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Abstract. In this paper, a statistical method is proposed to evaluate the4

physical properties of surface materials on Mars from hyperspectral images5

collected by the OMEGA instrument aboard the Mars express spacecraft.6

The approach is based on the estimation of the functional relationship F be-7

tween some observed spectra and some physical parameters. To this end, a8

database of synthetic spectra is generated by a physical radiative transfer9

model and used to estimate F . The high dimension of spectra is reduced by10

Gaussian regularized sliced inverse regression (GRSIR) to overcome the curse11

of dimensionality and consequently the sensitivity of the inversion to noise12

(ill-conditioned problems). Compared with other approaches, GRSIR has the13

advantage of being very fast, interpretable and accurate.14
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1. Introduction

Visible and near infrared imaging spectroscopy is a key remote sensing technique used15

to study and monitor planets. It allows the detection, mapping and characterization of16

minerals, as well as volatile species, that often constitute the first step toward the res-17

olution of key climatic and geological issues [Murchie et al., 2007; Bibring et al., 2004a;18

Brown et al., 2004; Carlson et al., 1992]. These tasks are carried out through spectral19

analysis of solar light reflected by the material forming the top few millimeters or cen-20

timeters of the ground. Physical properties of the surface, such as chemical composition,21

granularity, texture, and physical state are some of the most important parameters that22

characterize the morphology of spectra. Modeling the direct link between these parame-23

ters and observable spectra is called the forward problem in classical physics. It can be24

evaluated numerically by radiative transfer models, simulating the propagation of solar25

light through the atmosphere and reflected back to the sensor [Douté et al., 2007b; Hapke,26

2002; Shkuratov et al., 1999; Douté and Schmitt , 1998; Hapke, 1993]. Such a model al-27

lows the simulation of spectra from given values of the model parameters. Conversely,28

deducing the physical model parameters from the observed spectra is called an inverse29

problem. Since it generally cannot be solved analytically, the use of optimization or statis-30

tical methods is necessary. Solving inverse problems requires an adequate understanding31

of the fundamental physics, so that a relation X = G(Y ) may be specified between the32

spectra X and the parameters Y . Given G, different methods can be used to deduce the33

parameters Y from the observation X. Current solutions to the inverse problem can be34
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divided into three main categories (for further details and comparisons, see [Kimes et al.,35

2000; Pragnère et al., 1999]):36

1. Optimization algorithms: These methods minimize an objective function that ex-37

presses the quality of the estimations, and include numerical optimization techniques such38

as Powell’s method, Simplex method and the quasi-Newton method. Estimation can be39

unstable since inverse problems are often ill-posed (solutions are not unique, and a small40

change in the data can lead to large differences in the estimations). A probabilistic for-41

malism can be used to regularize inverse problems by introducing a prior distribution on42

model parameters [Aster et al., 2005; Tarantola, 2005]. These approaches are computa-43

tionally expensive since they independently invert new spectra. Therefore, they cannot44

be used to invert an image with several hundred thousand pixels. Moreover, they can45

sometimes fall into local minima if the objective function is not convex.46

2. Look-up table (LUT) / k-nearest neighbors approach (k-NN): This methodology is47

currently used by physicists to study planetary bodies [Carlson et al., 2005; Philpot et al.,48

2004; Weiss et al., 2000; Douté et al., 2001]. The previous heavy runtime computation49

is replaced by a simpler look-up operation. A large database (LUT) is generated by50

radiative transfer for many parameter values. To invert an hyperspectral image, the51

pixel’s spectrum is then compared with the LUT spectra in order to find the best match52

(the nearest neighbor), according to an objective function minimization. Parameters53

are then deduced from this best match. The speed gain is significant in comparison to54

traditional optimization methods, since retrieving a value from memory is often faster55

than undergoing an expensive computation. The main disadvantages of this approach are56

the multiplicity of solutions and their instability [Bernard-Michel et al., 2007].57
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3. Training approaches: They have been recently considered in the study of terrestrial

vegetation. A functional relationship

Y = F (X) (1)

between spectra and parameters is assumed. This relationship corresponds to the inverse58

of the physical model G in the forward problem. The idea is to use a LUT to estimate the59

underlying mathematical relationship F . This relationship then allow us to estimate the60

parameters of new spectra. The advantage of such a training approach is that, once the61

relationship has been established, it can be used for very large sets and for all new images62

with the same physical model. Among training approaches, neural networks [Hastie et al.,63

2003, chapter 11] or support vector machines (SVM) [Hastie et al., 2003, chapter 12] seem64

promising but the underlying learning process remains time consuming [Combal et al.,65

2002; Durbha et al., 2007; Pragnère et al., 1999].66

Hyperspectral images on planets must be inverted with the following constraints: 1.67

Working with large data-sets and various models require fast methodologies, 2. When68

dealing with very high-dimensional data, one is faced with the ‘curse of dimensionality’69

and the associated sparsity issues and, 3. Observed spectra always contain some noise.70

In this paper, a new training approach is proposed: The Gaussian Regularized Sliced71

