
HAL Id: inria-00276216
https://inria.hal.science/inria-00276216

Submitted on 21 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Method for Handling Uncertainty in Evolutionary
Optimization with an Application to Feedback Control

of Combustion
Nikolaus Hansen, Andre S.P. Niederberger, Lino Guzzella, Petros

Koumoutsakos

To cite this version:
Nikolaus Hansen, Andre S.P. Niederberger, Lino Guzzella, Petros Koumoutsakos. A Method for Han-
dling Uncertainty in Evolutionary Optimization with an Application to Feedback Control of Combus-
tion. IEEE Transactions on Evolutionary Computation, 2009. �inria-00276216�

https://inria.hal.science/inria-00276216
https://hal.archives-ouvertes.fr

PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

A Method for Handling Uncertainty in Evolutionary
Optimization with an Application to Feedback

Control of Combustion
Nikolaus Hansen, André S.P. Niederberger, Lino Guzzella, and Petros Koumoutsakos

Abstract— We present a novel method for handling uncertainty
in evolutionary optimization. The method entails quantification
and treatment of uncertainty and relies on the rank based
selection operator of evolutionary algorithms. The proposed
uncertainty handling is implemented in the context of the Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES) and
verified on test functions. The present method is independent of
the uncertainty distribution, prevents premature convergence of
the evolution strategy and is well suited for online optimization as
it requires only a small number of additional function evaluations.
The algorithm is applied in an experimental set-up to the
online optimization of feedback controllers of thermoacoustic
instabilities of gas turbine combustors. In order to mitigate these
instabilities, gain-delay or model-based H∞ controllers sense the
pressure and command secondary fuel injectors. The parameters
of these controllers are usually specified via a trial and error
procedure. We demonstrate that their online optimization with
the proposed methodology enhances, in an automated fashion, the
online performance of the controllers, even under highly unsteady
operating conditions, and it also compensates for uncertainties
in the model-building and design process.

I. INTRODUCTION

Environmental considerations impose stringent emission
regulations for modern gas turbines. These requirements dic-
tate the development of lean premixed combustion systems
operating with excess air to lower the combustion temperature
and decrease the NOx emission levels [37]. In turn, the
operation of the combustor in the lean regime makes it prone
to thermoacoustic instabilities that may cause mechanical dam-
age, energy losses by heat transfer to walls and increased noise
and pollutant emissions. Thermoacoustic instabilities arise due
to a feedback loop between pressure fluctuations, flow velocity
and heat release. Active control is a prevalent method to reduce
thermoacoustic instabilities [38], [21]. In active control of gas
turbine combustors a feedback controller receives input from
pressure sensors and commands a secondary fuel injection.
The adjustment of the controller parameters into a feasible
working regime can be formulated as an optimization prob-
lem distinguished by two important factors: The stochastic
nature of the combustion process introduces uncertainty in the
computation of the objective function value while the unsteady
operating conditions require the online tuning of the controller
parameters.

A.S.P. Niederberger and L. Guzzella are with the Measurement and Control
Laboratory

N. Hansen and P. Koumoutsakos are with the Institute of Computational
Science

Evolutionary Algorithms (EAs) are intrinsically robust to
uncertainties present in the evaluation of the objective function
due to the implementation of a population [5], [11]. In order to
improve their robustness to uncertainty two common methods
are available. First, the implementation of larger population
size most often increases the robustness to uncertainty [6],
[32]. Second, multiple objective function evaluations can be
conducted for each population member and the objective
function is usually represented by the mean value. Both ap-
proaches however increase the number of function evaluations
per generation typically by a factor between three and 100.
Hence the large number of required function evaluations makes
the methods prohibitively expensive for applications requiring
an online optimization.

In this paper we propose an alternative approach to enhance
the capabilities of EAs for online optimization under uncer-
tainties. We develop a novel uncertainty handling algorithm
and, motivated by the combustion problem, we demonstrate
its effectiveness in the online optimization of a Gain-Delay
and an H∞ controller of an experimental combustor test-rig
using the CMA evolution strategy. The uncertainty handling
method distinguishes uncertainty measurement and uncertainty
treatment. The uncertainty is measured by rank changes among
members of a population. This quantification of uncertainty is
well suited for any ranking-based search algorithm. It requires
only a few additional function evaluations per generation, and
does not rely on an underlying uncertainty distribution. The
uncertainty measurement is combined with two treatments for
high uncertainty levels to prevent the failure of the algorithm.
The uncertainty treatments aim to ensure that the signal-to-
noise ratio remains large enough to maintain the effectiveness
of the evolutionary optimization algorithm.

The paper is organized as follows: In Section II the test rig,
built at ETH Zurich, is presented. We cast the optimization
of the controller parameters as an optimization problem under
uncertainties and we discuss previous work. We address the
problem of thermoacoustic instabilities for gas combustors and
introduce their handling by active control strategies. Section III
addresses evolutionary optimization under uncertainties. In
Section IV the uncertainty handling method is introduced and
combined with the CMA evolution strategy. Section V presents
the verification of the algorithm on test functions. Section VI
reports experiments on the test rig with the different controller
structures for two operating conditions. The paper concludes
with a Summary and Outlook in Section VII.

PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

II. ACTIVE CONTROL OF COMBUSTION INSTABILITIES IN
AN EXPERIMENTAL TEST RIG

In the following we describe the ETHZ combustor test
rig where online optimization of controller parameters is
performed and review the common controller techniques.

A. Experimental set-up of the ETHZ combustor test rig

A schematic illustration of the test rig built at ETH Zurich
is shown in Fig. 1. Preheated air premixed with natural gas
flows through mixers and flow straighteners into an upstream
plenum chamber duct. A downscaled, lab scale model for
the ALSTOM environmental (EV) swirl burner stabilizes the
flame in recirculation regions near the burner outlet plane, the
combustion gases are guided through a downstream duct and
they are subsequently discharged. A MOOG magnetostrictive
fuel injector installed close to the flame is used as control
actuator. The pressure signal is detected by water-cooled
microphones distributed along the ducts. Microphone 2, placed
123mm downstream of the burner, is used to deliver the sensor
signal for the controller.

The operating conditions of the combustor are characterized
by the mass flow, the preheat temperature, and the ratio of the
actual to the stoichiometric air/fuel ratio λ. For the present
study, a mass flow of 36 g/s, a preheat temperature of 700 K,
and λ values of 2.1 and 1.875 are considered. The resulting
pressure spectra are shown in Figures 17 and 14. The case
of λ = 2.1 exhibits a single large pressure peak at 220 Hz,
whereas λ = 1.875 is characterized by one peak around 250
Hz and two smaller ones in the 330 Hz range.

B. Actuators

Loudspeakers, often used as actuators in a laboratory
settings, are not feasible for industrial applications due to
limited actuation power. In contrast, secondary fuel injection
of about 10% of the total methane flow of 1 g/s yields
roughly 6000 W, versus 30 W for a loudspeaker. The tradeoff
between injection time delays and increased NOx emissions
due to diffusion flames has to be carefully negotiated and a
suitable position for the injector must be found.

C. Controllers

The simplest controller is known as phase-shift or Gain-
Delay, where the measured pressure signal is amplified and
delayed by a certain amount and then fed to the actuator
[46]. This simple strategy has found widespread use, but it
often generates secondary peaks as the gain and phase are
tuned to the dominant frequency and they are not optimal in
other frequency bands. The model-based robust H∞ controller
design lets the engineer specify regions where the disturbance
should be reduced, and theH∞-optimization routine calculates
the corresponding controller [56].

Gain-Delay control is convenient as there are only two
parameters to adjust. This is often done by trial-and-error with
satisfactory results if the spectrum of the instability features
only one dominant peak. Model-based H∞ controllers on

213

123

33
0

-72

-172

-665

electrical heaterCH4

static mixer

upstream

duct

EV burner

downstream

duct

flame

exhaust pipe

hood

zero reference

753

Mic 1

ø 90

Mic 2

Mic 4

Mic 5

Mic 3

Injector

ø 80

Fig. 1. An illustration of the ETH combustor. Preheated air premixed with
methane enters the upstream duct, the flame is stabilized by the EV burner.
All dimensions in mm.

the other hand offer larger design freedom and are generally
associated with better performance. They involve however 10
to 20 parameters thus exacerbating their online optimization.
In addition, thermal transients during start-up change the
location and height of the pressure peaks, and the (steady-
state) model of the process is not always accurate.

A combination of a model-based controller and an online
optimization using EAs has been used to address these difficul-
ties. More specifically, an H∞ controller [44], [56] is shifted
in the frequency domain while the gain and (optionally) an
additional delay are adjusted, resulting in two (three) param-
eters to be optimized. Note that in a Gain-Delay controller
only the gain and the delay are optimized by the algorithm.
The cost function to be minimized is selected as the equivalent
continuous level of the sound pressure

Leq = 10 log10

(p2
s)av

p2
ref

(1)

where (p2
s)av is the mean squared pressure and pref = 20µPa

the reference pressure.
The sound pressure level Leq is acquired from a measure-

ment of a few seconds for a given parameter setting. The
measurements are subject to a considerable uncertainty and
a tradeoff between uncertainty and speed in data acquisition
can be identified. The accuracy of Leq is improved with longer
evaluation times. At the same time longer evaluation times
decrease the number of feasible completed measurements in a
given time span, and slow down the adaptation of the controller
parameters. This problem will be resolved by an adaptive
evaluation time for the acquisition of Leq.

PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

D. Adaptive Controllers

Unsteady combustion introduces pressure waves in the
combustor. Their reflection from the boundaries modifies in
turn the combustion process resulting in a potentially unstable
feedback cycle. Rayleigh [50] first noted that if the heat release
is in phase with the pressure fluctuations, the instability grows,
while combustion is stable if they are out of phase. In a study
of a swirl-stabilized premix burner [47], it was found that large
coherent structures are associated with this instability. The
interaction between flow instabilities and acoustic resonant
modes excites unstable modes, leading to periodic combustion
in large-scale structures. Fuel feedline dynamics are another
mechanism causing equivalence ratio fluctuations [3].

pm
u

-

noise

controller
 plant

-

pc

pn

Fig. 2. A schematic diagram of the control set-up

The adaptive reduction of the pressure oscillations can be
achieved by measuring the pressure with microphones, and
employing a controller to command an actuating device, such
as a loudspeaker or a fuel injector. Fig. 2 shows the control
set-up used for this study. The uncertainty input block models
the uncontrolled combustor generating the pressure signal pn.
The plant P is the block that relates the control signal input u
to the pressure pc generated by altered combustion in case of
fuel injection. The sum of these two is the measured pressure
signal pm that needs to be minimized. This signal is used by
the controller C to generate the control signal u for the fuel
injector.

Controllers can be built based on a model of the controlled
process. A so-called Self-Tuning Regulator (STR) [24], [22],
[53], [52], [23] requires knowledge only of the total time delay
between actuation and sensing. STRs have shown some ro-
bustness to changing operating conditions but for a combustor
which is already stable, the STR does not offer any advantages
over a model-based controller and may encounter numerical
problems.

