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The Spike-and-reset dynamics for non-linear
integrate-and-fire neuron models

Résumeé : Non-linear integrate and fire neuron models introduced in [22], such as Izhi-
kevich and Brette-Gerstner neuron models, are hybrid dynamical systems, defined both by
a continuous dynamics, the subthreshold behavior, and a discrete dynamics, the spike and
reset process. Interestingly enough, the reset induces in bidimensional models behaviors
only observed in higher dimensional continuous systems (bursting, chaos,...). The subthre-
shold behavior (continuous system) has been studied in previous papers. Here we study the
discrete dynamics of spikes. To this purpose, we introduce and study a Poincaré map which
characterizes the dynamics of the model. We find that the behavior of the model (regular
spiking, bursting, spike frequency adaptation, bistability, ...) can be explained by the dyna-
mical properties of that map (fixed point, cycles...). In particular, the sytem can exhibit a
transition to chaos via period doubling, which was previously observed in Hodgkin-Huxley
models and in Purkinje cells.

Mots-clés : Pas de motclef
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Introduction

This introduction has to be changed: copied from SIAP paper

During the past few years, the neuro-computing community has made a huge effort to find
a computationally simple and biologically realistic model of neuron. Indeed, there is more
and more need to to compare experimental recordings with numerical simulations of large-
scale brain models. The key problem is to find a model of neuron realizing a compromise
between its simulation efficiency and its ability to reproduce what is observed at the cell
level, often considering in-vitro experiments [12 201.

Among the numerous neuron models, from the detailed Hodgkin-Huxley model [9] still
considered as the reference, but unfortunately computationally intractable when considering
neuronal networks, down to the simplest integrate and fire model [7] very effective compu-
tationally, but unrealistically simple and unable to reproduce many behaviors observed, two
models seem to stand out [T2]: the adaptive quadratic (Izhikevich, [I], and related models
such as the the theta model with adaptation [l B]) and exponential (Brette and Gerstner,
[0]) neuron models. These models are based on the viewpoint that neurons are excitable
systems and that the main effect to model is the transition from silence to spike. These
models all fit in a general class of nonlinear bidimensional neuron models sharing common
properties, introduced in [22]. Models of this class are computationally almost as efficient
as the linear integrate and fire model. They are also biologically plausible, and reproduce
several important neuronal regimes with a good adequacy with biological data, especially in
high-conductance states, typical of cortical in-vivo activity. One of these models has recently
been used in order to simulate a large scale brain model (see [I3]).

These models are spiking models. They are defined by a subthreshold dynamics defined
by a continuous dynamical system, which has been studied in [22]. It is also defined by a
spiking process, which defines the spike emission and adaptation in the neuron. As observed
in [T, M 22], these systems show very interesting dynamics which cannot exist in two
dimensional continuous dynamical systems, such as bursting and chaos. These effects are
directly linked with the spiking process.

The aim of this paper is to study this spiking process, to get a grasp on the different ob-
served behaviors, and to get insights on the ranges of parameters to obtain a given behavior.
In the first section of this paper, we introduce the model we study and basic definitions which
will be useful in the rest of the paper. We then introduce a Poincaré function describing
this spiking dynamics, and characterize some of its principal features, in the general case.
We then find some simple conditions on ® to get regular spiking, spike frequency adaptation
and mixed mode. We then describe some simple features on this function directly linked
with bursting solutions. Transient behaviors such as phasic spiking or bursting are not
studied here. We then give an interpretation of the different kinds of excitability observed
in the model. The third section is linked with results which had been not yet observed so
far as we know: these models present chaotic spiking activity. The route to this chaotic
activity is a period doubling cascade, as previously observed in Hodgkin-Huxley model and
in intracellular recordings of the Prukinje cell.

RR n°1



4 Touboul & Brette

1 Basic definitions

In this paper we consider a nonlinear integrate neuron model of the class of models introduced
in [22]. This class includes for instance the adaptive exponential integrate-and-fire model
[M], the quadratic adaptive model [IT], and the quartic adaptive model [22]. This model is
described by a nonlinear subthreshold dynamics of type:

{g—g_F(v)—w+I w1

dw = a(bv — w)

where a,b and I are real parameters and F is a real function satisfying the following as-
sumptions (see [22]:

Assumption (A1l). F' is at least three times continuously differentiable.
Assumption (A2). The function F is strictly conve.

Assumption (A3).
lim F'(z) <0

r——00
lim F'(z) =400
Tr——+00

In this equation, v represents the membrane potential of the neuron, w is the adaptation
variable, I represents the input intensity of the neuron, 1/a the characteristic time of the
adaptation variable and b accounts for the interaction between the membrane potential and
the adaptation variable .