Inverse Regression (GRSIR)[Bernard-Michel et al., to appear, 2008]. It is based on a72

dimension reduction technique first proposed by [Li , 1991] and similar to Partial Least73

Squares regression (PLS), [Hastie et al., 2003, chapter 3]. It has the advantage of being74

fast, stable, statistically and physically interpretable, and can also help to select an appro-75

priate look-up table for inversion. For the sake of validation, this approach is compared76

with k-NN, PLS and SVM.77
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In Section 2, real and simulated data-sets are presented, then the principle of GRSIR78

is recalled in Section 3. The choice of an appropriate LUT is discussed in Section 4.79

Experimental results are presented on simulated data-sets in Section 5 and on real Mars80

images in Section 6. Conclusions are drawn in Section 7.81

2. Data

The data-sets used in the next sections can be divided in three categories: The hy-82

perspectral images observed on Mars, a LUT simulated by radiative transfer algorithms83

according to some physical modeling of these images, and test data in order to quantify84

the according of the estimation. All data-sets consist of some spectra X ∈ R
d with as-85

sociated parameters Y ∈ R
p, d being the number of wavelengths and p the number of86

parameters.87

2.1. Hyperspectral images from Mars

The data-sets were collected by the imaging spectrometer OMEGA (Observatoire pour88

la Minéralogie, l’Eau, la Glace et l’Activité) [Bibring et al., 2004a]. OMEGA is one of the89

seven scientific instruments aboard the European spacecraft Mars Express mission, sent to90

orbit Mars in 2003. It was developed by IAS and LESIA (Observatoire de Paris) with the91

support of CNES, and with the participation of IFSI (Italy) and IKI (Russia). This visible92

and infrared instrument can scan most of Mars from orbit in order to observe gas and93

dust in the atmosphere and look for signs of specific materials such as silicates, carbonates94

and ice at the surface. It records the visible and infrared light reflected from the planet95

in the 0.5-5.2 micron wavelength range and with a ground resolution varying from 350 m96

to 10 km. Three OMEGA hyperspectral images acquired during orbits 41, 61 and 10397
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will be used. They cover the high southern latitudes of Mars. The spatial resolution is98

approximately 2km per pixel and 184 wavelengths have been considered in the range 0.95-99

4.15 (i.e. d = 184). For each spectrum of the image, the atmospheric gaseous contribution100

has been removed [Douté et al., 2007b]. After a first analysis, these OMEGA observations101

revealed that the south polar region of Mars exhibits mainly water ice, carbon dioxide ice102

and dust at the surface [Bibring et al., 2004b]. A detailed qualitative mapping of the ice103

during the local summer shows that the permanent bright cap is dominated by superficial104

CO2 ice. Nevertheless, its spectral signature is slightly contaminated by the contribution105

of dust and water ice. Among the possible coexistence modes of the latter components,106

a granular mixture of H2O, CO2 ice and dust is the most appropriate to reproduce the107

morphology of the spectra [Douté et al., 2007a]. This conclusion is based on numerical108

experiments that aimed at reproducing the spectra by different surface reflectance models.109

The permanent polar cap has been mapped by a classification method based on wavelets110

[Schmidt et al., 2007]. For each image, the CO2 ice areas contain about 10000 to 20000111

spectra. The selected model for the polar cap considers the intimate mixture of H2O,112

CO2 ice and dust as an optically thick parallel layer without substantial roughness. The113

transfer of solar photons through such a material is calculated by a modified version of the114

Hapke semi-empirical formulation [Hapke, 2002; Douté and Schmitt , 1998; Hapke, 1993].115

2.2. Look-up table (LUT)

The model implies five spatially varying parameters (i.e. p = 5): the grain size of116

water and CO2 ice, the proportion of water ice, CO2 ice and dust. The proportions are117

normalized to sum to one. The other parameters involved in the physical model, such as118

the incidence and emergence angles or the grain size of dust have been fixed to a constant.119
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Since a priori knowledge on the parameters range is unavailable, the simulation of a large120

look-table (LUT) is necessary. Details of the sampling strategy are provided in Table 1.121

The notation used in this article is as follows: n is the number of simulated spectra122

(n = 31500), xi ∈ R
184 denotes a spectrum from the LUT and yi ∈ R

5 its associated123

parameters, where i ∈ {1, . . . , n}.124

2.3. Test data

For validation and comparison, the use of a test data-set (Tdata) is required. Since125

no ground truth is currently available for the physical properties of Mars polar regions,126

we can only rely on synthetic data. The same physical model is used to simulate the127

LUT and Tdata. The range of variation for the parameter is detailed in Table 1. To128

emulate real data, a zero mean multiGaussian noise of dimension 184 is added to all the129

spectra of the test data-set. The covariance matrix is determined experimentally from130

a small, spatially homogeneous, portion of the real image. Assuming that much of the131

variability comes from the noise, the latter is then evaluated using statistics based on a132

shift difference on the selected portion. As in the previous section, nT is the number of133

simulated test spectra (nT = 3500), xT
i is a spectrum from Tdata and yT

i its associated134

parameters, where i ∈ {1, . . . , nT}.135

3. Proposed approach

Our goal is to estimate the functional relationship F between the spectra X ∈ R
d

