , for i = 1, . . . , λ6

m− = m7

m←
∑µ

i=1 wi xi(f)8

pσ ← (1− cσ)pσ +
√

cσ (2− cσ)µw
1
σ (m−m−)9

σ ← σ exp
(

cσ

dσ

(
‖pσ‖

E‖N(0,I)‖ − 1
))

10

until stopping criterion is met11

Algorithm 9: AECMA-CSA-ES
Shaded lines implement the adaptive encoding, AECMA, including the up-
date of B and B◦. The begin-end block marks the original CSA-ES

initialize m ∈ Rn (distribution mean)1

initialize pσ = 0 (evolution path)2

initialize σ > 0 (step-size)3

initialize B = B◦ = I4

repeat5

m′ = B−1m6

p′σ = B◦Tpσ7

begin8

x′i = m′ + σNi (0, I) , for i = 1, . . . , λ9

f ′i = f(B x′i) , for i = 1, . . . , λ10

m′− = m′
11

m′ ←
∑µ

i=1 wi x′i(f)′12

p′σ ← (1− cσ)p′σ +
√

cσ (2− cσ)µw
1
σ (m′ −m′−)13

σ ← σ exp
(

cσ

dσ

(
‖pσ‖

E‖N(0,I)‖ − 1
))

14

end15

m = Bm′
16

pσ = B◦p′σ17

AECMA-Update({Bx′1, . . . ,Bx′µ})18

until stopping criterion is met19

RR n° 0123456789

16 Nikolaus Hansen

evaluated solutions Bx′i, for i = 1, . . . , λ, in Algorithm 7. We have

Bx′i = B(m′ + σNi (0, I))
= Bm′ + σBNi (0, I)

= m + σNi

(
0,BBT

)
= Ni

(
m, σ2C

)
, (16)

which is the equation for generating new solutions in CMA-ES (Eq. (2) in [6]).
Consequently, the same (encoded) solutions are generated (given respective ran-
dom number realizations) and evaluated in AECMA-CSA-ES and CMA-ES. Also
i(f) = i(f)′ and the corresponding solutions are selected for the remaining up-
dates.

We need to show that AECMA-CSA-ES recovers the update of all five state
variables of CMA-ES, m, pσ, σ, p and C. We treat each variable in turn.

The new mean in AECMA-CSA-ES obeys

mAlg. 9
line 16 = Bm′ = B

µ∑
i=1

wi x′i(f)′ =
µ∑

i=1

wiBx′i(f)′

=
µ∑

i=1

wi xi(f) , (17)

which is the equation for updating the mean in CMA-ES (Eq. (3) in [6]). Next,
we investigate the evolution path for the step-size, starting from line 17.

pσ = B◦p′σ

← B◦
(

(1− cσ) p′σ +
√

cσ (2− cσ)µw
1
σ

(m′ −m′−)
)

= (1− cσ)B◦p′σ +
√

cσ (2− cσ)µw
1
σ

B◦(m′ −m′−)

= (1− cσ)pσ +
√

cσ (2− cσ)µw
1
σ

B◦B−1(m−m−) (18)

We compute the rightmost term to

B◦B−1(m−m−) = B◦(B◦D)−1(m−m−)

= B◦D−1B◦T(m−m−) , (19)

where B = B◦D holds according to Algorithm 7. Equations (18) and (19)
recover the update rule for the evolution path pσ in CMA-ES (Eq. (23) in [6]).

The update of step-size σ computes ‖p′σ‖ = ‖B◦pσ‖. Because B◦ is orthog-
onal we have ‖B◦pσ‖ = ‖pσ‖. Consequently, the step-size update is identical
in AECMA-CSA-ES and CMA-ES.

Finally, completing the proof, p and C are updated in Algorithm AECMA-
Update according to the CMA-ES, see Proposition 2.

Theorem 3 supports the hypothesis that AECMA-Update is an efficient way
to update the representation matrix B, as CMA-ES is known to efficiently
adapt the principle axes of the coordinate system, where the independent sam-
pling takes place. In the next section, another application of AECMA-Update is
sketched.

INRIA

Adaptive Encoding for Optimization 17

5.3 Application of AECMA-Update

The scaling adaptive (µ, λ)-EA, Algorithm 3, samples new solutions without
dependencies between variables in the given coordinate system, because σ is a
diagonal matrix. Rendering the scaling adaptive (µ, λ)-EA coordinate system
independent means that the distribution can reveal correlations with respect to
the given coordinate system (if σ 6= I is not the identity).