We also assume there exists € > 0 such that F grows faster than v'*¢ when v — co. In
this case, the solution of first equation (with a constant w) can blow up in finite time. If
the solution of the two-dimensional equation blows up at time t*, we consider that a spike
is emitted, and subsequently we have the following reset process:

v(t*) = vy (12)
w(t*) =wt*") +d '

+e

where v,. is the constant value of the reset of the membrane potential and d > 0 a real
parameter accounting for the adaptation.

Proposition 1.1. The equations () and ([CJ), together with initial conditions (vg, wy)
give us the existence and uniqueness of a forward solution on R*.

Proof. Because of the regularity condition Cauchy-Lipschitz theorem of existence and
uniqueness of solution applies untill the solution blows up. If the solution keeps bounded,
then we have existence and uniqueness of solution. If the solution blows up at time t*, then
we are reset to a unique point, defined by the reset condition and we are again in the
case we already treated, hence we have existence and uniqueness of forward solution. O

!Brette and Gerstner [I] made a great effort in relating these constant to known biological constants, and
obtain a good fit with biological recordings.

INRIA



The Spike-and-reset dynamics for non-linear integrate-and-fire neuron models. 5

This system is an hybrid dynamical system: it is defined by both a continuous time dy-
namical system given by the equations ([Il) and a discrete dynamical system called the spike
and reset mechanism, given by the equations (L), with five real parameters (a, b, I, v,., d).
The parameters (a,b, I) govern the subthreshold dynamics, while the parameters v, and d
govern the spike and reset mechanism. In the article [22], the author studies the bifurcations
of the subthreshold dynamics with respect to these three parameters. It appears that a is
not a bifurcation parameter, and that the system undergoes a subcritical Bogdanov-Takens
bifurcation. He also shows that under a simple condition on F' the model can undergo a
Bautin bifurcation. This analysis accounts for the subthreshold behavior of the neuron,
and for instance explains the existence for self-sustained subthreshold oscillations when the
model undergoes a Bautin bifurcation.

Nevertheless, this former study does not explain the spiking behaviors of the neuron,
which are governed by the spike and reset mechanism. One of the greatest computational
property is contained in the spike sequence. In the present paper we adress the question of
characterizing these behaviors.

Because of existence and uniqueness of solution obtained in proposition [[l, we conclude
that the whole dynamics between two spikes depends only on the initial condition of the
neuron, (v,,wp). The differences in the spikes emitted is hence governed by the sequence of
reset positions of the adaptation variable w. If there is a finite number of spikes, this means
that the neuron stops firing after a while, which means that the trajectory of the neuron
remains bounded in finite time. This behavior can be thus explained by the subthreshold
dynamics after a spiking transient, and this is why it will not be our first interest in this
paper.

We will be in this paper mainly interested in the case when there are infinitely many
spikes emitted by the neuron. In this case, one of our main tool to qualify the dynamics will
be the Poincaré map governing the evolution of the adaptation reset point.

Let us defined by D the domain of w such that the solution of ([[CIl) with initial condition
(vp, wo) blows up in finite time.

Definition 1.1. Let wy € D, and denote (v(t),w(t)) the solution of ([Il) with initial
condition (v,,wq) and ¢* the blowing time of v. The Poincaré map ® is the unique function
such that

D (wy) = w(t*) +d

Remark 1. Assume that in the dynamical system defined by (Il) have a repetitive firing
(i.e. it fires after any given time T"). Then let (¢, ),>0 be the sequence of spike times, and We
define the sequence of adaptation reset points by w, = w(t,) = w(t, ) + d. The Poincare
map of this dynamical system is the function ® such that

D(wy) = Wpi1

Hence we will be able to apply techniques of nonlinear analysis of iterations of maps to study
the spiking location sequences and the spiking times.

RR n°1



6 Touboul & Brette

Remark 2. The Poincare map is only defined in D. It will be particularly interesting to
study cases when D is the greatest possible. This will be the case for instance when there is
neither stable fixed point nor attracting limit cycle, for instance when the two nullclines do
not cross or when after the Hopf bifurcation. In other cases, there will be bounded solutions,
and return to “rest”, rest meaning there that the solution converges either to a fixed point
or to a limit cycle (Poincaré Bendixon theorem).

2 Repetitive spiking behaviors

In this section we assume that the subthreshold dynamical system do not have any fixed
point, i.e. I > —m(b) where m(b) is the unique minimum of function G(b) = F(v) — bv
(see [22]), and that there is no attractive limit cycle (for instance for Izhikevich or Brette-
Gerstner models or for the quartic model before the Bautin bifurcation). In this case, the
nullclines are of the form presented in figure Figlll and the neuron will spike for any initial
condition.