136

and each physical parameter Y j = F (X) ∈ R with j ∈ {1, . . . , p}. In this work, each137

parameter is studied individually, therefore p = 1 and j will be omitted for the sake of138

simplicity. The originality of the methodology is to split the difficult problem of learning139
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a d-variate function into two sub-problems that can be easily solved. First, a dimension140

reduction technique is applied (Section 3.1). Then, estimation is performed in the lower141

dimensional subspace (Section 3.2).142

3.1. Dimension reduction step: Gaussian regularized sliced inverse regression

Dimension reduction methods rely on the assumption that the predictor X can be143

replaced, without loss of information, by its projection onto a subspace of smaller dimen-144

sion L, called the effective dimension reduction space (EDR). The basis of the subspace145

is denoted β1, . . . , βL and the functional relationship Y = F (X) can be rewritten as146

Y = f(βt
1X, . . . , βt

LX), where f is now a L-variate function. In most applications, L is147

smaller than 3 making the estimation of f tractable.148

Principal Component Analysis (PCA) is a classical approach to reduce the dimen-

sion [Hastie et al., 2003, chapter 14]. The basic concept of PCA is to define the orthogonal

projection of the spectra onto a lower dimensional linear space such that the total vari-

ance of the projected spectra is maximized. It amounts to diagonalization of the spectra

covariance matrix

Σ =
1

n

n
∑

i=1

(xi − x̄)(xi − x̄)t where x̄ =
1

n

n
∑

i=1

xi, (2)

or equivalently to calculation of the eigenvectors of Σ. However, in regression problems149

PCA is generally not satisfactory since only the explanatory variable X is considered150

while the dependent variable Y is not taken into account. Specific dimension reduction151

techniques have been developed for regression problems, such as PLS and Sliced Inverse152

Regression (SIR) [Li , 1991]. SIR consists of sorting the parameter values in increasing153

order and dividing them into H non-overlapping slices Sh, h ∈ {1, . . . , H}. For each slice154
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Sh, a mean spectrum mh is calculated as the mean value of the parameter values that155

are varying in the slice. The orthogonal projection of the mean spectra onto a lower156

dimensional linear space is defined so that the variance of the projected mean spectra is157

maximized under the constraint that the total projected variance is one. This is equivalent158

to diagonalization of Σ−1Γ , where Γ is the mean spectra covariance matrix given in159

equation (3). The SIR principle is illustrated in Figure 1.160

Since inverse problems are generally ill-posed [Aster et al., 2005; Tarantola, 2005], Σ161

is ill-conditioned, making its inversion difficult. To solve this problem, it is proposed to162

compute a Gaussian Regularized version of Sliced Inverse Regression (GRSIR). Theoret-163

ical foundations can be found in [Bernard-Michel et al., to appear, 2008]. The concept of164

this method is to include some prior information on the projections in order to dampen165

the effect of noise in the input data. The ill-posed problem is then replaced by a slightly166

perturbed well-posed problem that depends on a regularization parameter δ. There-167

fore, GRSIR computes the L eigenvectors corresponding to the L largest eigenvalues of168

(Σ2 + δIp)
−1ΣΓ where Ip is the d × d identity matrix. In practice, GRSIR then requires169

the three following computational steps:170

Step 1: Sort yi, i ∈ {1, . . . , n} into increasing order and divide into H non-overlapping171

slices Sh, h = 1, . . . , H . If the LUT has been simulated for random values of Y , then172

slices are chosen such that each slice contains the same number of observations. If the173

LUT has been simulated for a fixed number of distinct parameters, the slices are chosen174

to coincide with these discrete values.175
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Step 2: Compute the ”between slices” covariance matrix of the means:

Γ =
H

∑

h=1

nh

n
(mh − x̄)(mh − x̄)t with mh =

1

nh

∑

yi∈Sh

xi, (3)

where nh denotes the number of observations in the slice Sh.176

Step 3: Estimate the GRSIR axes β1(δ), . . . , βL(δ) by computing the eigenvectors of177

(Σ2 + δIp)
−1ΣΓ. The first GRSIR axis, β1(δ), is determined by the eigenvector corre-178

sponding to the largest eigenvalue, the second GRSIR axis, β2(δ), is determined by the179

eigenvector corresponding to the second largest eigenvalue, and so on.180

In Section 5.4, a criterion to choose the dimension L is given. Interestingly, the first axis181

can be viewed as a weighted function of the wavelengths, giving some knowledge about182

the wavelengths that carry information on the parameter (Section 5.5). The projections183

of the spectra on the axis β1(δ) is termed ”reduced spectra”.184

3.2. Estimation of the functional relationship

One the spectra have been reduced, the relationship f has to be estimated. In the185

proposed approach, a piecewise linear interpolation is performed on the set of data points186

(mproj
h , m

param
h ), h = 1, . . . , H , where m

proj
h = 〈xi, β1(δ)〉 denotes the average of the pro-187

jection of the spectra xi, yi ∈ Sh for slice Sh and m
param
h = 1

nh

∑

yi∈Sh
yi denotes the188

average parameter value for slice Sh.189

For each new spectrum x with a projection t = 〈β1(δ), x〉, the estimated parameter

value ŷ is then given by:

ŷ =























m
param
1 if t ∈

]

−∞, m
proj
1

]

m
param
h + (t − m

proj
h )

(

m
param

h+1
−m

param

h

m
proj

h+1
−m

proj

h

)

if t ∈
]

m
proj
h , m

proj
h+1

]

, h = 1, . . . , H

m
param
H if t ∈

]

m
proj
H , +∞

[

(4)
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An example of the application of GRSIR to the LUT is given in Figure 1. It shows the190

relationship between reduced spectra and the grain size of CO2 ice and its estimation by191

a piecewise linear interpolation.192

4. Choice of the Look-up table

In the simulated LUT, many spectra could be superfluous to the proper estimation of the193

parameters. For instance, considering Tdata, spectra with parameter values not included194

in the Tdata’s parameter range should be removed from the LUT. Better estimations195

can be obtained with the reduced LUT [Bernard-Michel et al., 2007]. The difficulty is196

that, in practical cases, the range of variation of the parameters is unknown. A good197

strategy is to assumed a large LUT and to reduce it after the first estimation. However,198

the effectiveness of this technique in practical situations depends strongly on the quality199

of the first estimation.200

In this paper, another approach is proposed that makes use of PCA to visualize the201

adequacy of the chosen LUT for a given set of observed spectra. The parameters of the202

observed spectra can be estimated only if their projections onto the first m PCA axes203

(deduced from the application of PCA to the LUT), coincides with the projection of the204

LUT itself. Conversely, to select the most appropriate spectra from the LUT for inversion,205

the strategy is to retain spectra from the LUT whose projections onto the PCA axes are206

close to projections of the spectra from the observed image (see Figure 2.(A)). In the space207

spanned by the first m PCA axes, the distance between each projected LUT spectrum208

and its nearest neighbor from the projected spectra is computed. The histogram of these209

distances is considered as a mixture of nc Gaussian densities N (µi, Σi) characterized by210

the proportions of the mixture πi, i ∈ {1, . . . , nc}, the expectation µi and the covariance211
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matrix Σi of each class i, i ∈ {1, . . . , nc}. The number of classes is chosen by the user, and212

the parameters can be estimated by the Expectation-Maximization algorithm (EM) after213

random or by the K-means initialization (for further details about mixture models and214

EM, see Hastie et al. [see 2003, Sections 6.8 and 8.5]). The algorithm is a simple iterative215

optimization process for computing the maximum likelihood estimate of the parameters.216

One can then calculate and maximize the posterior probability that a spectrum belongs to217

a particular class by observing the aforementioned distances. This leads to a classification218

of the spectra into nc classes: The class of LUT spectra that are far from the observed219

spectra, and those that are close. An example is given in Figure 2.(C) with the image220

observed from orbit 41. The histogram allows us to distinguish 3 classes. The third class221

corresponds well to spectra that belongs to both LUT and observed data.222

Note that in Figure 2.(B) some of the observed spectra are outside the projected LUT.223

Since the chosen physical model is not relevant to them, these spectra are removed from the224

observed data. Hence, in the PCA space, the histogram of the distance of each observed225

spectrum with its nearest neighbor in the selected sub-LUT facilitates the distinction226

of two classes: The invertible spectra and the non invertible ones (Figure 2.(D)). The227

non invertible spectra from orbit 41 correspond to pixels at the boundary of the CO2228

bright area and thus to pixels with a linear geographical mixture of terrains. Thus, the229

physical model used to simulate the data is not valid. Other examples can be found in230

the work of Bernard-Michel et al. [2007]. Experimental results in the next section show231

that estimations are more accurate when applying such a selection.232
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5. Analyzing results on simulations

In this section, the competing methods are first presented. Then, the validation criteria233

and the parameters selection are detailed. Finally results on simulated data-sets are given.234

5.1. Competing methods

k-NN: From the LUT one finds the k nearest spectra and fixes the estimated y as the235

mean parameter value of k nearest spectra parameter. The distance between two spectra236

is taken as the Euclidean distance: ‖o − xi‖2, where o is a spectrum from the image and237

xi a spectrum from the LUT. In the experiments, k is fixed to one, so only one neighbor238

is used for the estimation.239

Partial Least Squares regression: The PLS method is closely related to PCA (or-240

thogonal projection onto lower dimensional space) and GRSIR (y is accounted for). PLS241

searches for the projection of the explanatory variable x onto a lower dimensional space242

that maximizes the covariance between x and y: max
β

cov2
(

y, βtx
)

. PLS is parametrized243

by the size L of the subspace spanned by β. The regression in the subspace is necessarily244

linear and may limit the efficiency of the method if a non linear relationship exists between245

x and y.246

Support Vector Machines regression: SVM approximates the functional F :247

y = F (x) using a solution of the form F (x) =
∑n

i=1
αiK(x, xi) + b, where xi are sam-248

ples from the training set, K a kernel function and
(

(αi)
n
i=1, b

)

are the parameters of249

F which are estimated during the training process [Scholkopf and Smola, 2002]. The250

kernel K is used to produce a non-linear function. One widely used kernel is the Gaus-251

sian Kernel : K(xi, xj) = exp (−γ‖xi − xj‖2). The SVM training entails minimization of252