For the scaling adaptive (µ, λ)-EA the encoding

TB : (x1, . . . ,xµ, σ, y) 7→ (Bx1, . . . ,Bxµ, σ, y) (20)

suggests itself, where y denotes all further state variables.
The step-size matrix σ is not transformed. An appropriate mapping for a

covariance matrix σ2 7→ Bσ2BT would not preserve the diagonal property. A
transformation of the diagonal of σ with B can lead, by chance, to very small
entries—a very undesirable result for a step-size. Because σ is not encoded, it
is important that changes of B are modest.

A vector r, that denotes a direction rather than a solution point in state
space (as for example a velocity in Particle Swarm Optimization [2]), would
arguably map to Br.

Using B◦ instead of B in Eq. (20) is a possible alternative. Then, the step-
size matrix σ needs to learn the scaling which can be otherwise provided by the
diagonal matrix D.

We experimented using the Cauchy distribution for the random vector Ri

in Algorithm 3 as a rather different example compared to CSA. The adaptive
encoding was successfully applied in this case and made the Baseline (µ, λ)-EA
roughly thousand times faster on proto-typical non-separable problems.

6 Summary and Conclusions

We have outlined an adaptive change of representation in continuous domain
search, denoted as adaptive encoding (AE). The idea is simple: after each iter-
ation step, (i) the algorithms state is “encoded”, (ii) the encoding is adapted,
and (iii) the algorithms state is “decoded” again for the next iteration, using the
updated inverse encoding. Further, candidate solutions are encoded for their
evaluation on the objective function, respectively. The implications from this
simple idea are surprisingly far-reaching.

1. Well-known evolutionary algorithms can be recovered from basic algo-
rithms in that a specific adaptive encoding is applied.

2. The update of the covariance matrix in the CMA-ES can be entirely for-
mulated by adaptive encoding, as adaptation of a representation matrix
B (Proposition 2). The respective update rule is given in AECMA-Update
(Algorithm 7) and can recover the CMA-ES (Theorem 3).

3. Adaptive encoding can be applied to any search algorithm. Consequently,
using the AECMA-Update, the “covariance matrix update” of CMA be-
comes applicable to any continuous domain search algorithm. We antici-
pate successful applications in particular for population based, stochastic
algorithms.

RR n° 0123456789

18 Nikolaus Hansen

References

[1] H.-G. Beyer and H.-P. Schwefel. Evolution strategies: A comprehensive
introduction. Natural Computing, 1(1):3–52, 2002.

[2] M. Clerc and J. Kennedy. The particle swarm-explosion, stability, and con-
vergence in a multidimensional complex space. Evolutionary Computation,
IEEE Transactions on, 6(1):58–73, 2002.

[3] W. Davidon. Variable Metric Method for Minimization. SIAM Journal on
Optimization, 1:1, 1991.

[4] D. Goldfarb. A Family of Variable-Metric Methods Derived by Variational
Means. Mathematics of Computation, 24(109):23–26, 1970.

[5] N. Hansen. Invariance, self-adaptation and correlated mutations in evolu-
tion strategies. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lut-
ton, J. Merelo, and H.-P. Schwefel, editors, Parallel Problem Solving from
Nature—PPSN VI, Proceedings, pages 355–364, Paris, 2000. Springer,
Berlin.

[6] N. Hansen. The CMA evolution strategy: a comparing review. In
J. Lozano, P. Larrañaga, I. Inza, and E. Bengoetxea, editors, Towards
a new evolutionary computation. Advances on estimation of distribution
algorithms, pages 75–102. Springer, 2006.

[7] N. Hansen, F. Gemperle, A. Auger, and P. Koumoutsakos. When do heavy-
tail distributions help? Parallel Problem Solving from Nature-PPSN IX,
4193:62–71, 2006.

[8] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation, 9(2):159–195, 2001.

[9] P. Larrañaga. A review on estimation of distribution algorithms. In
P. Larrañaga and J. Lozano, editors, Estimation of distribution algorithms,
pages 80–90. Kluwer Academic Publishers, 2002.

INRIA

Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université - ZAC des Vignes

4, rue Jacques Monod - 91893 Orsay Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Preliminary Notations and Definitions
	Symbols

	Adaptive Encoding
	Example Applications of Adaptive Encoding
	The Scaling Adaptive Evolutionary Algorithm
	EDA (Estimation of Distribution Algorithm)

	A Universal Update Rule: AECMA
	Choice of Parameters
	AECMA Recovers CMA-ES
	Application of AECMA-Update

	Summary and Conclusions