(b) Phase plane for wo > w*

Figure 1: Phase plane and trajectories in the case I > —m(b).

INRIA



The Spike-and-reset dynamics for non-linear integrate-and-fire neuron models. 7

Diagram of ®

D(w)
Identity(w)

- w=w

Figure 2: An example of ® function in the quartic model. We can see the continuity, the
monotony and the convergence for w — oo.

Theorem 2.1. Let us define the intersections of the curve {v = v.} and the nullclines:

{w* =F(v,)+1 1)

*kk

w = bv,
The Poincaré map satisfies the following properties:

e [t is increasing on (—oo, w*] and decreasing on [w*,c0),

For all w < w** then ®(w) > w+d > w,

The map @ is reqular,

It has a unique fized point in R,
e [t converges to a fized point when w — oo

This theorem is quite important to understand the main properties of the reset sequence.
These properties are straightforwardly proved if we had a spiking threshold, the only tech-
nical intricacy is the fact that the spike occurs when the membrane potential blows up. Fot
this reason, we put the proof of theorem Elin the appendix [Al

RR n°1
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Figure 3: Spike times 7 function for the quartic model for different values of a and b. We
can see that the function is not always increasing as we suggested in the text, even if it is
always increasing untill w*. We also observe that for reasonnable values of the parameters
the function 7 is monotonous

Another important function to study is the map 7 : w — t*(w) where t*(w) is the
spike time if the membrane potential starts at (v,.,w) at time ¢ = 0. If this map was one-
to-one, then the reset location would be directly linked with the interspike interval (ISI).
Nevertheless, this is not always the case in this type of models, as we can see in Fig.
even if in most of the cases for a reasonnable range of parameters, we will see that the map
7T will be one-to-one.

A description of the shape of the application 7 is also given in appendix[Al Figure FigHl
represents the map 7 in the case of the quartic model.

In the case where the map 7 is increasing, the interspike interval and the spike times
are directly linked with the reset location. The case where the neuron has cycles of period
two with two points having the same spike time is nevertheless still considered as bursting,
hence the study of the properties of the map @ is the most important.

Now that we have showed some properties of the map ®, we relate dynamical properties
of the iteration of this map to the neurocomputational behaviors observed.

2.1 Regular spiking behaviors

In the original paper [22), the author describes the existence of a generalized limit cycle,
which he called spiking limit cycle, virtually contining a point at infinity (see Fig. H). The
regular spiking behavior, whatever the phasic behavior, is linked with the presence of such
a cycle. This cycle described is exactly a fixed point of the Poincaré application @, and the
convergence to a regular spiking behavior is simply linked with the convergence of the reset
location sequence to this fixed point.

These two properties imply a simple sufficient condition for regular spiking we make
explicit in the following theorem.

Theorem 2.2. Assume that ®(w*) < w*. Then the sequence of reset positions (W )n>0
will converge whatever the initial condition.

INRIA
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Figure 4: Spiking generalized limit cycle. In the simulation, we have cut the trajectories to
a given threshold. At this threshold, we are sure that the solution will blow up, and the
trajectory is almost horizontal, hence the real picture is very similar

Proof. First of all, we deal with the case wy < w*. The sequence (wy,),>0 is monotonous
since we have ® increasing on (—oo, w*]. Indeed, assume that ®(w) < w, then by induction
on n we have

" (w) < " (w)

and hence the sequence is non-increasing. If ®(w) > w, the same argument gives us that
the sequence (wy,), is non-decreasing.

Note that in this case, we necesarilly have w** < w*. Indeed, if it was not the case,
then proposition would imply that ®(w) > w which contradicts the hypothesis of the
theorem.

If w € [w**, w*], then we know by the hypothesis of the theorem and by the result of the
proposition that this interval is invariant under ®, and hence (w,), is a monotonous
sequence in a compact set, and hence will necessarily converge to a fixed point in [w*™*, w*].

If w < w** then ®(w) > w+ d and hence there exists an index N such that wy > w**.
We apply the result previously proved to obtain that (w,), converges to a fixed point in
[w**, w*].

If w > w*, then ® is decreasing on this interval, and hence ®(w) < ®(w*) < w*, hence
we can use the previous analysis to prove that the system will converge to a fixed point in
[w**, w*]. O

Remark 3. This result implies the property of regular spiking we observed in numerical
simulations. This would corresponds by analogy to the conductance based models to a
generalized attracting spiking limit cycle, generalized because containing a spike in the class
of modeld of interest means containing a point (v = oo, w) for some w.