[

1

n

∑ℓ

i=1
l
(

F (xi), yi

)

+ λ‖F‖2
]

with respect to
(

(αi)
n
i=1, b

)

, and with l
(

F (x), y
)

= 0 if253

D R A F T November 6, 2008, 2:58pm D R A F T



BERNARD-MICHEL ET AL.: RETRIEVAL OF MARS SURFACE PHYSICAL PROPERTIES X - 15

|F (x)− y| ≤ ǫ and |F (x)− y| − ǫ otherwise. Prior to running the algorithm, the following254

parameters need to be fitted: ǫ which controls the resolution of the estimation, λ which255

controls the smoothness of the solution and the kernel parameters (γ for the Gaussian256

kernel).257

5.2. Validation criteria

To assess the relevance of GRSIR methodology, two aspects of the estimation were258

investigated: The accuracy of the estimates and the quality of the relationship between259

the reduced spectra and the parameters. To this end, two validation criteria were used260

1. The Normalized Root Mean Square Errors (NRMSE):

NRMSE =

√

√

√

√

√

√

√

nT
∑

i=1

(ŷi
T − yT

i )2

nT
∑

i=1

(yi
T − yT )2

with yT =
1

nT

nT
∑

i=1

yT
i (5)

The NRMSE quantifies the difference between the estimations ŷT
i and the real values261

yT
i . This measure is normalized enabling direct comparisons between several parameter262

estimations. The closer NRMSE is to zero, the more accurate are the predicted values.263

2. The SIR Criterion (SIRC)

SIRC =
βt

ℓ(δ)Γβℓ(δ)

βt
ℓ(δ)Σβℓ(δ)

(6)

The SIRC is the ratio between the ”between-slices” variance βt
ℓ(δ)Γβℓ(δ) of the projections264

of xi, i ∈ {1, . . . , n} on βℓ(δ) and the total variance βt
ℓ(δ)Σβℓ(δ) of these same projections.265

It quantifies the quality of the relationship between projected spectra and parameters.266

The closer SIRC is to 1, the better is the relationship.267
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5.3. Choice of the parameters

For GRSIR, the quality of the estimation ŷi
T depends on a regularization parameter δ268

(see Section 3.1). When δ increases, the functional relationship between projected spectra269

and parameters gets worse and consequently estimation errors increase. On the contrary, if270

δ is too small, then the estimation errors are considerable in the presence of noise because271

the problem is ill-posed. So, the choice of δ dictates to a compromise between improv-272

ing the functional relationship and increasing estimation accuracies by regularization. In273

this article, δ is chosen for each parameter individually, the NRMSE criterion calculated274

between the parameter values from a validation data and their estimations is minimized.275

The validation data is the look-up table itself, perturbed by multiGaussian noise rep-276

resentative of that affecting the OMEGA hyperspectral images (see Section 2.3). It is277

noted that, if there is no noise in the data, i.e. if the observed data exactly corresponds278

to spectra that could be simulated by radiative transfer model, then no regularization is279

required, and minimizing the NRMSE criterion for GRSIR yields a value δ close to zero.280

For k-NN, since k is fixed to one, no parameter tuning is required. For PLS, the281

dimension L of the subspace is chosen to minimize the NRMSE on the validation set. For282

SVM, three parameters are fixed. ǫ is fixed to 0.01, while λ and γ are selected to minimize283

the NRMSE on the validation set. As it is typically done with SVM, the range of each284

component of Y has been stretched between 0 and 1 for the regression.285

5.4. Choice of the EDR dimension

In order to choose the EDR dimension, the SIRC is calculated for each GRSIR axis286

βℓ(δ) with ℓ ∈ {1, . . . , d}. As ℓ increases, the SIRC decreases rapidly and is almost zero287

after a few iterations. For instance, when applying GRSIR to the LUT, the SIRC for the288
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proportion of CO2 ice on the first GRSIR axis is 0.985. It indicates that the relationship289

of interest is captured by the first axis. Calculated the second axis, the SIRC drops to290

0.1799 and then is close to zero for other axes. In this case, one can consider incorporating291

these axes in the regression step does not bring extra information and is unnecessary, and292

finally fixes the EDR dimension to one. Analyzing the SIRC over all parameters and two293

different physical models reveals that in most situations only one dimension is necessary294

to retrieve the model parameters. Hence, in this article L is fitted to one.295

5.5. Analyzing the GRSIR axis

The spectral variability of the xi constituting the LUT arises from a complex interplay296

of the different input parameters yi of the model. In particular, two parameters can have297

a similar influence on the spectra for a certain range of values. Consequently, it is crucial298

to understand how the GRSIR method can untangle the dependencies in order to find an299

independent one-to-one functional relationship between spectra and parameters. Accord-300

ingly, attempt to correlate each axis β1(δ) (which is a vector of spectral weights) with the301

variability induced by the variation of the corresponding physical parameter. The other302

parameters are kept constant at mean values. The weights are individually applied to303

