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Abstract: We combine a refined version of two-point step-size adaptation with
the covariance matrix adaptation evolution strategy (CMA-ES). Additionally,
we suggest polished formulae for the learning rate of the covariance matrix and
the recombination weights. In contrast to cumulative step-size adaptation or to
the 1/5-th success rule, the refined two-point adaptation (TPA) does not rely on
any internal model of optimality. In contrast to conventional self-adaptation, the
TPA will achieve a better target step-size in particular with large populations.
The disadvantage of TPA is that it relies on two additional objective function
evaluations.
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CMA-ES with Two-Point Step-Size Adaptation 3

1 Introduction

In the Covariance Matrix Evolution Strategy (CMA-ES) [8] two separate adap-
tation mechanism are performed to determine variances and covariances of the
search distribution. One for (overall) step-size control, a second for adapta-
tion of a covariance matrix. The mechanisms are mainly independent and can
therefore, in principle, be replaced separately. While the standard step-size con-
trol is cumulative step-size adaptation (CSA), also a success-based control was
successfully introduced for the (1+λ)-CMA-ES in [9].

The CSA has a few drawbacks.� For very large noise levels the target step-size becomes zero, while the
optimal step-size is still positive [2].� For large population sizes (λ > 10 n) the original parameter setting seemed
not to work properly [6]. An improved setting shortens the backward time
horizon for the cumulation and performs well also with large population
sizes [5]. Nonetheless, we tend to conclude that the notion of tracking a
(long) path history does not mate well with a large population size (large
compared to the search space dimension).� The expected value for the displacement of the population mean under
random selection is required. For this reason, the principle axes of the
search distribution are in demand, but they are more expensive to acquire
than a simple matrix decomposition. The latter is necessary to sample a
multivariate normal distribution with given covariance matrix.

Despite these disadvantages, CSA is regarded as first choice for step-size
control in the (µ/µw, λ)-ES, but nonetheless they rise motivation to search for
alternatives. Here, we suggest two-point step-size adaptation (TSA) as one such
alternative.

Two-point self-adaptation was introduced for backpropagation in [11] and
later applied in Evolutionary Gradient Search [10]. In evolutionary search, two-
point adaptation resembles self-adaptation on the population level. Two dif-
ferent step lengths are tested for the mean displacement and the better one is
chosen. In the next section, we integrate a slightly refined TSA in the CMA-
ES additionally using polished formulae for the recombination weights and the
learning rates of the covariance matrix.

2 The Algorithm: CMA-ES with TPA

Our description of the CMA-ES closely follows [3, 5, 7] and replaces CSA with
TSA. Given an initial mean value m ∈ R

n, the initial covariance matrix C = I
and the initial step-size σ ∈ R+, the new candidate solutions xk obey

xk = m + σ yk, for k = 1, . . . , λ , (1)
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4 Nikolaus Hansen

where yk ∼ N (0, C) denotes the realization of a normally distributed random
vector with zero mean and covariance matrix C. The solutions xk are evaluated
and ranked such that xi:λ becomes the i-th best solution vector and yi:λ the
corresponding random vector realization.

For µ < λ let

〈y〉 =

µ
∑

i=1

wiyi:λ, w1 ≥ · · · ≥ wµ > 0,

µ
∑

i=1

wi = 1 (2)

be the weighted mean of the µ best ranked yk vectors. The recombination
weights sum to one. The variance effective selection mass is defined as

µw =

∑µ

i=1
wi

∑µ

i=1
w2

i

=
1

∑µ

i=1
w2

i

≥ 1 . (3)

From the definition follows that 1 ≤ µw ≤ µ and µw = µ for equal recombination
weights. The role of µw is analogous to the role of the parent number µ when the
recombination weights are all equal. Usually µw ≈ λ/4 is appropriate. Weighted
recombination is discussed in more detail in [1].