This result implies a sufficient condition for having a regular spiking behavior. Note
that the regular spiking behavior is linked with the convergence of the sequence (wy,)n>0.
Indeed, if this sequence converges, then the frequency of the spikes will converge also. If it

RR n°1



10 Touboul & Brette

Diagram of

)
Identity(w)| |

- wew

E3 W E W% % W s W W @ %

(a) plot of ®(w) (b) Sample path of (wy,) = (c¢) Sample path of (wy,) =
with wo < w** with wo > w*

Figure 5: Convergence towards fixed point.

does not, the only way to have regular spiking is to have a cycle and each point of the cycle
corresponds to the same spike time in the case where the map 7 is not one-to-one. This
case can occur, but it is clearly not generic.

Theorem 2.3. Assume that ®(w*) > w* and ®?(w*) > w*. Then the sequence of reset
positions will converge to a fized point whatever the initial condition.

Proof. First of all, we already noted that there exists a unique fixed point for the map ®
and that this fixed point is in [w*, ®(w*)]. If we have

w* < P (w*) < (w*)

Then because of the monotony of ® on (w*, c0), we have (by induction) for all n > 1:

@2"(21)*) < (I)2n+l(w*) < (I)Qn—l(w*)
(I)Qn(w*) < (1)2n+2(w*) < (I)Zn-l-l(w*)

Hence the sequence (wa,)n>0 is an increasing sequence and (wap41)n>1 is decreasing, and
for all n, we have ws,, < wa,4+1. Hence the two sequences converge.

We know that because of the monotony conditions on ® and the plateau that ®2 has
either a unique fixed point (the same as ®) or three fixed points. Let wy := min{®~!(w*)}.
Then ®? is increasing on (—oo, w1 ), decreasing on (w1, w*) and increasing again on (w*, oc),
and converges to a finite limit when w — co. On (—oo0,w*), ®?(w) > w because it is clearly
the case on (—oo,w;) and the minimum of ®? is reached at w* where ®*(w*) > w*, hence
®2 has a unique fixed point, which is the same as ®.

INRIA



The Spike-and-reset dynamics for non-linear integrate-and-fire neuron models. 11

Thus the two sequences converge to this same fixed point.

Let now wp be an initial condition. Then necesarilly the sequence w, will be in the
invariant interval [w*, ®(w*)]. Indeed, assume that wy < w*. Then we know that the
sequence will not be bounded by w*, since there is no fixed point in (—oo, w*). Hence there
will be an integer p such that ®P(wp) < w* and ®P*1(wy) > w*. Then because of the
monotony of ® we have &P+ (wy) < ®(w*). O

Interestingly enough, the input current has a stabilizing effect on the behavior of the
neuron. We can even prove that for I large enough the sequence will always converge to a
fixed point. Nevertheless, the complexity we described in the previous sections will clearly
affect the dynamics when we vary I.

Proposition 2.4. Let a, b, v, d be fixed parameters. There exists Iy such that for all
I > I, the sequence of iterates of ® converges.

Proof. Indeed, consider the point w*(I) and let I increase. From this point w*(T), the vector
field in the direction of v does not change, and in the direction of the adaptation variable w,
it decreases linearly (i.e. increasing I by dI amounts adding —d1 to the vector field in the
direction of w). This new dynamical system can be deduced from the original one changing
win w=w— 1.

The trajectories are ordered and the order decreases with I. Indeed, let Iy < Is. The
equation of the tajectory reads:

do _ a(bv —w) —al
dv  F(v) —w

and hence is decreasing with I. Furthermore, at the point @w* = F(v,.), the vector field
is vertical and the amplitude of the vector field increases with I. Hence all the trajectories
are ordered, and ®(w*) — I is decreasing with I. Moreover, the trajectories are diverging,
i.e. the distance between two trajectories increase with time.

Finally, it is clear that the trajectory in w is not bounded at the beginning of the
evolution. Indeed, the vector field at the initial instant is vertical and its amplitude tends
to —oo when I — oo.

This can be proved easily by a reductio ad absurbum proof. Assume that @ had a lower
bound wint for any I. Then in this case, we would have:

0=F()—w< F(v) —w (2.2)

and hence v(t) < v1(t) the solution of this equation. This equation do not depend on I.
Let dt be a finite time smaller than the explosion time of the equation ([ZZ) such that for
t € [0,dt], v(t) < vy a given value > v,. Then we have for I large enough:

a(bv —w) —al < a(bvy —wy) —al <0

0<Fv)—w< F(v) —wy
_dw . a(bv—w)—al > —a(bvi —wi)+al
dv F(v)—w = F(v)—wi

RR n°1
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Figure 6: Different types of convergence for the quartic model, when all the parameters are
fixed but the time scale of the adaptation variable a. The faster the adaptation is, the slower
the convergence is.