Adaptive controllers [8], [35] encounter problems in noisy
environments and a number of open questions remain regard-
ing algorithmic instabilities. A simple Rijke tube with very
distinct pressure peaks and low uncertainty level is considered
in [13]. Loudspeakers are used as actuators for a neural
network controller, which requires an identification procedure
beforehand. In [48] a multiobjective modified strength Pareto
evolutionary algorithm has been used to optimize the fuel flow
through different injection locations in an EV burner.

A range of lead/lag controllers [45] are optimized with a
(1+1)-ES in [49], [55]. The influence of uncertainty and the
problem with long evaluation times are identified, and a two-
step evaluation procedure is proposed. The potential problems
with noisy evaluations arising from elitism and the problem of

premature convergence have been neglected and the method
employs a pre-specified maximum number of iterations.

E. Evolutionary Algorithms for Control

An in-depth overview of evolutionary algorithms applied to
controller optimization is given in [25]. One can distinguish
between online and offline optimization. Online applications
are rare and due to safety and time-constraints only very few
online applications have been conducted in a real system [1],
[43].

In order to evolve the controller either the controller param-
eters are directly optimized [19], [1], or the design parameters
of control algorithms such as Linear Quadratic Gaussian
(LQG) or H∞ are manipulated [20], and the controller is
calculated automatically. In order to improve the feasibility
of the online application of evolutionary algorithms, tuning of
an existing controller can be performed [39], [40]. Our method
is based on this latter approach.

III. OPTIMIZATION UNDER UNCERTAINTIES

The identification of effective parameters for adaptive con-
trollers can be formulated as an optimization problem, where a
combustor performance related objective function, for example
the time integral of the sound pressure in the combustor, is to
be minimized. A general formulation of such a time dependent
stochastic objective function L (also loss or cost function)
reads

L : S × R+ → R, (x, t) 7→ f(x, t) + Nf (x, t) , (2)

where x ∈ S ⊂ Rn is a (solution) vector of controller
parameters and t is time. The objective function is defined
by a deterministic part f and a stochastic part Nf ∈ R.
The objective is to find an (approximate) minimizer of the
“true” function value f . The distribution of Nf is unknown
and depends on the function f , as well as on x and t. The
time dependency is relevant, for example, in online control
of a combustor as the operating condition may be modified
manually or may change during the heating up of the rig. In
general however the changes in time are often negligible when
compared to the variations in Nf for each point in time. We
assume that E

[
L(x, t)

]
= f(x, t), i.e. E

[
Nf (x, t)

]
= 0 for

all x ∈ Rn and all t ≥ 0, without loss of generality. If the
expectation value does not exist, we assume the median of
L(x, t) equals to f(x, t), for all x, t. This assumption makes
the definitions of f and Nf consistent with the objective to
find a minimizer of f . Furthermore, if, instead of the median,
we postulate a larger quantile (for example the 95%-tile) of L
equals to f , this would imply trying to find a more “robust”
solution as the minimizer of f .

Equation (2) describes a generic uncertainty model. The
equation includes uncertainties that may appear at any stage of
obtaining the measurement L. Examples of such uncertainties
include the adjustment of the variable vector x where the
dependency between Nf and f becomes evident, sometimes
called actuator noise [11].

From Equation (2) we can immediately imply that in a
ranking-based algorithm uncertainties are problematic if and

PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 4

only if, for two candidate solutions x1 and x2, the variation
due to Nf (x1) and Nf (x2) exceeds the difference |f(x1) −
f(x2)| such that their ordering reverses. If the uncertainties
tend to exceed the difference |f(x1) − f(x2)| we cannot
anymore conclude from two single measurements, L(x1) and
L(x2), whether f(x1) > f(x2) or f(x1) < f(x2) holds with
a small enough error probability (in a ranking-based search
algorithm this is the only decision based on the L-values). In
other words, referring to |f(x1)− f(x2)| as signal and to the
variations from Nf as noise, the uncertainty is problematic
if and only if the signal-to-noise ratio is too small. This
observation readily implies that there can only be two ways to
cope with uncertainties for a ranking-based search algorithm.

1) Increasing the signal, or
2) reducing the uncertainty.

Efficient optimization techniques for problems with uncer-
tainties must address successfully at least one of these two
issues. A broad literature overview of uncertainties addressed
in evolutionary optimization is given in [33].

The most common technique to approach uncertainties in
the objective function value is resampling, that is the repeated
evaluation of L(x) for a given solution x [2], [15], [18], [58].
A statistics L̂(x) of the repeated samples of L(x) replaces
the single measurement. Usually the mean value is taken as
statistics L̂ and the question whether it is an appropriate statis-
tics for uncertainty reduction is ignored. If the second moment
E
[
N2

f

]
exists, the variance of the mean statistics equals to the

variance of L divided by the number of independent samples
and hence the mean leads to a reduction of uncertainty. Taking
the median as statistics reduces the uncertainty under much
milder assumptions than the mean. If E

[
Nα

f

]
exists for some

α > 0 then E
[
L̂2
]

exists for any sufficiently large sample size
(note that E

[
N0

f

]
= 1). If in addition, Nf has a continuous

positive density in some neighborhood of the true median,
then L̂ is asymptotically normally distributed with variance
inversely proportional to the sample size [36].

The main drawback of repeated evaluations is the increased
cost of the algorithm (in our case the evaluation of L is by
far the most time consuming part of the optimization). Given
the sphere function f(x) = ‖x‖2 and Nf normally distributed
with standard deviation σε an evolution strategy can reach
a final distance to the optimum of R∞ ∝ √σε [9] [10].
Consequently, to reduce the final distance to the optimum R∞

by a factor of α < 1 the number of necessary L-samples grows
with α−2.

Usually the number of necessary samples varies in time
and cannot be predicted in advance. In particular in the early
stages of optimization the signal-to-noise ratio is expected to
be large for two reasons. First, the distance between population
members is large producing more likely a large difference in
objective function values. Second, the difference between L-
values of “bad” solutions is usually larger than for “good”
solutions. In order to reduce the associated cost, adaptive
reevaluation methods have been proposed [2], [15] [18]. The
number of reevaluations is determined by the outcome of a
statistical test, for example the t-test [18], [58]. The choice of
the solutions to be reevaluated can depend on their ranking in

the population [2], [58] or on the empirical variances of the
measurements [18]. The number of reevaluations is limited by
an upper bound to avoid divergence and to maintain adaptivity
in online applications. Despite these efforts, methods that re-
duce the uncertainty based on reevaluations typically increase
the number of function evaluations per generation by a factor
between three and a 100.

A slightly different approach to reduce the uncertainty uses
the already evaluated solutions. Instead of resampling L and
taking statistics of the samples a surrogate function (or meta-
model) is built from the already evaluated solutions [54],
[14], [17]. In case of ”benign” uncertainty distributions the
surrogate smooths the noisy landscape. For the CMA evolution
strategy a local quadratic surrogate model could speed-up the
convergence on a noisy sphere function by a factor of two
in small dimensions [34]. In general, the surrogate approach
will be less effective with increasing search space dimension
or when a large population spread is already realized by the
underlying search algorithm.

A third approach addresses uncertainties in the objective
function by using a large population, also referred to as
implicit averaging [33]. The effect of a large population size
in an evolution strategy (ES) is twofold. First, the population
spread can be larger. For example, on the sphere function the
optimal step-size of the (µ/µI , λ)-ES is proportional to the
parent number µ, given intermediate multi-recombination and
µ ∝ λ 6� n [51, p.148]. Second, recombination smooths
the effect of erroneous selection in search space. Conse-
quently increasing only λ is inferior to resampling [9], [26],
but increasing µ and λ is preferable to resampling [5]. A
prerequisite for this advantage is that step-sizes are adapted
properly, because the population spread is decisive. Otherwise
increasing the population size can even be counterproductive
[26].

Modifications of the selection scheme have been proposed
to compensate for uncertainties. In a (1 + 1)-ES a non-zero
threshold for accepting the offspring is advantageous [42]. In
the (µ/µI , λ)-ES the optimal ratio between µ and λ is 0.5
[10] corresponding to a maximal step-size for a given λ. The
stochastic tournament selection can be modified to make up
for the stochastics introduced by the uncertain selection [16],
while in evolution strategies the selection scheme is already
deterministic.

Overall, the handling of uncertainties in the objective func-
tion has been mainly addressed by uncertainty reduction rather
than signal improvement. In this paper we will use both
approaches. First, a resampling approach is taken and adopted
to the specific application to reduce the uncertainty. Second,
and more importantly, the signal is improved explicitly by in-
creasing the population spread. Both approaches are controlled
by a uncertainty measurement and hence implemented in an
adaptive way.

IV. AN UNCERTAINTY-RESISTANT EVOLUTIONARY
ALGORITHM

In this section we describe an evolutionary algorithm that
serves to minimize an objective function as defined in Equation

PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

(2). The algorithm consists of two parts: A ranking-based
evolutionary algorithm, the CMA-ES, and the uncertainty
handling method. We first describe the CMA-ES and then
introduce the proposed novel uncertainty handling technique.

A. The CMA Evolution Strategy

We employ the evolution strategy (ES) with Covariance
Matrix Adaptation (CMA) [30], [31], [29], [28]. This choice
is motivated by several reasons:
• CMA-ES is a non-elitist continuous domain evolutionary

algorithm. Non-elitism avoids systematic fitness overval-
uation on noisy objective functions [5], because even
solutions with (erroneously) exceptionally good fitness
values survive only one generation.

• The selection in CMA-ES is solely based on the ranking
of solutions. This provides additional robustness in a
noisy environment. Ranking-based selection is in par-
ticular invariant to strictly monotonic (order-preserving)
transformations of the value L.

• The CMA-ES provides an effective adaptation of the
search distribution to the landscape of the objective
function.

• The CMA-ES can be reliably used with small population
sizes allowing for a fast adaptation in an online applica-
tion.

The CMA-ES adapts the covariance matrix of a normal search
distribution to the given objective function topography. On
convex-quadratic objective functions, nearly optimal covari-
ance matrices are thus achieved. The adaptation procedure
operates efficiently and independently of the given population
size, which is small by default. Particularly on non-separable,
badly scaled problems often a speed-up by several orders of
magnitude can be achieved in terms of number of function
evaluations to reach a given function value and in terms of
CPU-time. The CMA-ES was evaluated on a variety of test
functions [31], [29], [28], [7] and was successfully applied to
a variety of real-world problems.1

The CMA-ES follows two fundamental design principles
employed in the development of the algorithm. The first design
principle is invariance. We distinguish between invariance
to transformations R → R of the function value L, as
considered in the beginning of this section, and invariance
to transformations S → S of the solution vector x in (2).
The CMA-ES reveals invariance to rigid (angle-preserving)
transformations of the solution vector, like translation, rotation
and reflection, given that the initial solution is transformed
respectively. The CMA-ES reveals invariance to overall scaling
of the search space, given that the initial scale σ is chosen
accordingly. Finally, The CMA-ES reveals even invariance
to any full rank linear transformation, given that the initial
covariance matrix is chosen respectively. Invariance properties
induce equivalence classes of objective functions and therefore
allow for generalization of empirical results.