different levels of reflectance, depending on the associated wavelength, to calculate the304

reduced spectrum βt
1(δ)xi. Hence, we find it more illustrative to represent the compo-305

nent wise multiplication (wavelength by wavelength) of each axis with a representative306

spectrum. An illustration is given in Figure 3 for the grain size of CO2 ice. Our analysis307

shows that the axis for H2O abundance, dust abundance, and grain size of CO2 ice are308

quite similar. A strong weight is assigned to 1.43 micron wavelength (the bottom of a309

very reliable and narrow CO2 ice absorption band) and, to a lesser extent, to the interval310
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between 1.47 and 1.54 microns (H2O ice feature), and wavelengths of 1.87 and 2.29 mi-311

crons (weak CO2 ice bands but very distinct). The three axes also show differences that312

allow differentiation between the functional relationships. A relatively strong weight at313

2.38 microns on the right wing of the 2.34 micron band is a specificity of the proportion314

of water ice. The axis for the proportion of dust stresses very much the variation of the315

spectrum continuum around 1 micron and 1.77 micron that indeed strongly changes with316

dust concentration. No other parameter affects the continuum as much. The axis for the317

grain size of CO2 ice maximizes the influence of the small plateau at 2.62 microns that318

varies very much with the latter parameter. The axis that is linked to H2O grain size319

is unique in the fact that it emphasizes, on the one hand, the continuum level around 1320

micron, but not around 1.75 microns and, on the other hand, the entire spectral range321

between 2.35 and 2.65 microns. The main conclusions that can be drawn from this study322

are that, at least for the model presented in this paper, the GRSIR method has the abil-323

ity to find a unique set of wavelengths where the variability of the spectrum is the most324

pertinent (but not necessary the highest) for the evaluation of a given parameter. One325

must note that these key wavelengths not only fall on the bottom of specific absorption326

bands for both H2O and CO2 ices but also on specific parts of the continuum as well as327

on specific band wings.328

5.6. Results

In this section, the experimental results are compared in terms of the NRMSE and329

SIRC (Table 2), and also with scatter plots of real and estimated parameters (Figure 4).330

Except for k-NN, a spectra selection in the look-up table was performed before applying331

the different algorithms, as mentioned in Section 4.332
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From Table 2, it is clear that the worst results are obtained with k-NN. GRSIR outper-333

forms k-NN and PLS for most parameters. Problems with the estimation of the grain size334

of water ice may be due to the fact that not enough values are considered for simulations335

in the LUT (only 5). SVM provides the best estimation in terms of the NRMSE, but with336

a dramatic increase in processing time: Approximately 15 hours against about 1 minute337

versus k-NN or GRSIR.338

Figure 4 shows the scatter plot of the estimated proportions of CO2 ice with each method339

versus the real proportions. It appears that the range of the estimated proportions of340

CO2 ice is much larger with k-NN than with GRSIR, PLS and SVM. PLS’s scatter plot341

is slightly curved: PLS could not handle the non linear relationship between X and Y ,342

while GRSIR was able to model it.343

It is interesting to point out that GRSIR, as a first step, can determine the ranges the344

parameters of an observed image are varying. Then, a more appropriate LUT can be345

built in the estimated ranges with a higher density of parameter values. Applying GRSIR346

with this new extracted LUT leads to more accurate estimations comparable to SVM, see347

Table 3. Finally, the SIRC, always close to 1, is very satisfying. The PLS benefits from348

the new LUT while the SVM does not. However, for the SVM , the processing time is349

decreased since the number of samples in the LUT is reduced.350

6. Retrieval of the physical parameters for the south polar cap of Mars

This section summarizes the first model inversions obtained by the different algorithms351

for hyperspectral images acquired by OMEGA during orbits 61, 103 and 41 (see Section352

2). The study of these images leads to 30 different maps. All the maps can be found353

in [Bernard-Michel et al., 2007]. For brevity, only some are reported in the article.354

D R A F T November 6, 2008, 2:58pm D R A F T



X - 20 BERNARD-MICHEL ET AL.: RETRIEVAL OF MARS SURFACE PHYSICAL PROPERTIES

The model inversion on the image observed from orbit 103 by GRSIR, PLS, SVM and k-355

NN shows that GRSIR and SVM give very smooth mappings for all sets of parameters. An356

example is given in Figure 5, where it appears that the proportion of dust is nearly always357

estimated at 0.0003 with k-NN, whereas with GRSIR and SVM, the map is more detailed.358

Some problems are encountered, with PLS: Negative values are estimated, making the map359

difficult to interpret.360

Figure 6 shows the proportion of dust estimated by the different algorithms on the361

portion of the polar cap observed during orbit 41. With k-NN, estimations now assume 8362

different values and seem to indicate that, at the very center of the bright cap, little dust is363

observed. The abundance of dust increases significantly with proximity to the boundaries.364

The estimated map with GRSIR is more detailed and leads to slightly different conclusions.365

In particular, the area presenting a poor proportion of dust is more extended than with366

k-NN. Nevertheless if, globally, maps are much smoother and detailed with GRSIR, they367

never differ entirely from k-NN’s.368

Another interesting remark concerns the estimation of parameters in images 61 and369