This is not possible since for v € [v,., v1], when Iincreases, w will be as small as one wants. O

Hence we have to simple criteria for regular spiking. Moreover, we have proved that for
an input current large enough, the neuron will spike regularly. Nevertheless, this analysis
doesn’t distinguishes the simple tonic spiking from the mixed mode or the spike frequency
adaptation. The differences between these behaviors is only the transient phase of spiking,
which corresponds from a mathematical point of view to the convergence of the sequence of
iterates towards the fixed point (see Fighl). From the biological point of view, the distinction
between these behaviors is not so clear either. In our framework, we can quantifiate the
convergence speed, which is directly linked with the multiplier of the fixed point. If the
modulus of this multiplier is very small (close to 0), then the convergence will be very fast,
and we will see a short transient before the regular spiking, and hence we will have a mixed
mode (see Fig. . If the multiplier modulus is close to 1, then the convergence will be
very slow, and we will have spike frequency adaptation (see Fig. .

2.2 Bursting

In the original paper [22] again, the author observed that bursting activity was linked with
the existence of an attracting generalized limit cycle, which he called bursting limit cycle,
virtually contining many points having an infinite membrane potential (see Fig. [[). The
regular bursting behavior, whatever the transient behavior, is linked with the presence of
such a cycle, and this cycle corresponds exactly to periodic points for the the Poincaré map
.

We can prove that there exists cycles of any period. Indeed, one of the simplest appli-
cation of Sarkovskii’s theorem (see e.g. [2]) is that if there exist a periodic point of period

INRIA



The Spike-and-reset dynamics for non-linear integrate-and-fire neuron models. 13

Figure 7: Bursting generalized limit cycle. In the simulation, we have cut the trajectories
to a given threshold. At this threshold, we are sure that the solution will blow up, and the
trajectory is almost horizontal, hence the real picture is very similar

3, then there exist periodic points of any period, hence bursts of any period. Theorem B3
gives us a simple criterion on the dynamics of ® to have a period 3 cycle.

Theorem 2.5 (Cycles of any period). Let w; := min{®~*(w*)}. Assume that:
D (w*) > w*

(
B2 (w*) < w (2.3)
O3 (w*) > w*
Then there exists a non-trivial period 3 cycle, hence the reset process has cycles of any period.
Proof. The only thing to prove is that there exist a real 7" such that

®3(T)=T

O(T)#T

We know that there exists a unique fixed point of ®, which we denote w,, and which lies
in the interval [w*, ®(w*)]. Here we prove that there exists another solution of ®3(z) = z.
Indeed, let us describe the function ®3:

e It is increasing on (—oo,w3) where we = min{®~2(w*)}, and above the curve y = z
on this interval.

e decreasing on (w2, w;) and ®3(w;) = ®*(w*) < w; hence the curve crosses once the
curve y = x, at a point strictly inferior to w*.

RR n°1
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Figure 8: Different types of bursts and the periodic orbits of ® associated. The last example
of a point of period two shows that the system is quite excitable. Indeed, the precision of
our integration scheme is very high in this case. This irregularity we observe is linked with
numerical errors associated with the excitability of the system: we are very close of the
disappearance of this cycle.

Hence we have proved that there exists a period 3 cycle. Sarkovskii’s theorem (see e.g. [2])
ensures us that there are cycles of any period for the map ® . O

Remark 4. This theorem gives us a quite simple condition on ® to get period 3 cycles.
This implies that the system is chaotic, as shown in the excellent paper of Li and Yorke [I7].
We will talk a little bit more of this point in the section dedicated to chaos.

We can easily find in our applications periodic points of period 3, when v, varies. We
can also find experimentally periodic points of different periods, as shown in figure

2.3 Bifurcations and Chaos

Now we have seen that varying parameters can change the behavior of the sequence of
iterates, from the convergence to a single point to the convergence towards cycles. Hence a
natural question arises: how does the behavior of the sequence of iterates depend upon the
parameters.

To understand better the transition between these different types of behaviors, it is
important to understand better the dependency of the Poincaré map ® in function of the
parameters. The parameter having the simplest effect on the dynamics is the adaptation
parameter d which only shifts the Poincaré map. Hence when d is very small, the fixed point
will be attractive with a positive multiplier. When d will be very large, then the fixed point
will be attractive with a negative multiplier, close to 0 (the fixed point will be on the flat
region corresponding to the horizontal asymptote).