Second, the variation of object and strategy parameters
is unbiased [12], [31]. Given random selection, that is an

1See http://www.inf.ethz.ch/personal/hansenn/cec2005.html and
http://www.inf.ethz.ch/personal/hansenn/cmaapplications.pdf

objective function L(x) = rand that is independent of x,
the first moment of the object parameters x is unbiased.
The expectation of newly generated solutions is equal to
the weighted mean of the previously selected solutions. The
second moment is described by covariance matrix and step-
size. The covariance matrix in the CMA-ES is unbiased,
because under random selection the updated covariance matrix
is equal to the previous covariance matrix in expectation.
Analogously, the step-size σ is unbiased on the log scale. For
the second moment, the population variance, a bias towards
increase or decrease will entail the danger of divergence or
premature convergence, respectively, whenever the selection
pressure is low. Next we describe the algorithm in detail.

Given an initial mean value m ∈ Rn, the initial covariance
matrix C = I and the initial step-size σ ∈ R+, the λ candidate
solutions xk of one generation step obey

xk = m + σyk, k = 1, . . . , λ, (3)

where yk ∼ N (0,C) denotes a realization of a normally
distributed random vector with zero mean and covariance
matrix C. Equation (3) implements mutation in the EA by
adding a random vector. The solutions xk are evaluated on
L and ranked such that xi:λ becomes the i-th best solution
vector and yi:λ the corresponding random vector realization.

In the remainder we describe the updates of m, σ, and C
for the next generation step. For µ < λ let

〈y〉 =
µ∑

i=1

wiyi:λ, w1 ≥ · · · ≥ wµ > 0,

µ∑
i=1

wi = 1 (4)

be the weighted mean of the µ best ranked yk vectors. The
recombination weights sum to one. The so-called variance
effective selection mass

µeff =
1∑µ

i=1 w2
i

≥ 1 (5)

will be used in the following. Given µeff , the particular setting
of the recombination weights is, in our experience, secondary.
From the definitions follows 1 ≤ µeff ≤ µ and µeff = µ for
equal recombination weights. The role of µeff is analogous to
the role of the parent number µ with equal recombination
weights and usually µeff ≈ λ/4 is appropriate. Weighted
recombination is discussed in more detail in [4].

The mean of the new distribution becomes

m←m + σ〈y〉 =
µ∑

i=1

wixi:λ. (6)

Equation (6) determines the center of the next population. The
equation implements selection by using µ < λ. Using different
recombination weights must also be interpreted as selection
mechanism. The equation implements recombination by taking
a (weighted) mean of parental solutions.

For step-size control the “conjugate” evolution path pσ ∈
Rn is introduced. The evolution path cumulates an exponen-
tially fading pathway of the population mean in the generation
sequence. Assuming that the optimal step-size leads to conju-
gate steps, the length of the conjugate evolution path can be
used as adaptation criterion for σ. If the evolution path is long,

PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 6

σ must be increased, whereas if the evolution path is short, σ
must be decreased. Initialized with pσ = 0 the update of pσ

(so-called cumulation) and σ reads :

pσ ← (1− cσ) pσ +
√

cσ(2− cσ)µeff C− 1
2 〈y〉 (7)

σ ← σ × exp
(

cσ

dσ

(
‖pσ‖
χ̂n
− 1
))

(8)

where 1/cσ > 1 determines the backward time horizon of
the evolution path pσ , damping dσ ≈ 1 controls the change
magnitude of σ, and χ̂n is the expected length of a random
variable distributed according to N (0, I). The evolution path
is appropriately normalized. We have C− 1

2
def= BD−1BT,

where C = BD2BT is an eigendecomposition of the sym-
metric, positive definite covariance matrix C.2 The transfor-
mation C− 1

2 rescales 〈y〉 into an isotropic reference system.
Given yi:λ distributed according to N (0,C), as under random
selection, we can derive that

√
µeff C− 1

2 〈y〉 is distributed
according to N (0, I). Therefore, if pσ ∼ N (0, I) holds
before applying (7), the same holds after applying (7). The
transformations make the expected length of pσ independent
of its orientation and allow the comparison of the length
of pσ with its expected length χ̂n in (8). Step-size σ is
increased if and only if ‖pσ‖ > χ̂n, and decreased if and
only if ‖pσ‖ < χ̂n. In practice we use the approximation
χ̂n =

√
2 Γ(n+1

2)/Γ(n
2) ≈

√
n
(
1− 1

4n + 1
21n2

)
.

Similar to (7) an evolution path pc is constructed to update
the covariance matrix. The covariance matrix admits a rank-
one and a rank-µ update.

pc ← (1− cc) pc + hσ

√
cc(2− cc)µeff 〈y〉 (9)

C ← (1− ccov)C +
ccov

µcov
pcp

T
c︸ ︷︷ ︸

rank-one update

+ ccov

(
1− 1

µcov

) µ∑
i=1

wiyi:λyT
i:λ︸ ︷︷ ︸

rank-µ update

(10)

where ccov ≤ 1 is a learning rate, µcov ≥ 1 determines the
portion between rank-one and rank-µ updates, and hσ = 0
if ‖pσ‖ >

(
1.5 + 1

n−0.5

)
χ̂n

√
1− (1− cσ)2(g+1), and 1

otherwise, where g is the generation counter. Consequently,
the update of pc is stalled whenever pσ is considerably longer
than expected. This mechanism is decisive after a change in
the environment which demands a significant increase of the
step-size whereas fast changes of the distribution shape are
postponed until after the step-size is increased to a reasonable
value.

For the covariance matrix update the cumulation in (9)
serves to capture dependencies between consecutive steps.
Dependency information would be lost for cc = 1, as a
change in sign of pc or yi:λ does not matter in (10). The
rank-one update is particularly efficient with small offspring

2Columns of B are an orthonormal basis of eigenvectors, BTB =
BBT = I. Diagonal elements of the diagonal matrix D are square roots
of the corresponding positive eigenvalues. The matrix D can be inverted
by inverting its diagonal elements. From these definitions it follows that
yk ∼ σBDN (0, I) which allows the generation of the random vector
realizations on the computer.

population sizes λ. Given cc ∝ 1/n the rank-one update can
reduce the number of function evaluations needed to adapt
to a straight ridge topography roughly from O(n2) to O(n)
[29]. The rank-µ update exploits the information prevalent
in a large population. Given a sufficiently large population,
say λ ≈ n + 3, it reduces the number of generations needed
to adapt a complex but globally constant topography roughly
from O(n2) to O(n) [29].

The default parameter values for all parameters, namely
offspring population size λ, parent number µ, recombination
weights wi, cumulation parameter cσ , step-size damping dσ ,
cumulation parameter cc, mixing number µcov, and learning
rate ccov are [28] :

Selection and recombination:

λ = 4 + b3 lnnc, µ = bλ/2c,

wi =
ln(µ + 1)− ln i

µ ln(µ + 1)−
∑µ

j=1 ln j
for i = 1, . . . , µ,

Step-size control:

cσ =
µeff + 2

n + µeff + 3
,

dσ = 1 + 2×max

(
0,

√
µeff − 1
n + 1

− 1

)
+ cσ

Covariance Matrix Adaptation:

cc =
4

n + 4
, µcov = µeff

ccov =
1

µcov

2
(n +

√
2)2

+
(

1− 1
µcov

)
min

(
1,

2µeff − 1
(n + 2)2 + µeff

)
A detailed discussion of the strategy parameters can be found
in [31]. The identification procedure for ccov with rank-µ
update is described in [29]. Parameters for step-size adap-
tation, cσ and dσ , were accommodated for use with a large
population size in [28]. With increasing µeff the backward time
horizon and the change rate are reduced, such that the impact
of step-size control diminishes in particular for µeff � n.
All experiments in this paper are conducted with the default
parameter settings.

Finally, we note that the structure of CMA-ES bears sim-
ilarities with other stochastic optimization procedures, see
e.g. [57], as well as with recursive estimation procedures,
in particular of the “Gauss-Newton” type [41, pp. 366, 371,
375]. The analysis of these similarities and differences of these
algorithms are far beyond the scope of this paper.

B. Box Constraint Handling

In the present algorithm parameter constraints are accounted
by introducing a penalty term in the cost function. This penalty
term quantifies the distance of the parameters from the feasible
parameter space. The feasible space is a hypercube defined
by lower and upper boundary values for each parameter. We
implement a box boundary handling algorithm such that each

PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 7

evaluated solution is guaranteed to lie within the feasible
space. This algorithm affects solely the evaluation of the
solutions and entails the following steps.
• The cost of a solution x is obtained by evaluating the

function L at xfeas, where xfeas is the feasible solution
closest to x (with minimal ‖xfeas−x‖). Hence, a feasible
solution is evaluated itself and an infeasible solution is
evaluated on the boundary of the feasible space. The new
feasible solution xfeas is used for the evaluation on L
and for computing a penalty term, and it is discarded
afterwards.

• A penalty term is added to the function value L penalizing
infeasible solutions. The penalty depends on the distance
to the feasible space and is weighted and scaled in each
coordinate. The weights are set depending on observed
function value differences in L and are increased if
necessary, depending on the distance of the distribution
mean m to the feasible space. The scaling is based on
the covariance matrix diagonal elements.

The complete boundary procedure, applied after the candidate
solutions of one generation are generated, reads as follows.

0) Initialization: the boundary weights γi are initialized
once in the first generation step as γi = 0, for i =
1, . . . , n.

1) Set weights: if the distribution mean m is out-of-bounds
and either the weights were not set yet or the second
generation step is conducted, set for all i = 1, . . . , n,

γi =
2 δfit

σ2 × 1
n

∑n
j=1 Cjj

(11)

where δfit is the median from the last 20 + 3n/λ
generations of the interquartile range of the unpenalized
objective function values and Cjj is the j-th diagonal
element of covariance matrix C. The setting in Equation
(11) is explained in conjunction with Equation (12)
below.

2) Increase weights: for each component i, if the distribu-
tion mean mi is out-of-bounds and the distance of mi to
the bound is larger than 3×σ

√
Cii×max

(
1,

√
n

µeff

)
(the

typical distance to the optimum on the sphere function is
coordinate wise proportional to σ

√
n/µeff), the weight

γi is increased according to

γi ← γi × 1.1max(1,
µeff
10n) .

This adjustment prevents the mean value of the distribu-
tion from moving too far away from the feasible domain
(where far is naturally defined in terms of the given
search distribution).

3) Compute the penalized function value for each candidate
solution x as

L(x) def= L(xfeas) +
1
n

n∑
i=1

γi
(xfeas

i − xi)2

ξi
(12)

where xfeas is the feasible solution closest to x with out-
of-bounds components set to the respective boundary
values. Only xfeas is actually evaluated on L. Finally

ξi = exp
(
0.9
(
log(Cii)− 1

n

∑n
j=1 log(Cjj)

))
scales

the distance coordinate wise with respect to the covari-
ance matrix of the distribution, disregarding its overall
size. The number 0.9 serves as regularizer to an isotropic
shape (choosing zero would make all ξi isotropically
equal to one).
Given that xfeas

i − xi = σ
√

Cii is as large as typically
sampled by the given search distribution (i.e. a one-σ
sample) then the i-th summand in Equation (12) equals
γi × σ2Cii/ξi ≈ γi × σ2. With Equation (11) we have
γi × σ2 ≈ 2 δfit which is a desired contribution. In par-
ticular the contribution of each component (summand)
becomes identical and therefore the perturbation from
the penalization on the covariance matrix adaptation
procedure is minimized.