103 that represent approximately the same portion of the polar cap. The analysis should370

consequently give close estimations for each studied parameter regardless of the method.371

Figure 7 shows the distribution of CO2 grain size values obtained respectively by GRSIR,372

PLS on the left side (A) and SVM, k-NN on the right side (B) for both observations.373

Figure 8 focuses on the distribution of the estimated proportion of water and dust and374

on the distribution of the estimated grain size of water and CO2 with GRSIR and SVM.375

First we consider the evolution of these histograms between observations 61 and 103 for376

a given method. For CO2 grain size and, to a lesser extent for H2O grain size, a shift in377
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the distribution of values can be noted that is increasing when using GRSIR, then SVM,378

and finally k-NN. The histograms of abundances for H2O ice and dust are relatively stable379

between 61 and 103 with SVM and GRSIR. The abundance for CO2 ice would present a380

similar behavior since it is fully constrained (sum of abundances equals 1).381

Second we note that the distributions of parameter values obtained by SVM are always382

shifted between to observation. The shift is always noticeable, sometimes considerable,383

and in addition systematically positive.384

We explain these facts as follows. Observations 61 and 103 were acquired approximately385

12 Mars days apart during a period of the year when the solar illumination was declining386

over the south pole. The conjugated effect of an increasingly grazing illumination over a387

slightly dusty atmosphere diminishes the spectral contrast of the observations, i.e. the388

overall level of reflectance of the spectra and on the CO2 ice bands intensity and shape.389

This is very much comparable to the introduction of noise in a relative sense between390

observations 61 and 103. Since our remote sensing problem is partly ill-conditioned, a391

non regularized inversion method such as the k-NN will be much more sensitive to this392

noise than a regularized one such as the GRSIR or SVM. Even though regularization393

is thus applied to SVM, we note degraded performance when compared to GRSIR. For394

both methods, the estimation of the optimal value for the regularization parameter δ or395

λ is sensitive to the noise statistics applied to Tdata. In turn, this value determines the396

estimation of Y . As a consequence, uncertainties on the noise statistics propagate to bias397

on the estimation. We suspect that the choice of λ is less robust in the case of SVM than398

the choice of δ in the case of GRSIR.399
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Finally, for the sake of validation, the estimated maps are compared with the Wavan-400

glet approach developed in [Schmidt et al., 2007]. ”Wavanglet” is a supervised automatic401

detection method that identifies in hyperspectral images spectral features and thus pro-402

duces distribution maps of chemical compounds. It uses three steps: 1. Selection of a403

library composed of reference spectra (the signature of the compounds to be detected); 2.404

Application of a Daubechies wavelet transform to referenced spectra and determination405

of the wavelet subspace that best separates all referenced spectra; 3. In this selected406

subspace, calculation of the spectral angle between each spectrum of an observation and407

a given reference spectrum. In particular, this angle called the wavanglet angle, allows to408

quantify in a relative sense the spatial variations of the different compound abundances409

at the surface. The cosine of the wavanglet angle between each spectrum of the images410

and a reference spectrum of martian dust is presented Figure 9 . The closer it is to one,411

the greater the dust proportion is. A similar map is observed for the water proportion.412

Globally, estimates of the latter quantities are more noisy with wavanglet than with GR-413

SIR and k-NN, especially for the dust proportion but they generally are in agreement414

with some exceptions. For example, in the image observed during orbit 103, k-NN, SVM,415

PLS and wavanglet methodologies display an area with strong proportion of dust in the416

lower right part of Figure 9(B), that is absent with GRSIR. In order to check if this area417

really contains more dust than other areas, the spectrum denoted by A in Figure 9 is418

selected, corresponding to the greatest proportion of dust, and compared to two other419

spectra from the cap. The first spectrum (B) has been chosen in a pure CO2 area with420

very few dust. The second one (C) has been chosen in a area containing dust. According421

to k-NN, SVM, PLS and wavanglet results, this area should however contain less dust422
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than the area containing spectrum A. The spectra A, B and C are presented in Figure 10.423

One can see that, as expected, the spectrum B is really different from the spectrum A.424

On the other hand, spectra A and C are really similar showing that the area of interest425

does not contain as much dust as the wavanglet methodology predicts. On the contrary,426

estimations given by GRSIR are more coherent with this spectral analysis.427

7. Conclusion

In this paper, a regularized version of Sliced Inverse Regression has been proposed to428

retrieve the physical parameters that best explain the spectra observed on Mars by the429

OMEGA imaging-spectrometer.430

Results on simulations are promising, showing that estimations are accurate and most431

of the time better than the ones given by the k-nearest neighbors algorithm or PLS and432

close to those given by SVM. On a real data, maps are much smoother than with k-NN433

or PLS and seem to give a coherent mapping by comparison to the inversion of different434

hyperspectral images of the same portion of surface of Mars. If best results in terms435

of the NRMSE were obtained with SVM, the latter presents two drawbacks. First, the436

choice of the regularization parameter is less robust and, second, the processing time is437