As we have already seen, when I increases, after a certain value of I, the sequence will
converge towards a fixed point. Increasing I has the effect of linearly translating the point
w* = F(v,) + I, inducing a smooth change of the curve ® (see figure Fig[l

INRIA
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20

Figure 9: Poincaré application for the quartic model with a =1, b = 0.5, v, = 3, d =1 and
I ranging from 1 to 20.

The behaviors with respect to these two parameters are hence quite regular. When d is
big or I is big, then we have regular spiking.

The dependency in the parameters a and b are also very smooth and monotonous. The
map ® hardly depends on b and the dependency in a is similar to the dependency in [.

A very interesting parameter would be the reset location v,.. As we will see in the
simulations, the behavior of the system with respect to this parameter is very interesting
and complex. The behavior of the set of curves ® when varying v, is not monotonous, and
cannot be described very easily. First of all, the maximum if ®, the point w* = F(v,) + I,
will first deacrease with v,. when wv,. is inferior to the point where F' takes its minimum, and
then will increase again. The convexity of F' makes the behavior of ® quite sharp in function
of v,.. Figure Figll represents many curves when v, varies. As we can see, for reasonnable
values of the parameter v,, the cruve ® gets very sharp very fast and keeps sharper and
sharper. As we see, the fixed point has a multiplier of absolute value strictly greater than 1
in the case presented for v, large. It is also interesting to see that for very small values of
v, the Poincaré map is very flat.

If we study the fixed point and the stability of this map, we observe a very interesting
behavior. The only fixed point loses quite fast its stability via a period doubling bifurcation.
We numerically observe a cascade of period doubling bifurcations with some chaotic regions
where we observe the period 3 (see figure Figl[l). Tt is quite interesting to observe chaos in
this model. Indeed, the firing patterns observed in the nervous system are often chaotic. For
instance in the Purkinje cell, it has been observed that as the temperature increases for a
given input current, the calcium spiking presented a consecutive period doublings during in
vitro experiments (see [T9, B, I8, [T0]). The appearance of doublets was also observed in vivo
on recordings done by Jaeger and Bower on the ketamine-anesthetized guinea pig when the
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71-010 é 1‘0 2‘0 3‘0 4‘0 5‘0 60 é 1‘0 1‘5 2‘0 2‘5
(a) The whole diagramm (b) A detail of the diagram

Figure 10: Poincaré application for the quartic model with a =1, b=0.5,d=1, [ =7 and
v, ranging from —5 to 20. The transition is very sharp, and the zoom let us see a little bit
more precisely what happens before the fast change of ®.

inhibition is blocked [I4]. This type of route to chaos has also been shown in classical neuron
models. For instance Rinzel and Miller in [2T] located a period doubling on the interspike
interval in the Hodgkin-Huxley model by computing eigenvalues along a family of periodic
orbits. It has then been shown in other neuronal models, for instance in a version of the
Hodgkin-Huxley model taking into account the temperature [6]. In this case, the system
undergoes a period doubling cascade when varying the temperature.

In the figure Figllll we provide a diagram in the case of the adaptive exponential
integrate-and-fire model. Indeed, this model has the advantage to be based on a biological
analysis and has been fitted cautiously (see [Il [[3]). For this reason we chose to intantiate
the adaptive exponential neuron to be sure that the phenomenon occurs in a plausible range
of values.

It is clear that this behavior influences the dependency in the other parameters, as we
show in Figure fig[T2

3 Phasic behaviors

In this section, we consider that there exist bounded trajectories, i.e. fixed points or attract-
ing limit cycles. As shown in [22], there always exist fixed point when the input current I is
small enough. This is the set of parameters where the two types of dynamics really interact.

The aim of this section is to prove qualitatively some of the behaviors observed in the
papers [1} [Tl 22] in the framework we introduce in the present paper. We will be particularly
interested in the type I and type II excitability observed in these models and the bistability
and the phasic behaviors as phasic spiking and phasic bursting.
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Figure 11: The period doubling route to chaos in the reset sequence for the adaptive expo-
nential integrate-and-fire neuron, for the original parameters (see [I]), with a = 0.01, and V.
ranging from —55mV which is the original value, to —43mV. We can clearly see the period
three and the chaos it generates around, before the next period doubling bifurcation.
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(a) Bifurcations with respect to the param- (b) Bifurcations with respect to the param-
eter I eters d

Figure 12: Fixed points and fixed cycles in function of the adaptation parameter I and d.
The period doubling observed generated strange behaviors which are stabilized when the
parameters increase

A Characterization of the Poincaré map

In this section we assume that the subthreshold dynamical system do not have any fixed
point, i.e. I > —m(b) where m(b) is the unique minimum of function G(b) = F(v) — bv
(see [22]), and that there is no attractive limit cycle (for instance for Izhikevich or Brette-
Gerstner models or for the quartic model before the Bautin bifurcation). In this case, the
nullclines are of the form presented in figure Figlll and the neuron will spike for any initial
condition.