The additive penalization in Equation (12) is a quadratic
function with its minimum located on the boundary [27, p.76].
Equation (12) has two important properties. First, it guarantees
that the minimum of the resulting function L cannot be outside
the feasible domain. Second, the construction results in a
comparatively unproblematic function topography, because the
partial derivative ∂L(x)/∂xi approaches zero if the distance
xfeas

i − xi approaches zero from the infeasible domain. For
∂L(x)/∂xi 6→ 0 a sharp ridge along the boundary can result
which is quite undesirable.

C. A Method for Handling Uncertainty

We introduce a novel uncertainty-handling (UH) method,
suitable for evolutionary optimization algorithms that employ
rank based selection operators. The rank based selection
operation allows for a robust quantification and handling of
uncertainties in the cost function as shown in the following
sections. We emphasize that the development of the proposed
uncertainty-handling method is independent of the other op-
erators employed in the evolutionary optimization algorithm.
In the present work the UH is discussed, without loss of
generality, in its implementation within the CMA-ES and the
overall algorithm is referred as UH-CMA-ES. The proposed
uncertainty handling preserves all invariance properties of the
CMA-ES mentioned above. The method however biases the
population variance when too large an uncertainty level is
detected.

The uncertainty handling consists of two separate compo-
nents.
• Quantification of the uncertainty effect on the ranking of

the members of the population
• Treatment of the uncertainty, if necessary, to prevent the

search algorithm from premature convergence
a) Uncertainty Quantification: We propose a reevalua-

tion technique that provides a quantification of the uncertainty
for any ranking-based search algorithm. The uncertainty in the
objective function can affect a ranking-based search algorithm
only if changes of the ordering of solutions occur. Hence, the
uncertainty quantification is based on rank changes induced by
reevaluations of solutions. A small perturbation can be applied,
before the reevaluation is done, to cover “frozen noise”, i.e.
when the objective function is not a random variable itself

PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

but a single realization of a noisy function L. The uncertainty
quantification algorithm reevaluates each solution at most once
but an extension to more reevaluations is straightforward.

First the solutions to be reevaluated are selected at ran-
dom. Alternatively the best solutions might be selected for
reevaluation, while our preliminary tests did not indicate
major differences. More importantly, we conjecture that more
scenarios exist where selecting the best solutions fails. One
such scenario is the case of (seldom found) good outliers.
Using the best solution then invariably selects the outlier and
therefore the uncertainty treatment might be applied too often.
In order to circumvent this difficulty solutions are chosen
randomly.

Second, after reevaluation, the number of rank changes, ∆i,
that occur with the reevaluation of solution i, is computed.
Third, the measured rank changes are compared to a threshold,
or, in a sense, normalized leading to the uncertainty measure-
ment s. The algorithm reads

1) Set Lnew
i = Lold

i = L(xi), for i = 1, . . . , λ, and let
L = {Lold

k , Lnew
k |k = 1, . . . , λ}.

2) Compute λreev, the number of solutions to be reeval-
uated using parameter rλ ≤ 1; λreev = fpr (rλ × λ)
where the function fpr : R → Z, x 7→{
bxc+ 1 with probability x− bxc
bxc otherwise

. To avoid too long

sequences without reevaluation set λreev = 1 if λreev =
0 for more than 2/(rλ × λ) generations.

3) Reevalute solutions. For each solution i = 1, . . . , λreev

(because the solutions of the population are i.i.d., we
can, w.l.o.g., choose the first λreev solutions for reeval-
uation)

a) Apply a small perturbation: xnew
i = mutate(xi, ε)

where xnew
i 6= xi ⇐⇒ ε 6= 0. According to

(3) for the CMA-ES we apply mutate(xi, ε) =
xi + εσN (0,C).

b) Reevaluate the solution: Lnew
i = L(xnew

i)

4) Compute the rank change ∆i. For each chosen solu-
tion i = 1, . . . , λreev the rank change value, |∆i| ∈
{0, 1, . . . , 2λ − 2}, counts the number of values from
the set L\{Lold

i , Lnew
i } that lie between Lnew

i and Lold
i .

Formally we have

∆i = rank(Lnew
i)− rank(Lold

i)

− sign
(
rank(Lnew

i)− rank(Lold
i)
)

where rank(L·i) is the rank of the respective function
value in the set L = {Lold

k , Lnew
k |k = 1, . . . , λ}.

5) Compute the uncertainty level, s. The rank change value,
∆i, is compared with a given limit ∆lim

θ . The limit
is based on the distribution of the rank changes on a
random function L and the parameter θ. Formally we

have

s =
1

λreev

λreev∑
i=1

(
2 |∆i|

−∆lim
θ

(
rank(Lnew

i)− 11Lnew
i >Lold

i

)
−∆lim

θ

(
rank(Lold

i)− 11Lold
i >Lnew

i

))
, (13)

where ∆lim
θ (R) equals the θ × 50%ile of the set

{|1−R| , |2−R| , . . . , |2λ− 1−R|}, that is, for a
given rank R, the set of absolute values of all equally
probable rank changes on a random function L (where
f and Nf are independent of x). The summation for
s in Equation (13) computes two values for ∆lim

θ and
therefore respects the symmetry between Lold

i and Lnew
i .

6) Re-rank the solutions according to their rank sum, i.e.
rank(Lold

i) + rank(Lnew
i). Ties are resolved first using

the absolute rank change |∆i|, where the mean ∆i =
1

λreev

∑λreev
j=1 |∆j | is used for solutions i > λreev not

being reevaluated, and second using the (mean) function
value.

The parameters are set to rλ = max(0.1, 2
λ), ε = 10−7, and

θ = 0.2. A Matlab implementation for the computation of the
uncertainty measurement s from the set of function values L
(steps 4 and 5) is given in the appendix.

In Equation (13) differences between the rank change ∆i

and the limit rank change ∆lim
θ are summed. Alternatively,

only the sign of the difference could be used thus placing less
emphasis on single large deviations that are typically observed
in the presence of outliers. When only the sign is used it will
also be appropriate to average s in the generation sequence by
choosing cs > 0 below.

b) Treatment of Uncertainty: The quantification of un-
certainty as described above is independent of algorithms
developed for the treatment of this uncertainty. In this paper
we propose two methods for the treatment of uncertainty.

1) Increase of the evaluation (measuring) time of the
controller’s performance. Increasing the evaluation time
aims to reduce the uncertainty in the evaluation. In
particular for the feedback controller of the combustion
set-up increasing the evaluation time is more natural than
taking the mean value from multiple evaluations, as it
avoids repeated ramping up and down of the controller.
Otherwise, doubling the evaluation time is equivalent to
taking the mean of two evaluations.

2) Increase of the population variance. This treatment can
have three beneficial effects.
• The signal-to-noise ratio is most likely improved,

because the solutions in the population become
more diverse.

• The population escapes search-space regions with
too low a signal-to-noise ratio, because in these
regions the movement of the population is amplified.

• Premature convergence is prevented.
The following uncertainty treatment algorithm is applied

after each generation step employing uncertainty measurement
s.

PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 9

s← (1− cs) s + css
if s > 0 % apply uncertainty treatment

if teval < tmax

teval ← min(αtteval, tmax)
else

σ ← ασσ
else if s < 0 % decrease evaluation time

teval ← max(teval/αt, tmin)

Initialization is teval = tmin and s = 0 and the parameters
are chosen to cs = 1, ασ = 1 + 2/(n + 10), αt = 1.5,
tmin = 1s, tmax = 10s. If the uncertainty measurement value s
exceeds zero, the evaluation time teval is increased. If teval has
already reached its upper bound tmax, step-size σ is increased.
Otherwise, if s is below zero, time teval is decreased. An
adaptive evaluation time teval proves to be particularly useful
in the early stages of an optimization run or when the operating
condition is changed. In the later stages, the evaluation time
will usually reach the upper bound and the adaptation will
become ineffective.

c) Role of Parameters: We discuss the role of the pa-
rameters of the uncertainty measurement and the uncertainty
treatment algorithm.

• rλ ∈]0, 1], typically < 0.5, determines the fraction of
solutions to be reevaluated. For rλ = 0.3 a fraction of
30% of the solutions in the population is reevaluated.
For rλ = 1 each solution is evaluated twice. To establish
a sufficiently reliable uncertainty measurement rλ has to
be chosen large enough. To minimize the additional costs
(in terms of number of function evaluations), rλ should
be chosen as small as possible.

• ε ≥ 0 and ε� 1: Mutation strength for the reevaluation,
given relative to the recent mutation strength. To be able
to treat “frozen” noise similar as stochastic noise, ε must
be set greater than zero, such that a slightly different
solution is used for the reevaluation. For the CMA-ES,
according to Equation (3), we replace σ by εσ and m
by xi for generating a new solution to re-evaluate xi.
Note that for too small ε the mutation can most likely be
influenced by numerical precision.

• θ ∈ [0, 1]: Control parameter for the acceptance threshold
for the measured rank-change value. The threshold θ = 1
corresponds to the median rank change that occurs under
purely random selection. This is clearly an upper bound
for a reasonable setting of θ.

• cs: Learning rate for averaging the uncertainty mea-
surement s in the generation sequence. Decreasing cs

will decrease the variance in the measurement s. Using
cs = 0.5 instead of cs = 1.0 will have a similar effect to
increasing rλ by a factor of two. Note that decreasing cs

is inexpensive when compared to increasing rλ. On the
other hand decreasing cs introduces a time delay.

• ασ > 1: Factor for increasing the population spread (step-
size) when the measured uncertainty value is above the
threshold. Values larger than 2 are rarely reasonable. To
make divergence most unlikely, ασ should be as small
as possible. This is particularly relevant when increasing
the population spread has no significant influence on the

uncertainty level, as it is the case with outliers.
• αt: Factor for increasing the evaluation time when the

measured uncertainty value is above the threshold. To
achieve fast enough changes, αt should be chosen large
enough, typically not smaller than 1.2.

• tmin, tmax are chosen based on pressure measurement
data and requirements of the technical facilities of the
test rig.

The final parameter settings, given above, were specified
based on simulations of the uncertainty handling with the
CMA-ES on the sphere function. Different parameter settings
may be necessary when combining the uncertainty handling
with different evolutionary algorithms.

d) Applications of Uncertainty Handling for Feedback
Controllers: The two techniques, presented above, provide
different treatments of uncertainty during the optimization
of the combustion feedback controllers. The increase of the
evaluation time is the most straightforward way to implement
resampling during the operation of the controllers (and can be
replaced by resampling in another application using dtevale as
the number of samples). Different evaluation times were suc-
cessfully applied to combustion control in [49], [55]. Longer
evaluation times reduce the amount of uncertainty and the
controller parameters can get closer to their desired values. For
an unbounded evaluation time, UH-CMA-ES has the capability
to approach the optimum with arbitrary accuracy. In order to
retain however adaptability the evaluation time needs to have
an upper bound.