We compute two additional objective function values,

f+ = f(m + exp(α)σ 〈y〉) (4)

f− = f(m + (2− exp(α))σ 〈y〉) , (5)

where f is the objective function to be minimized, and α ≈ 0.5 6≫ ln(2) is the
step-size change parameter. The factor 2 − exp(α) in Equation 5 is chosen
due to geometrical symmetry considerations. Step-size changes on the one hand
should be multiplicative. A factor exp(±α) should be used to realize changes
of σ, which is symmetric in the log scale. In contrary, using those factors for
generating test steps extends one direction, exp(+α), further than the other,
exp(−α). Assuming the most simple spherical objective function model and
optimal step-size, i.e. f(m+σ〈y〉) is minimal for the given σ, the larger test step
is disfavored and the step-size will be systematically decreased. Target step-size
and optimal step-size disagree. On simple functions, like the sphere model, this
effect might even lead to an performance improvement, because the optimum
can be approached quickly and therefore the optimal step-size decreases fast.
The sub-optimal target step-size “anticipates” this change. Nevertheless, in
general, we tend to favor an agreement of target and optimal step-size.

In the remainder, the generation step is completed with the updates of m,
σ, and C, where two additional state variables will be introduced, αs ∈ R and
pc ∈ R

n.

The mean The distribution mean is updated according to

m←m + σ 〈y〉 . (6)
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CMA-ES with Two-Point Step-Size Adaptation 5

Given σ from Equation (1), Equation (6) can also be written as

m←

µ
∑

i=1

wixi:λ . (7)

Step-size control: Two-Point Adaptation (TPA) A two-point self-adap-
tive scheme is implemented based on [10]. Two different step lengths were tested
in Equations (4) and (5). Here, the step-size is changed toward the better. Using
the values f+ and f− we have

αact =

{
−α + β < 0, if f− is better (smaller) than f+

α > 0, otherwise
(8)

Initializing αs = 0, the new step-size is calculated according to

αs ← (1− cα)αs + cααact (9)

σ ← σ × exp

(
αs

dα

)

(10)

where 1/cα ≥ 1 determines the backward time horizon for smoothing the step-
size changes in the generation sequence, and damping dα ≥ 1 controls the
magnitude of realized changes of σ.

Following [10], the update of m in Equation (6) could be postponed until
after the step-size is updated in Equation (10). Whether or not this results
in a better m cannot be decided without additional costs, because neither the
original step-size nor the updated step-size (given cα < 1 or dα > 1) are tested.
Equation (7) would not hold anymore. Empirically, using the new step-size leads
to slightly higher convergence rates in norm optimization (sphere function) in
small dimensions.

The two-point step-size adaptation described here differs from [10] in that
smoothing and damping are introduced and the original step-size is used for
updating m. Setting α = ln(1.8) ≈ 0.588, β = 0, cα = 1 and dα = 1, replacing
2−exp(α) with exp(−α) in Equation (5) and using the new step-size for updating
m, recovers the step-size adaptation from [10]. We do not expect an essentially
different behavior due to our refinements in most cases.

Covariance Matrix Adaptation (CMA) The covariance matrix admits a
rank-one and a rank-µ update. For the rank-one update an evolution path pc

is constructed.

pc ← (1− cc)pc + hσ

√

cc(2− cc)µw 〈y〉 (11)

C ← (1− c1 − cµ)C + c1 pcp
T
c

︸ ︷︷ ︸

rank-one update

+ cµ

µ
∑

i=1

wiyi:λyT
i:λ

︸ ︷︷ ︸

rank-µ update

, (12)
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6 Nikolaus Hansen

where hσ = 0 if αs > (1 − (1 − cα)9)(1 − (1 − cα)g)α, and 1 otherwise, where
g is the generation counter. The update of pc is stalled when αs is large. The
stall is decisive after a change in the environment which demands a significant
increase of the step-size. Fast changes of the distribution shape are postponed
until after the step-size has increased to a reasonable value.

For the covariance matrix update, the cumulation in (11) serves to capture
dependencies between consecutive steps. Dependency information would be lost
for cc = 1, because a change in sign of pc or yi:λ does not matter in (12).

Parameters The default values for all parameters are shown in Table 1. The
changes of parameters compared to [3, 5, 7] are minor polishings.