900 times more than GRSIR, thus making GRSIR approach more suitable for practical438

situations. The inversion of each new observed spectrum is really fast as well as the439

selection of regularization parameter. The main limitation of the proposed approach is440

that currently no uncertainties of the estimations are given when inverting a real image.441

Experimental uncertainties could be computed based on simulations, but it supposes that442

the noise in the spectra has been well evaluated. If not, uncertainties will probably be443

underestimated. Some improvements could also be proposed to choose the regularization444
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parameter and a more complete analysis of the influence of the noise in the GRSIR445

methodology would be interesting. Finally, the development of a multivariate regularized446

GRSIR under constraint is conceivable in order to estimate proportions simultaneously.447
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Table 1. Sampling strategy for the simulation of the look-up table. The range of variation

is given for each varying parameter as well as the number of distinct values simulated. The

increment between two values is constant.

Parameters Look-up table Test data

range # distinct values range

Proportion of water [0.0001 0.0029] 15 [0.0006 0.002]
Proportion of CO2 [0.9942 0.9998] 29 [0.996 0.9988]
Proportion of dust [0.0001 0.0029] 15 [0.0006 0.002]
Grain size of water [50 450] 5 [100 400 ]
Grain size of CO2 [30000 165000] 28 [40000 105000]

Table 2. Validation criteria calculated on Tdata with GRSIR, k-NN, PLS and SVM. Note

that the emphasized proportion has been fixed such that the sum of the proportions is one. For

k-NN inversion the LUT contains 31500 spectra. For other methods, the LUT after selection

contains 15407 spectra.

Parameters k-NN PLS SVM GRSIR

NRMSE NRMSE NRMSE NRMSE SIRC

Proportion of water 0.86 0.52 0.17 0.40 0.90
Proportion of CO2 0.88 0.56 0.18 0.30 0.98
Proportion of dust 0.44 0.36 0.11 0.17 0.99
Grain size of water 0.43 0.44 0.17 0.54 0.84
Grain size of CO2 0.53 0.47 0.14 0.22 0.95
CPU time 60s 181s 54,992s 58s

Table 3. Validation criteria calculated on Tdata with GRSIR, PLS and SVM. The 3584

spectra that constitute the look-up table have been selected after a first inversion by GRSIR.

Parameters PLS SVM GRSIR
NRMSE NRMSE NRMSE SIRC

Proportion of water 0.35 0.18 0.27 0.92
Proportion of CO2 0.32 0.17 0.22 0.99
Proportion of dust 0.23 0.13 0.13 0.99
Grain size of water 0.45 0.23 0.39 0.92
Grain size of CO2 0.28 0.15 0.19 0.98
CPU time 832s 2,750s 19s
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Figure 1. Functional relationship between reduced spectra on the first GRSIR axis and

the grain size of CO2 ice. This graphics illustrates the GRSIR methodology showing that the

relationship is the best when the within slice variance is minimized or equivalently when the

between slice variance is maximized. X-axis: reduced spectra from the learning database on the

first GRSIR axis. Y-axis: Grain size of CO2 ice.
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Figure 2. Selection of the useful spectra in the look-up table and of the invertible spectra

in the observed data. A: Selection of a look-up table. Projections of the observed spectra from

orbit 41 and the look-up table on the 2 first PCA axes (PCA applied to the look-up table). 3

classes are identified. The third class is the retained look-up table. B: Selection of invertible

spectra in the image from orbit 41. The second class is retained for inversion. C: Histogram of

the distances between each spectrum of the look-up table and its nearest neighbor in the image

from orbit 41. D: Histogram of the distances between each spectrum of the image from orbit 41

and its nearest neighbor in the selected sub-look-up table.
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Figure 3. Plain line: Series of spectra extracted from the look-up table for CO2 ice grain

size varying between 30 and 165 millimeters, the other parameters being kept constant at mean

values. Dotted-dash line: Component wise multiplication between GRSIR axis for the grain size

of CO2 ice and a representative spectrum (see Section 5.5).
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Figure 4. Scatter plots of the proportion of CO2 ice from the test data versus estimated

values. Horizontally: Proportion of CO2 ice. Vertically: Estimated proportions of CO2 ice by

k-NN, GRSIR, PLS and SVM.
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Figure 5. Proportion of dust estimated by k-NN (A), GRSIR (B), PLS (C) and SVM (D)

from the hyperspectral image observed from orbit 103.
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Figure 6. Proportion of dust estimated by k-NN (A), GRSIR (B), PLS (C) and SVM (D)

from the hyperspectral image observed from orbit 41.
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Figure 7. Comparison between the densities of the estimated grain sizes of CO2 ice with PLS

and GRSIR (A) and k-NN and SVM (B) in images from orbit 61 and 103.
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Figure 8. Distribution of values obtained for all parameters respectively by GRSIR and SVM

for observations 61 and 103.
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Figure 9. Cosines of the Wavanglet angle between the observed spectra and a reference

spectrum of martian dust for the hyperspectral images acquired during orbit 41 (A) and during

orbit 103 (B).
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Figure 10. Spectra extracted from the locations labeled A, B and C in the image 103 of figure

9 (B).
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