The increase of σ ensures that the evolution strategy remains
in a working regime where sufficient selection information is
available. This is important, as changing operating conditions
can affect the desired controller parameters and the algorithm
has to track these changes even in a late stage of the optimiza-
tion. The increase of σ can only be useful if the introduced
increase in the population spread leads to an improved signal-
to-noise ratio. Our empirical observations show that this truly
holds for our application. In particular we never observed
divergence of step-size σ.

The upper bound for the evaluation time limits the possible
accuracy of the control parameters. The optimum cannot be
approximated with arbitrary accuracy if in its vicinity the
signal-to-noise ratio is too low. This failure is a property of the
evolution strategy in general and is actually not caused by the
uncertainty handling. The uncertainty handling only prevents
the step-size to become arbitrarily small. We believe that in
a noisy online application, where the optimum can change
in time, in the end a trade-off exists between the objectives
to retain adaptability versus getting arbitrarily close to the
optimum.

V. RESULTS ON TEST FUNCTIONS

The effect of increasing the evaluation time on the perfor-
mance of the algorithm is predictable. If the increment is fast
enough the algorithm will remain operating reliably and con-
verge to the optimum while the time per function evaluation
will increase unboundedly. Hence, we are mainly interested in
the effect of the step-size increment. On certain multi-modal

PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

functions the increase of the step-size might occasionally help
to locate the domain of a better local optimum, but we believe
that this effect is of minor relevance. Overall, we do not expect
that the uncertainty-handling would impair the performance
of the algorithm on multi-modal functions. Hence we do not
include experiments in multi-modal functions and we present
experiments on several unimodal functions with uncertainty.
These functions can also be interpreted as rugged, highly
multi-modal (non-noisy) functions, because any single solution
is (virtually) never evaluated twice. The “re-evaluations” are
conducted with a slightly mutated solution (compare point
3 in the uncertainty measurement algorithm). Therefore no
difference between “stochastic” and “frozen noise” can be
observed.

The test functions obey

L(x) = f(x) + Nf (x) =
n∑

i=1

ai(xi − b)2 + N/tβeval, (14)

where ai, b ∈ R are chosen function-dependent and the
uncertainty term is independent of x but scaled with tβeval, and
β > 0. While this test function is additively decomposable and
hence unrealistic simple, all our simulation results also hold
for non-decomposable (rotated) versions. Three functions are
derived, where β = 0.5.

LC
spherethe isotropic sphere function, where ai = 1, for

i = 1, . . . , n, b = 0, and N is standard Cauchy
distributed.

Lelli the ellipsoid function, where ai = 106× i−1
n−1 , b = 0,

and N is standard normally distributed. The condi-
tion number is 106. The principal axis lengths are
equidistant on the log scale.

LC
elli the ellipsoid function Lelli, where b = 5, and N is

standard Cauchy distributed.
Figure 3 shows five independent runs on Lelli in 10D. Pre-
mature convergence is observed without uncertainty handling
(CMA-ES, left). The smallest standard deviation σ

√
λmin,

where λmin is the smallest eigenvalue of C, exhibits a drift
with all values clearly below 10−4. With uncertainty handling
(UH-CMA-ES, right) we choose tmin = tmax = 1 here for
simplicity, implying constant teval = 1. Therefore only σ is
changed by the uncertainty treatment. The smallest standard
deviation σ

√
λmin reaches a stationary value and does not

drop below 10−4. If teval is chosen much larger such that
no rank changes occur (non-noisy case), about 20% fewer
function evaluations are required to reach a function value
of 1 (not shown). Note that even though the smallest standard
deviation is larger than in cases without uncertainty handling,
the function values are clearly better and give first evidence
that the uncertainty handling works effectively.

Figure 4 shows a single run of UH-CMA-ES on Lelli in
8D. The course of σ (upper left) reveals that the uncertainty
treatment enters after about 2000 function evaluations. After
about 5000 function evaluations the adaptation of the covari-
ance matrix is completed. The eigenvalues of the covariance
matrix correspond to the inverse coefficients a−1

i of Lelli

and indicate an almost perfect adaptation to the function
topography, despite the noisy environment. In view of the fact

that only σ is changed to treat the noisy environment, this
is a remarkable result. The mean vector fluctuates around the
optimum zero (upper right), while the size of the fluctuations
differs for different variables (coordinates), according to their
sensitivities ai.

Figure 5 shows a single run of UH-CMA-ES, switching
from LC

sphere to LC
elli after 3000 function evaluations, and back

again after 6000 function evaluations. Here, tmin = 1, tmax =
10 and teval is shown in the upper left. The initial σ is chosen
far too small. Consequently σ increases from 10−2 to 2 in the
beginning. During convergence on LC

sphere σ drops to 2×10−1,
while teval increases to the upper bound tmax = 10. When the
objective function is switched teval drops to the lower bound,
because the uncertainty becomes negligible when compared
to the differences in the function values f . In addition σ
increases fast, because the optimum has been displaced. At
about 4000 function evaluations teval starts to increase again,
because the uncertainty term becomes significant. As expected,
the covariance matrix adapts to the new topography and the
x-variables move to the new optimum, arranged according
to their relevance. Switching back to LC

sphere reveals a sim-
ilar picture. The step-size increases, teval decreases, and the
isotropic topography has to be re-learned. Because there is no
distinct coordinate system the re-learning takes as much time
as learning the elliptic topography starting from a spherical
distribution. This procedure can be naturally accelerated by
reseting the covariance matrix. Further experiments, conducted
with larger dimensions, on non-quadratic objective functions,
and with x-dependent uncertainty terms, give similar results
(not shown).

VI. EXPERIMENTAL RESULTS

A. Implementation of the Algorithm on the Test Rig

The UH-CMA-ES delivers a set of controller parameters
to be evaluated together with a requested function evaluation
time. The controller parameters undergo an affine transfor-
mation from the interval [0, 1] onto respective intervals spec-
ified below, and the initial values are set to the middle of
the interval. The controller is assembled and written to the
real-time board. In order to avoid any risks stemming from
inappropriate parameter settings delivered by the algorithm,
the gain of the new controller is ramped up over the course
of two seconds, such that the human operator can intervene
in case of a developing harmful situation. After the data
acquisition has been completed, the controller gain is ramped
down, and an intermediate controller keeps the combustor in
a stable regime. Meanwhile, pressure data is logged, a new
controller is developed and transferred to the real-time board.
The total cycle time thus consists of ramping the controller
gain up and down (about 2 s each), pressure data acquisition
(determined by the algorithm, 1-10 s), data logging (1 s) and
UH-CMA-ES computation time (negligible). The maximum
time that pressure can be logged is currently limited to 10 s,
due to real-time board memory constraints. The controller is
sampled at 10 kHz, the frequency content of the pressure signal
warrants no aliasing effects during sampling. For the following
experiments, the preheat temperature and the mass flow are

PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 11

CMA-ES without uncertainty handling UH-CMA-ES

0 10000 2000010−1

100

101

102

103

function evaluations

fu
nc

tio
n

va
lu

e

0 10000 2000010−1

100

101

102

103

function evaluations

fu
nc

tio
n

va
lu

e

0 10000 2000010−8

10−6

10−4

10−2

100

function evaluations

sm
al

le
st

 s
ta

nd
ar

d
de

via
tio

n

0 10000 2000010−8

10−6

10−4

10−2

100

function evaluations

sm
al

le
st

 s
ta

nd
ar

d
de

via
tio

n

Fig. 3. Five runs on Lelli, where n = 10, and tmin = tmax = 1. Left: CMA-ES without uncertainty handling; right: UH-CMA-ES (with uncertainty
handling); above: function value of the population mean, f(m); below: standard deviation in the smallest principal axis. The uncertainty handling keeps the
smallest standard deviation above 10−4 and prevents premature convergence.

kept constant at 700 K and 36 g/s, respectively. Two values
for the air/fuel ratio λ are investigated, namely λ = 2.1 and
λ = 1.875.

B. Experiment: Gain-Delay Controller, Cold Start, λ = 2.1
and Switch to λ = 1.875.

The combustor is fired up from ambient temperature, an
operating condition is set with a mass flow of 36 g/s, a preheat
temperature of 700 K, and an air/fuel ratio of λ = 2.1, and the
Gain-Delay controller is turned on. As the system heats up,
the sound pressure level Leq from (1) rises. Previous studies
have shown that the maximum absolute value of the gain for
a Gain-Delay controller decreases as the combustor heats up
for this operating condition. This is attributed to the fact that
the low-frequency content of the pressure signal rises, and the
resulting low frequency components of the fuel injection tend
to alter the flame stabilization. The flame then flaps back and
forth and increases the uncertainty levels.

The heat-up phase is also evident in the pressure spectra of
the controlled combustor taken at 1000 s and 4700 s, shown
in Fig. 6. The plant is uncontrolled and Gain-Delay controlled
(gain −1.8×10−4, delay 0.3 ms), the resulting Leq are 159.87
dB, 146.90 dB, and 147.48 dB, respectively.

The UH-CMA-ES optimizes the gain and the delay of
the Gain-Delay controller. The evolution of the parameters is
shown in Fig. 7, where the gain interval [−3 × 10−4, 0] and

0 100 200 300 400 50090

100

110

120

130

140

150

Frequency [Hz]

L ps
 [d

B]

Lps; λ=2.1

uncontrolled at 1000 s
Gain−Delay at 1000 s
Gain−Delay at 4700 s

Fig. 6. A comparison of the uncontrolled and controlled spectra of the
pressure signal at 1000 s and 4700 s for the same Gain-Delay controller and
λ = 2.1.

the delays from {0.1, 0.2, . . . , 1.5} ms are mapped onto [0, 1].
Previous experiments with manual tuning have shown that
actuator saturation and flame stabilization problems occur if
the gain is chosen lower than −3×10−4, or the delay is higher
than 1.5 ms. The initial gain and delay passed to the UH-

PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 12

0 5000 10000 15000
10−2

100

102

104

fu
nc

tio
n

va
lu

e,
 s

ig
m

a,
 a

xis
 ra

tio

function evaluations
0 5000 10000 15000

−5

0

5

10

15

ob
je

ct
 v

ar
ia

bl
es

 (8
D)

function evaluations

0 5000 10000 15000
10−4

10−2

100

st
an

da
rd

 d
ev

ia
tio

ns
 in

 c
oo

rd
in

at
es

function evaluations
0 5000 10000 15000

10−6

10−4

10−2

100

pr
in

cip
al

 a
xe

s
le

ng
th

s
of

 C

function evaluations

Fig. 4. A single run of the UH-CMA-ES (with uncertainty handling) on Lelli, where n = 8, and tmin = tmax = 1. Upper left: function value of the
distribution mean, f(m) (thick line with dots), step-size σ (mostly increasing line), ratio between largest and smallest principal axis length of C (flattening
line). Upper right: components of mean vector m. Lower left: coordinate-wise standard deviations σ ×

√
Cii, where Cii is the i-th diagonal element of C.