Recombination weights Compared to [3, 5, 7], where µ′ = ⌈(λ − 1)/2⌉ we
have chosen µ′ = (λ − 1)/2. The small difference occurs only for even
λ. In the former version, given odd population size λ, the recombination
weights did not change when λ was reduced by one. In the present version
the recombination weights always adjust to changes of λ.

c1 and cµ are the learning rates for the rank-one and rank-µ update of the
covariance matrix respectively. In [3, 5, 6, 7], a learning rate ccov ≈ c1+cµ

is used such that c1 ≈ ccov/µcov and cµ ≈ ccov(µcov−1)/µcov. In the former
formulation, c1 was almost two times smaller for values of µcov ≈ 2 than
for µcov = 1 and did not monotonously decrease with larger µcov.

cα determines the smoothing of αs. Smoothing and damping suppress stochastic
fluctuations of σ. In contrast to damping, the smoothing does not affect
the maximal possible change rate for σ. For cα ≥ 0.5 we have αactαs > 0.
Signs of the recent measurement and the actual change always agree and
the smoothing cannot lead to oscillations. For cα ≥ 0.3 only after a
second agreeing measure for αact we have always αactαs > 0. Even smaller
values for cα might be useful, but for much smaller values, presumably the
damping must be chosen more carefully.

dα is the damping parameter and not in use by default. Arguably, for smaller
cα the damping must be increased.

β is the bias parameter for the step-size change. On potentially noisy or highly
rugged functions β should be set to 0.1 which results in an effective noise
handling.

3 Empirical Validation

In empirical investigations of the TPA-CMA-ES, we find the expected, feasible
behavior. The comparison with CSA shows no clear winner. Depending on the
objective function either TPA or CSA is faster, but the factor is seldom larger
than two. Surprisingly, in our exploratory simulations, there is no clear winner

INRIA
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Table 1: Default Strategy Parameters of the CMA-ES, where n is the problem

dimension and µw

def
= 1

∑µ

i=1
w2

i

. The previously defined learning rate [4] amounts

to ccov ≈ c1 + cµ

Selection and recombination:

λ = 4 + ⌊3 lnn⌋, µ′ =
λ− 1

2
, µ = ⌈µ′⌉,

wi =
ln(µ′ + 1)− ln i

∑µ

j=1
(ln(µ′ + 1)− ln j)

for i = 1, . . . , µ,

Step-size control:

α = 0.5, β = 0, cα = 0.3, dα = 1

Covariance matrix adaptation:

cc =
4

n + 4
, µcov = µw

c1 =
2

(n + 1.3)2 + µcov

, cµ = min

(

2
µcov − 2 + 1

µcov

(n + 2)2 + µcov

, 1− c1

)

depending on dimension or population size or noise. On noisy functions, setting
β = 0.1 for TPA is quite effective, while we observe only a minor effect from this
change otherwise. We did not extensively try to exploit potential weaknesses (as
has been done for CSA), but we suspect that the TPA is a feasible and robust
alternative to CSA.

4 Conclusion and Outlook

We see some principle advantages of using two-point step-size adaptation
(TPA) in the CMA-ES.� The TPA does not rely on a predefined optimality condition, like a success

rate of 1/5 or conjugate-perpendicularity of consecutive steps.� The TPA does not rely on specific properties of the sample distribution
or the selection of solutions. Therefore, it is supposably less sensitive to
any modifications of the underlying algorithm, in particular compared to
CSA.
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8 Nikolaus Hansen� The step-size change rate can be adjusted mainly independently from
TPA-internal considerations. Time averaging or damping are not essen-
tially necessary.

Even so, we see two principle disadvantages of TPA.� Two additional function evaluations are needed per iteration step. This
is not a grave disadvantage, in particular when the population size is not
very small. As a remedy, these two points could be incorporated in the
population and used to compute the (final) mean in Equation (7), while
they are of limited use in the rank-µ update of the covariance matrix.� Step-size control is based on two objective function evaluations only. Selec-
tion information from the remaining population (and history information)
is somewhat disregarded. This is a conceptional defect, that might be
irrelevant in practice.

In conclusion, two-point step-size adaptation is an alternative to cumulative
step-size adaptation well worth of further exploration. Whether and when it
should finally replace CSA in practice must be answered in future empirical
studies.
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