First of all, we will state and prove some general properties on the Poincare map. In the
next section, we will instantiate a model and prove that the systems indeed has the expected
behaviors we propose here.

We recall that the intersections of the curve {v = v, } and the nullclines are denoted (see

equation (ZI)):
(A1)

As already stated, between two spike times, subthreshold dynamics of the neuron satisfies
the Cauchy Lipschitz conditions on the definition interval of the solution. Hence two orbits
cannot cross between two spikes, since we have uniqueness of the solution for a given initial
condition.

Let us consider the Jordan section defined by the curve {v = v,}. By application of
Jordan’s theorem (see for instance [3, Chap. 9, appendix, p. 246]), the solutions are always
ordered on this section. It means that if w) < w§ and the two solutions cross again the
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Jordan section, then the order of the new crossing positions w} and w} is changed, i.e.
w% < w}

Theorem A.1 (Monotony of ®). The Poincaré map ® is increasing on (—oo,w*] and
decreasing on [w*, 00).

Proof. Let wi(0) < w2(0) < w* two points in D. Let v1(t) and va(t) be the solutions of
the equations () with initial conditions {v1(0) = v,, w1(0)} and {v2(0) = v,, w2(0)}
respectively. Then we just have to show that the monotony of the solutions is conserved
asymptotically when v — oo. Indeed, the solutions will not cross the v-nullcline and hence
will spike directly. Since the solutions will not cross and v is always increasing, then the
solutions are ordered the same way as the initial condition all along the trajectory and hence
wi (ts) < wa(ts) where t, is the spike time. Hence ® is increasing on (—oo, w*].

Let now w* < wq(0) < wz(0). Then the related solutions will decrease in v at the begin-
ning of the trajectory, will cross the v nullcline, and then increase. Hence those solutions
will cross the Jordan section v, an odd times, and thus the order of the solutions will be
inverted, so wq(ts) > wa(ts) and @ is decreasing on [w*, 00).

O

*

Let us now describe the influence of the relative position of w with respect to w** on ®.

Proposition A.2. If w < w** then ®(w) > w+d > w.

Proof. Indeed, if w < w**, then w will increase along the trajectory, and hence w(ts) > w
and hence ®(w) > w +d. O

Theorem A.3 (Continuity of ®). The map ® is continuous.

Proof. First of all, the continuity of ® for w < w* is clear. Indeed, we recall that the orbits
form a partition of the phase plane. All the orbits are all oriented the same way for w < w*,
and the orbits are have vertical asymptotes (the equation of the orbit reads: ‘é—f = %
for v large enough) and that the orbits do not cross, then the map is continuous.

For w > w*, the orbit will turn around the point (v,,w*). Hence ® is the composition
of the application giving the first crossing location of the orbit with the curve {v = v,.} and
® for w < w*. The second is continuous because of the latter argument, and the first one is
clearly continuous. Indeed, we know that at the initial time both w and v will is decrease.
Fix wy; > wo > w*. Here again, the partition argument and the direction of the vector field
ensures us that the position of the new crossing point is continuous with respect to the intial
condition.

At the point w = w*, the same argument is still valid, hence our theorem is proved.

O

Theorem A.4 (Existence and uniqueness of the fixed point). Assume that I > —m(b).
Then there is no fixed point in the system and the v-nullcline is everywhere greater than the
w nullcline (see [Z9]). Then the ® function has a unique fized point in R.
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20 Touboul & Brette

Proof. Let wg < w*.
The solution of equation (I will never cross the v nullcline. Let us write the solution
of the orbit curves:

dw _a(bv—w)
E_g(”’w) COF(w) w1

We consider the flow of the dynamical system ([(A2) which we denote ¢ (wq, vo,v) and we
prove the convexity condition on ¢ :

(A.2)

0%
8—11)3 <0V (w, ’U)
Indeed, we have:
9dg _ F(v)—bv+I1 :
ow (F('u)quLI)
g o _bv—F(v)—1
w2 T

(F(v)—w+])3

and we know that on the trajectory F'(v) —w + I > 0 and that because of the nullclines
positions bv — F(v) — I < 0. Hence we have

dg
{@<0

07g

8w2<0

Now let us compute the second derivative of ¢ with respect to wg. We have p(wg, vo,v) =
wo + fvvo g(u, o(wo, vy, u)) du and hence:

D¢ ,/” Py <3_<P)2 Og ¢

owg — J,, dw? \ duwq Ow w?’