Lower right: square root of eigenvalues of C

CMA-ES algorithm are −1 × 10−7 and 1.5 ms, respectively.
During the first 4800 seconds Leq rises as the combustor
heats up, and the optimal value of the gain increases from
about −2.5 × 10−4 at 1000 s to −1.8 × 10−4 at 4800 s. The
rise of Leq is related to the persistent change of the system
conditions during heat-up and seems to have no adverse effect
on the optimization. During the first 1000 s the evaluation time
increases and reaches 10 s, the maximum allowed. That means
uncertainty is becoming an issue. The standard deviations
decrease during the first 4000 seconds and rise again as
the operating condition is changed. At 4800 s, the operating
condition is changed from λ = 2.1 to λ = 1.875, and the
evaluation time is manually set to 1 s.

Four cost function landscapes for different time intervals are
shown in Fig. 8. They are obtained by Delauney triangulation
of a second-order polynomial fit to the Leq results for the
individual delay slices. Pentagrams show the best parameter
set for each generation; the larger they are, the later they have
been acquired for each plot. A black circle marks the last of
the pentagrams. The topmost plot shows the Leq for the first
150 function evaluations (up to 1300 s). The plot shows that
the gain can be chosen quite negative; the overall landscape
features low Leq values. For the function evaluations from 150
to 250 (1300-2700 s), the evaluation time increases and yields
results with less uncertainty. A trend to less negative values for
the gain becomes apparent (the pentagrams indicating the best
of the generations are moving to the right), and the general

0 2000 4000 6000 8000
146.2
146.4
146.6
146.8

147
147.2

Leq and teval

time [s]

Leq [dB]

0

5

10
teval [s]

Leq teval

0 2000 4000 6000 8000
0

0.2

0.4

controller parameters (2D)

time [s]

Gain
Delay

0 2000 4000 6000 8000

10−1

std in coordinates

time [s]

Gain
Delay

0 2000 4000 6000 8000

100
principal axes lengths of C

time [s]

axis 1
axis 2

Fig. 7. Parameter evolution for the UH-CMA-ES optimization of a Gain-
Delay-controller. At 4800 s, the operating condition is changed from λ = 2.1
to λ = 1.875.

background uncertainty level rises (indicated by areas getting
darker).

The black polygon is the convex hull of all controller
parameter values tried in the given time range. The function
evaluations 250-325 (2700-3800s), shown in the third plot,
indicate that the optimal value for the gain lies around −1.8×
10−4 and a delay of 0.4-0.5 ms. The parameters evaluated

PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 13

0 2000 4000 6000 8000
10−2

100

102

104

function evaluations

fu
nc

tio
n

va
lu

e,
 e

va
lu

at
io

n
tim

e

0 2000 4000 6000 8000
−2

0

2

4

6

ob
je

ct
 v

ar
ia

bl
es

 (5
D)

function evaluations

0 2000 4000 6000 8000
10−3

10−2

10−1

100

101

st
an

da
rd

 d
ev

ia
tio

ns
 in

 c
oo

rd
in

at
es

function evaluations
0 2000 4000 6000 8000

10−6

10−4

10−2

100

pr
in

cip
al

 a
xe

s
le

ng
th

s
of

 C

function evaluations
Fig. 5. A single run of the UH-CMA-ES switching between LC

sphere and LC
elli at 3000 and 6000 function evaluations, where n = 5, β = 0.5 (see Equation

(14)), initial σ = 10−2, initial teval = 1. The graphs remain identical for any β > 0 given αt = 1.5
0.5
β . Upper left: function value of the distribution mean

f(x) (line with dots), and teval. Upper right: components of mean vector m. Lower left: coordinate-wise standard deviations σ ×
√

Cii, where Cii is the
i-th diagonal element of C. Lower right: square root of eigenvalues of C

are now narrowed down to the smaller black polygon. If this
result is compared to the last plot showing function evaluations
325-390 (3800-4800 s), the optimal values for the gain and
the delay are confirmed, but the cost function evaluated Leq

rises. This is in accord with the observation that the combustor
exhibits slowly rising sound pressure levels for λ = 2.1.

At run 395 (4800 s), the lambda value is changed to
λ = 1.875. This operating conditions exhibits less thermal
drift than the previous one. According to Fig. 9 the changing
operating conditions can clearly be discerned in the cost
function Leq. The algorithm finds a new minimum, where the
gain can be more negative for this case.

The evaluation time increases immediately again, indicating
no big improvement of the signal-to-noise ratio, even though
the controller is less close to its optimal regime. This suggests
that σ should be increased together with teval. The course of
σ supports this conjecture. It increases by a factor of three
and shows the adaptive capability of the algorithm. It takes
8 generations until the increase of σ appears, and we do not
know whether this reflects a sensible adaptation or whether σ
should have increased beforehand. Finally, the UH-CMA-ES
successfully adjusts the controller parameters to new improved
values, as shown in Fig. 7.

C. Experiment: H∞ Controller, Two Parameters Optimized,
λ = 1.875.

An H∞ controller has been designed for the operating con-
dition with λ = 1.875, where the goal was to simultaneously
decrease the three peaks at 250 Hz and around 330 Hz. In
order to keep the number of parameters small and to speed
up convergence, only the gain and the frequency shift are
optimized.

In the top plot of Fig. 10 the intervals for frequency shift,
[0.95, 1.05], and gains [0.4, 1.1], are mapped onto [0, 1]. The
comparatively good values for Leq in the beginning are related
to the short evaluation time. The shorter the evaluation time
is, the larger is its variation due to the uncertainty. Therefore
better values occur more often. The bottom plot shows the cost
function landscape. It is obtained by DACE, a Matlab toolbox
for working with kriging approximations, which has been
kindly provided by Hans Bruun Nielsen from the Technical
University of Denmark3. A second-order polynomial has been
used as regression model and a Gaussian correlation. For this
experiment with an H∞ controller, the cost function is flatter
than with the Gain-Delay controller, because the controller is
model-based, and thus already performs well. However, the
optimization shows that in order to decrease Leq, the gain has

3http://www2.imm.dtu.dk/∼hbn/dace/

PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 14

−3 −2.5 −2 −1.5 −1 −0.5
x 10−4

0.2

0.4

0.6

0.8

1

1.2

1.4

Gain

De
la

y
[m

s]

Leq; λ=2.1; f.evals 1−150 Leq [dB]

147.5

148

148.5

149

149.5

−3 −2.5 −2 −1.5 −1
x 10−4

0.2

0.4

0.6

0.8

1

1.2

1.4

Gain

De
la

y
[m

s]

Leq; λ=2.1; f.evals 150−250 Leq [dB]

147.5

148

148.5

149

149.5

−3 −2.5 −2 −1.5 −1
x 10−4

0.2

0.4

0.6

0.8

1

1.2

1.4

Gain

De
la

y
[m

s]

Leq; λ=2.1; f.evals 250−325 Leq [dB]

147.5

148

148.5

149

149.5

−3 −2.5 −2 −1.5 −1
x 10−4

0.2
0.4
0.6
0.8

1
1.2
1.4

Gain

De
la

y
[m

s]

Leq; λ=2.1; f.evals 325−390 Leq [dB]

147.5

148

148.5

149

149.5

Fig. 8. UH-CMA-ES optimization of a Gain-Delay controller for λ = 2.1,
heating up. Function evaluations, from top plot down: 1-150; 150-250; 250-
325; 325-390. Pentagrams show the best parameter set for each generation,
the larger they are, the later they have been acquired for each plot. The black
polygon is the convex hull of all controller parameter values tried in the given
time range.

−4 −3 −2 −1
x 10−4

0.2

0.4

0.6

0.8

1

1.2

1.4

Gain

De
la

y
[m

s]

Leq; λ=2.1; f.evals 395−900 Leq [dB]

146.8

147

147.2

147.4

147.6

147.8

Fig. 9. UH-CMA-ES optimization of a Gain-Delay controller for λ = 1.875.
Function evaluations 395− 740 (4900-9800 s), see Fig. 8 for explanations

to be reduced from the design value of 1 to about 0.7. This
is explained by the fact that the H∞-design process has been
laid out primarily to decrease the three peaks in the spectrum,
without special concern given to the reduction of Leq.

D. Experiment: H∞ Controller, Three Parameters Optimized,
λ = 1.875.

For the following experiment, three parameters are opti-
mized by the UH-CMA-ES, namely gain, frequency shift and
time delay of the H∞ controller.

The evolution of the parameters is shown in Fig. 11
(frequency shift interval [0.95, 1.05], gains [0.4, 1.1], delays
[1, 10]). Since the cost function takes three arguments, only
four cost function landscapes with fixed delays of 0.1 ms to
0.4 ms are shown in Fig. 12. The topmost plot corresponds to
the bottom plot of Fig. 10, where only frequency shift and gain
are adjusted, but the delay is kept at 0.1 ms for all experiments.
Gain and frequency shift have similar values but exhibit a
larger variation. The minimum Leq is lower for a delay of
0.2 ms, and even lower for a delay of 0.3 ms, while it increases
again for 0.4 ms (bottom plot).

The Bode plots of the designed and optimized H∞ con-
trollers are shown in Fig. 13. The superior performance of
the H∞ controller goes hand in hand with a more complex
shape. The optimized controller has nearly the same phase as
the designed one, but the gain is lower. Since the delay is
adjusted additionally, it is possible to move the controller in
the frequency domain keeping the same phase.

As a result for the operating condition characterized by λ =
1.875, the spectra achieved with the optimized Gain-Delay and
H∞ controllers are compared to the uncontrolled plant in Fig.
14. The Leq of the uncontrolled plant is 148.72 dB, the Gain-
Delay controller reduces it to 146.67 dB, and finally the H∞
controller reaches 146.16 dB, which is about 15% lower again.
Moreover, the H∞ controller is able to simultaneously push
down all three peaks and to attain the flattest spectrum. This is
achieved thanks to the model-based approach, conferring the
most design freedom to the engineer.

PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 15

0 1000 2000 3000 4000

145.8

146

146.2

Leq and teval

time [s]

Leq [dB]

0

5

10
teval [s]

Leq teval

0 1000 2000 3000 4000
0.2
0.4
0.6
0.8

1
1.2

controller parameters (2D)

time [s]

Freq. Shift
Gain

0 1000 2000 3000 4000

10−1

std in coordinates

time [s]

Freq. Shift
Gain

0 1000 2000 3000 4000
10−0.8

100.1
principal axes lengths of C

time [s]

axis 1
axis 2

0.4 0.6 0.8 10.96

0.98

1

1.02

1.04

Leq; λ=1.875

Gain

H ∞
 fr

eq
ue

nc
y

sh
ift

Leq [dB]

146.3

146.4

146.5

146.6

146.7

Fig. 10. Parameter evolution for the UH-CMA-ES optimization of a H∞
controller for λ = 1.875 (top) and the resulting cost function landscape
(bottom). Pentagrams show the best parameter set for each generation.

0 2000 4000 6000
146

146.2

146.4

Leq and teval

time [s]

Leq [dB]

0

5

10
teval [s]

Leq teval

0 2000 4000 6000
−0.5

0

0.5

1

controller parameters (3D)

time [s]

Freq. Shift
Gain
Delay

0 2000 4000 6000

10−1

std in coordinates

time [s]

Freq. Shift
Gain
Delay

0 2000 4000 6000
10−0.9

100
principal axes lengths of C

time [s]

axis 1
axis 2
axis 3

Fig. 11. Parameter evolution for the UH-CMA-ES optimization of a H∞
controller for λ = 1.875.

E. Experiment: H∞ Controller, Two Parameters Optimized,
λ = 2.1.

Finally, the UH-CMA-ES is used to improve an H∞ con-
troller designed for λ = 2.1. The parameter evolution is shown
in Fig. 15 at the top (frequency shift interval [0.95, 1.05],

0.4 0.6 0.8 10.95

1

1.05
Leq; delay 0.1 ms; λ=1.875

Gain

H ∞
 fr

eq
ue

nc
y

sh
ift

Leq [dB]

146.3

146.4

146.5

146.6

146.7

0.4 0.6 0.8 10.95

1

1.05
Leq; delay 0.2 ms; λ=1.875

Gain

H ∞
 fr

eq
ue

nc
y

sh
ift

Leq [dB]

146.3

146.4

146.5

146.6

146.7

0.4 0.6 0.8 10.95

1

1.05
Leq; delay 0.3 ms; λ=1.875

Gain

H ∞
 fr

eq
ue

nc
y

sh
ift

Leq [dB]

146.3

146.4

146.5

146.6

146.7

0.4 0.6 0.8 10.95

1

1.05
Leq; delay 0.4 ms; λ=1.875

Gain

H ∞
 fr

eq
ue

nc
y

sh
ift

Leq [dB]

146.3

146.4

146.5

146.6

146.7

Fig. 12. UH-CMA-ES optimization of an H∞ controller for λ = 1.875.
Delays from top plot down: 0.1–0.4 ms. Pentagrams show the best parameter
set for each generation.

PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 16

0 100 200 300 400 500

−80

−70

−60

C
(jω

)
dB

H∞ and CMA−ES

0 100 200 300 400 500
−π

0

π

Frequency [Hz]

∠
C(

jω
)

H∞ designed
H∞ CMA−ES

Fig. 13. Bode plots for the designed and the UH-CMA-ES-optimized
H∞ controllers for λ = 1.875. Amplitude (top) and phase (bottom) of the
controller.

gain interval [0.4, 1.1]), and the cost function landscape at
the bottom. A lower gain decreases Leq compared with the
designed controller with gain one, but the frequency shift
does not have a decisive effect. The final standard deviations
for gain and frequency shift differ by a factor of about
three (lower left of the top plot of Fig. 15) reflecting the
different sensitivities of the parameters. The Bode plots of the
designed and the optimized controllers are shown in Fig. 16.
The controller phase is quite flat and therefore tolerant against
frequency shifts. The combustor pressure spectrum exhibits
only one very distinct peak, and it suffices to provide the right
amount of gain and phase at this frequency.

To compare the UH-CMA-ES optimized Gain-Delay and
H∞ controllers with the uncontrolled plant, their spectra are
plotted in Fig. 17, the values of Leq are 159.87 dB, 147.48
dB and 147.35 dB, respectively. They are shown for the plant
which has been running for several hours and is thus heated up.
In this case, the H∞ controller performs only slightly better
than the Gain-Delay controller, but the control signal contains
about 10% less energy.

VII. SUMMARY AND OUTLOOK

We have presented a novel evolutionary optimization al-
gorithm (UH-CMA-ES) for problems with uncertainties. The
optimization algorithm consists of the well-known CMA-ES
enhanced by a novel uncertainty handling algorithm. The
evolutionary algorithm is applied to the online optimization of
feedback controllers in a combustor test rig. The uncertainties
are associated with the stochastic nature of the cost function
and, in the present application, with the online optimization
of the controller parameters.

0 100 200 300 400 500105

110

115

120

125

130

Frequency [Hz]

L ps
 [d

B]

Lps; λ=1.875

uncontrolled
Gain−Delay
H∞

Fig. 14. Comparison of the pressure spectra when the plant is uncontrolled,
Gain-Delay andH∞ controlled. Both controllers are UH-CMA-ES optimized,
λ = 1.875.

0 1000 2000 3000 4000

147
147.2
147.4
147.6
147.8

Leq and teval

time [s]

Leq [dB]

0

5

10
teval [s]

Leq teval

0 1000 2000 3000 4000
0

0.2
0.4
0.6
0.8

controller parameters (2D)

time [s]

Freq. Shift
Gain

0 1000 2000 3000 4000

10−1

std in coordinates

time [s]

Freq. Shift
Gain

0 1000 2000 3000 4000

100
principal axes lengths of C

time [s]

axis 1
axis 2

0.4 0.6 0.8 10.95

1

1.05
Leq; λ=2.1

Gain

H ∞
 fr

eq
ue

nc
y

sh
ift

Leq [dB]

147.4

147.6

147.8

148

148.2

148.4

148.6

148.8

Fig. 15. Parameter evolution for the UH-CMA-ES optimization of an H∞
controller for λ = 2.1 (top) and resulting cost function landscape (bottom).
Pentagrams show the best parameter set for each generation.

PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 17

0 100 200 300 400 500−90

−80

−70

C
(jω

)
dB

H∞ and CMA−ES

0 100 200 300 400 500
−π

0

π

Frequency [Hz]

∠
C(

jω
)

H∞ designed
H∞ CMA−ES

Fig. 16. The designed and the UH-CMA-ES-optimized H∞ controller for
λ = 2.1.

0 100 200 300 400 500100

110

120

130

140

Frequency [Hz]

L ps
 [d

B]

Lps; λ=2.1

uncontrolled
Gain−Delay
H∞

Fig. 17. Comparison of the uncontrolled with the Gain-Delay and H∞
controlled plant for λ = 2.1. Both controllers are optimized by UH-CMA-
ES.

The novel uncertainty-handling algorithm needs few addi-
tional cost function evaluations per generation and is therefore
well suited for online applications. The algorithm distinguishes
between uncertainty measurement and uncertainty treatment.
The uncertainty measurement is based on rank changes in-
duced by reevaluations of solutions. Two adaptive uncertainty
treatments are proposed: increasing the time for evaluating the
controller up to a prescribed bound, and increasing the pop-
ulation diversity. Both treatments improve the signal-to-noise
ratio. The former reduces the uncertainty variance comparable
to resampling of solutions, while the latter improves the signal

term without additional function evaluations and with only
minor computational effort.

The algorithm has been validated on test functions and it
has been applied to the optimization of feedback controllers
of thermoacoustic instabilities, using secondary fuel injection
in a combustor test rig. The controllers employ Gain-Delay
and H∞ control and their parameters have been optimized
online with the introduced UH-CMA-ES. The experiments
show that the algorithm can optimize different controller types
and can cope with changing operating conditions and high
levels of uncertainty. Our results indicate that model-based
H∞ controllers perform best, and that they can be further
improved through the use of the UH-CMA-ES. The optimized
solutions deviate significantly from the originally designed
solutions and can make up for uncertainties in the model-
building and design process, as well as for time-varying plant
characteristics.

Future work will include the acceleration of the self-tuning
process for the combustion control. First, algorithm internal
parameter settings can be improved and be specifically ad-
justed to the small dimensionality of the problem. Second, the
implementation on a test rig can be improved to shorten the
ramping times which are by far the most time consuming part
in the initial phase of the controller tuning process. Further-
more in the context of the UH-CMA-ES a more informed way
of selecting the appropriate uncertainty treatment can shorten
the adaptation time considerably, in particular if the evaluation
time can be reduced for a longer time interval.

VIII. ACKNOWLEDGMENTS

Support by Daniel Fritsche during the experimental phases
and assistance by Caroline Metzler for the technical illustra-
tions is gratefully acknowledged. The authors thank David
Charypar for the valuable suggestions and Stefan Kern for
providing supporting data. Fruitful discussions with Bruno
Schuermans and financial support from ALSTOM (Switzer-
land) Ltd. are gratefully acknowledged.

REFERENCES

[1] M. Ahmad, L. Zhang, and J. Readle. On-line genetic algorithm
tuning of a pi controller for a heating system. In Proceedings of
GALESIA—genetic algorithms in engineering systems: innovations and
applications, pages 510–515, 1997.

[2] A. Aizawa and B. Wah. Scheduling of genetic algorithms in noisy
environment. Evolutionary Computation, pages 97–122, 1994.

[3] A. M. Annaswamy and A. F. Ghoniem. Active control of combustion
instability: Theory and practice. IEEE Control Systems Magazine,
22(6):37–54, 2002.

[4] D. Arnold. Weighted multirecombination evolution strategies.
Theoretical Computer Science, 1(361):18–37, 2006.

[5] D. V. Arnold. Noisy Optimization with Evolution Strategies, volume 8.
Kluwer, Boston, 2002.

[6] D. V. Arnold and H.-G. Beyer. Local performance of the (µ/µi, λ)-
es in a noisy environment. In W. Martin and W. Spears, editors,
Foundations on Genetic Algorithms FOGA, pages 127–142. Morgan
Kaufmann, 2000.

[7] A. Auger and N. Hansen. Performance evaluation of an advanced local
search evolutionary algorithm. In Proceedings of the IEEE Congress on
Evolutionary Computation, 2005.

[8] A. Banaszuk, K. B. Ariyur, M. Krstić, and C. A. Jacobson. An
adaptive algorithm for control of combustion instability. Automatica,
40(11):1965–1972, 2004.

PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 18

[9] H.-G. Beyer. Toward a Theory of Evolution Strategies: Some Asymp-
totical Results from the (1,+ λ)-Theory. Evolutionary Computation,
1(2):165–188, 1993.

[10] H.-G. Beyer. Evolutionary Algorithms in Noisy Environments: Theoret-
ical Issues and Guidelines for Practice. Computer Methods in Applied
Mechanics and Engineering, 186(2–4):239–267, 2000.

[11] H.-G. Beyer and D. Arnold. Qualms regarding the optimality of cumula-
tive path length control in CSA/CMA-evolution strategies. Evolutionary
Computation, 11(1):19–28, 2003.

[12] H.-G. Beyer and K. Deb. On self-adaptive features in real-parameter evo-
lutionary algorithms. IEEE Transactions on Evolutionary Computation,
5(3):250–270, 2001.

[13] R. Blonbou, A. Laverdant, S. Zaleski, and P. Kuentzmann. Active
adaptive combustion control using neural networks. Combustion Science
and Technology, 156:25–47, 2000.

[14] J. Branke. Creating robust solutions by means of evolutionary algo-
rithms. In A. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel,
editors, Parallel Problem Solving from Nature—PPSN V, Proceedings,
pages 119–128. Springer, Berlin, 1998.

[15] J. Branke and C. Schmidt. Selection in the presence of noise. In
E. Cantu-Paz, editor, Genetic and Evolutionary Computation Conference
(GECCO’03), pages 766–777. LNCS 2273, Springer, JUL 2003.

[16] J. Branke and C. Schmidt. Selection in the presence of noise. In
G. Goos, J. Hartmanis, and J. van Leeuwen, editors, Genetic and
Evolutionary Computation Conference, GECCO, Proceedings, pages
766–777. Springer, 2003.