2 2
and hence we have %‘% < fv gJL@' On the other hand, we can see using this equation
wg vo Ow dwg ’

that g%fg(wo,vo,vo) = 0. Thus using Gronwall’s theorem we obtain the convexity of the
function ¢(-, vg,v) for all vy and all v.
The Poincaré application ® is defined by
O(-) = lim o(-, v, v)

vV—00

and hence ® has the same convexity property for w < w*.

Since we have for all z < w** the property: ®(x) > z + d and for x > w*, ®(z) is a
non-increasing function, we have existence of at least one fixed point. The uniqueness is
given by the concavity of ® when it increases and the decrease after. O

Theorem A.5 (Limit of ® at co.). Then the Poincaré map ® converges to a constant when
w — 0.

INRIA



The Spike-and-reset dynamics for non-linear integrate-and-fire neuron models. 21

Proof. The only thing to prove is the existence of a solution diverging to —oo when ¢t — —oc.
To do so, we seach for an invariant subspace of the phase plane for the inverse dynamics (i.e
for the dynamical system (v(—t), w(—t)) which does not cross the v nullcline : N := {w =
F(v) +1}.

For instance, we search for a domain bounded by two lines:

B = {(v,w) | v < wp,w < wo + a(v—uo)}

We show that we can find real parameters (vg, wg, ) such that this domain is invariant
by the dynamics and does not cross N.

First of all, for the boundary {v = vg,w < wp}, we want © > 0, which only means
w < w*(vg) = F(vg) + I.

Now we have to characterize both vy , wg and « such that the vector field is flowing out
of this affine boundary. This simply means that ((;’1)|(_"‘1)> <0, ie: av—w <0, on each
point of the boundary, which is equivalent to:

a(bv —wy — a(v— vo)) > a(F(v) —wy — afv—1v9) + 1) (A.3)
Using the assumption lim F’(v) < 0, hence there exists an affine function such that

forallve R F(v) + 1 > uv+ §.
We consider now « < 0. Then condition [A3)) implies that

(ab—a(u — a) —aa)v—i— (— awgy + aavg + awg — a2vo) >0

Hence the only thing to ensure is that (ab —olu —a) — aa) < 0. This condition is

achieved when the discriminant of this equation is strictly positive, i.e. for all u > 2Vab—a
or u < —2vab — a.

The initial condition on u was to be greater than the minimum of F’, hence any u >
max (2vab — a, f}gﬁ% F’(v)) will be convenient, and o = %%,

In this case, for all v < v, and wy < w, the intersection of {v = v,,} and the tangent at
F at the point x,, solution of F'(z,) = u, the vector field is flowing out D and hence when
we invert the time direction, the vector field is flowing in this zone, hence D is flow invariant,
hence every solution in this zone does not cross the nullcline, hence goes to infinity with a
speed minored by the minimal distance between le nullcline and D.

Hence we have proved that there is a solution going to —oo, and which will spike by
assumption. This solution crosses necessarily the line {v = v,}, and denote wy, the w
associated to this intersection. This solution cuts the phase space in two subspaces which
do not communicate: every orbit starting in one of the two subspaces will stay in this
subspace. Hence for all w > w*, ®(w) > ®(wr,), hence ® is decreasing and minored, hence
converges to a certain value. O

Another important function to study is the map 7 : w — ¢*(w) where t*(w) is the spike
time if the membrane potential starts at (v,,w) at time ¢t = 0. It would be quite interesting
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to be able to show that this map is one-to-one. If it was the case, then the reset location
would be directly linked with the ISI. Nevertheless, as we can see in Fig. it will not
be always the case. Nevertheless, we can state some simple results on the function 7, and
we will see that in the situations where the parameters are reasonnable, the map 7 will be
one-to-one.

Proposition A.6. The map 7 is increasing for w < w*.

Proof. This is a straightforward application of the monotony of the modulus of the vector
field with respect to w and the shape of the phase diagram partition in trajectories. O

For w > w*, the trajectory turns around the point (v,,w*) and crosses again the curve
v = v,. Here again, it is clear that the time it takes for crossing again the curve v = v,
increases with w. This time increase is compensated by the fact that when w increases, the
second crossing position of the curve v = v, decreases. Figures FigH displays different 7°
functions and illustrates the fact that the function can be one-to-one or not.

Nevertheless, as we have seen, the second crossing location of the curve v = v,. converges,
hence after a given time, the map 7 increases again, hence the composed application 7 o ®
will also have a unique maximum, and will converge to a fixed value.

In the case where the map 7 is increasing, the interspike interval and the spike times
are directly linked with the reset location.
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