[17] J. Branke, C. Schmidt, and H. Schmeck. Efficient fitness estimation
in noisy environments. In Genetic and Evolutionary Computation
Conference (GECCO). Morgan Kaufmann, 2001.

[18] E. Cantu-Paz. Adaptive sampling for noisy problems. In K. e. a.
Deb, editor, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2004), pages 947–958, Berlin Heidelberg, 2004.
Springer.

[19] A. Chipperfield and P. Fleming. Multiobjective gas turbine engine
controller design using genetic algorithms. IEEE Transactions on
Industrial Electronics, 43(5):583–587, 1996.

[20] N. V. Dakev, J. F. Whidborne, A. J. Chipperfield, and P. J. Flem-
ing. Evolutionary H-infinity design of an electromagnetic suspension
control system for a maglev vehicle. Proceedings of the Institution
of Mechanical Engineers Part I- Journal of Systems and Control
Engineering, 211(5):345–355, 1997.

[21] A. P. Dowling and A. S. Morgans. Feedback control of combustion
oscillations. Annual Review Of Fluid Mechanics, 37:151–182, 2005.

[22] S. Evesque. Adaptive Control of Combustion Oscillations. PhD thesis,
University of Cambridge, 2000.

[23] S. Evesque, A. M. Annaswamy, S. Niculescu, and A. P. Dowl-
ing. Adaptive control of a class of time-delay systems. Journal of
Dynamic Systems Measurement and Control-Transactions of the ASME,
125(2):186–193, 2003.

[24] S. Evesque, A. P. Dowling, and A. M. Annaswamy. Self-tuning
regulators for combustion oscillations. Proceedings of the Royal Society
of London Series A- Mathematical Physical and Engineering Sciences,
459(2035):1709–1749, 2003.

[25] P. J. Fleming and R. C. Purshouse. Evolutionary algorithms in
control systems engineering: a survey. Control Engineering Practice,
10(11):1223–1241, 2002.

[26] U. Hammel and T. Bäck. Evolution strategies on noisy functions: How
to improve convergence properties. In Y. Davidor, H.-P. Schwefel,
and R. Männer, editors, Proceedings of theInternational Conference
on Evolutionary Computation, theThirdConference on Parallel Problem
Solving from Nature(PPSN III), volume 866, pages 159–168, Jerusalem,
9–14 1994. Springer.

[27] N. Hansen. Verallgemeinerte individuelle Schrittweitenregelung in der
Evolutionsstrategie. Mensch und Buch Verlag, Berlin, 1998.

[28] N. Hansen and S. Kern. Evaluating the CMA evolution strategy on mul-
timodal test functions. In X. Yao et al., editors, Parallel Problem Solving
from Nature - PPSN VIII, LNCS 3242, pages 282–291. Springer, 2004.

[29] N. Hansen, S. D. Müller, and P. Koumoutsakos. Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES). Evolutionary Computation, 11(1):1–18,
2003.

[30] N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation
distributions in evolution strategies: The covariance matrix adaptation. In
Proceedings of the 1996 IEEE Conference on Evolutionary Computation
(ICEC ’96), pages 312–317, 1996.

[31] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation
in evolution strategies. Evolutionary Computation, 9(2):159–195, 2001.

[32] G. Harik, E. Cantu-Paz, D. E. Goldberg, and B. L. Miller. The gambler’s
ruin problem, genetic algorithms, and the sizing of the populations.
Evolutionary Computation, 7:231–253, 1999.

[33] Y. Jin and J. Branke. Evolutionary optimization in uncer-
tain environments—a survey. IEEE Transactions on Evolutionary
Computation, 9(3):303–318, 2005.

[34] S. Kern, N. Hansen, and P. Koumoutsakos. Local meta-models for
optimization using evolution stratgies. In T. P. Runarsson et al., editors,
Parallel Problem Solving from Nature—PPSN IX, Proceedings, pages
939–948. Springer, 2006.

[35] M. Krstić, A. Krupadanam, and C. Jacobson. Self-tuning control of
a nonlinear model of combustion instabilities. IEEE Transactions on
Control Systems Technology, 7(4):424–436, 1999.

[36] T. L. Lai, H. Robbins, and K. F. Yu. Adaptive choice of mean or median
in estimating the center of a symmetric distribution. Proc. Natl. Adac.
Sci., 80(18):5803–5806, 1983.

[37] A. H. Lefebvre. Gas turbine combustion. Taylor and Francis, Philadel-
phia, 2nd edition, 1999.

[38] T. Lieuwen and V. Yang. Combustion Instabilities in Gas Turbine
Engines: Operational Experience, Fundamental Mechanisms, And
Modeling. Progress in Astronautics and Aeronautics, Vol. 210. AIAA,
2005.

[39] D. A. Linkens and H. O. Nyongesa. Genetic Algorithms For
Fuzzy Control.1. Offline System-Development And Application. Iee
Proceedings-Control Theory And Applications, 142(3):161–176, 1995.

[40] D. A. Linkens and H. O. Nyongesa. Genetic Algorithms For
Fuzzy Control.2. Online System-Development And Application. Iee
Proceedings-Control Theory And Applications, 142(3):177–185, 1995.

[41] L. Ljung. System Identification, Theory for the User. Prentice Hall,
2nd edition, 1999.

[42] S. Markon, D. V. Arnold, T. Baeck, T. Beielstein, and H.-G. Beyer.
Thresholding - a selection operator for noisy ES. In Proceedings of the
2001 Congress on Evolutionary Computation CEC2001, pages 465–472,
COEX, World Trade Center, 159 Samseong-dong, Gangnam-gu, Seoul,
Korea, 27-30 2001. IEEE Press.

[43] H. Moriyama and K. Shimizu. On-line optimisation of culture tem-
perature for ethanol fermentation using a genetic algorithm. Journal of
Chemical Technology and Biotechnology, 66(3):217–222, 1996.

[44] A. S. P. Niederberger, B. B. H. Schuermans, and L. Guzzella. Modeling
and active control of thermoacoustic instabilities. In 16th IFAC World
Congress, Prague, 2005.

[45] N. S. Nise. Control systems engineering. Bejamin/Cummings Pub. Co.,
Redwood City, Calif., 2nd edition, 1995. Norman S. Nise. ill.; 24 cm.

[46] C. O. Paschereit and E. Gutmark. Proportional control of combustion
instabilities in a simulated gas-turbine combustor. Journal of Propulsion
and Power, 18(6):1298–1304, 2002.

[47] C. O. Paschereit, E. Gutmark, and W. Weisenstein. Coherent structures
in swirling flows and their role in acoustic combustion control. Physics
of Fluids, 11(9):2667–2678, 1999.

[48] C. O. Paschereit, B. B. H. Schuermans, and D. Büche. Combustion
process optimization using evolutionary algorithm. In 2003 ASME
Turbo Expo, volume 2, pages 281–291, Atlanta, USA, 2003. ASME,
International Gas Turbine Institute.

[49] C. O. Paschereit, B. B. H. Schuermans, and D. U. Campos Delgado.
Active combustion control using an evolution algorithm. In 39th
Aerospace Sciences Meeting and Exhibit, Reno, USA, 2001.

[50] L. Rayleigh. The explanation of certain acoustical phenomena. Nature,
18:319:321, 1878.

[51] I. Rechenberg. Evolutionsstrategie &94. Frommann-Holzboog, 1994.
[52] A. J. Riley, S. Park, A. P. Dowling, S. Evesque, and A. M. Annaswamy.

Adaptive closed-loop control on an atmospheric gaseous lean-premixed
combustor. In 2003 ASME Turbo Expo, volume 2, pages 347–358,
Atlanta, USA, 2003. ASME, International Gas Turbine Institute.

[53] A. J. Riley, S. Park, A. P. Dowling, S. Evesque, and A. M. An-
naswamy. Advanced closed-loop control on an atmospheric gaseous
lean-premixed combustor. Journal Of Engineering For Gas Turbines
And Power-Transactions Of The ASME, 126(4):708–716, 2004.

[54] Y. Sano and H. Kita. Optimization of noisy fitness functions by means
of genetic algorithms using history of search. In M. Schoenauer, K. Deb,
G. Rudolph, X. Yao, E. Lutton, J. J. M. Guervós, and H.-P. Schwefel,
editors, PPSN, volume 1917 of Lecture Notes in Computer Science,
pages 571–580. Springer, 2000.

[55] B. B. H. Schuermans. Modeling and Control of Thermoacoustic
Instabilities. PhD thesis, Ecole Polytechnique Fédérale de Lausanne,
Switzerland, 2003.

PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 19

[56] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control:
Analysis and Design. John Wiley and Sons Ltd., Chichester, New York,
1996.

[57] J. Spall. Introduction to Stochastic Search and Optimization. John
Wiley & Sons, Inc. New York, NY, USA, 2003.

[58] P. Stagge. Averaging efficiently in the presence of noise. In A. Eiben,
T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem
Solving from Nature—PPSN V, Proceedings, pages 109–118, Amster-
dam, 1998. Springer, Berlin.

PAPER DRAFT, FINAL VERSION ACCEPTED FOR PUBLICATION TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 20

APPENDIX

A. Matlab Implementation of the Uncertainty Measurement

function [s ranks rankDelta] = uncertaintymeasurement(arf1, arf2, lamreev, theta)
%
% Input:
% arf1, arf2 : two 1xlambda arrays of function values, two values for
% each individual of the population. The first lamreev values in
% arf2 are new (re-)evaluations of the respective individual.
% lamreev: number of reevaluated individuals in arf2
% theta : parameter theta for the rank change limit
%
% Using: prctile function from statistics toolbox.
%
% Output:
% s : uncertainty measurement, s>0 means the uncertainty measure is above the
% acceptance threshold
% ranks : 2xlambda array of ranks of arf1 and arf2 in the set
% [arf1 arf2], values are in [1:2*lambda]
% rankDelta: 1xlambda array of rank movements of arf2 compared to
% arf1. rankDelta(i) agrees with the number of values from
% [arf1 arf2] that lie between arf1(i) and arf2(i).

%%% verify input argument sizes
if size(arf1,1) ˜= size(arf2,1)

error(’arf1 and arf2 must agree in size 1’);
elseif size(arf1,2) ˜= size(arf2,2)

error(’arf1 and arf2 must agree in size 2’);
elseif size(arf1,1) ˜= 1

error(’arf1 and arf2 must be an 1xlambda array’);
end
lam = size(arf1,2);

%%% compute rank changes into rankDelta
% compute ranks
[ignore idx] = sort([arf1 arf2]);
[ignore ranks] = sort(idx);
ranks = reshape(ranks, lam, 2)’;

rankDelta = ranks(1,:) - ranks(2,:) - sign(ranks(1,:) - ranks(2,:));

%%% compute rank change limits using both ranks(1,...) and ranks(2,...)
for i = 1:lamreev

sumlim(i) = ...
prctile(abs((1:2*lam-1) - (ranks(1,i) - (ranks(1,i)>ranks(2,i)))), ...

theta*50) ...
+ prctile(abs((1:2*lam-1) - (ranks(2,i) - (ranks(2,i)>ranks(1,i)))), ...

theta*50);
end

%%% compute measurement
s = mean(2*abs(rankDelta(1:lamreev)) - sumlim);

