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Abstra
t: Non-linear integrate and �re neuron models introdu
ed in [22℄, su
h as Izhike-vi
h and Brette-Gerstner neuron models, are hybrid dynami
al systems, de�ned both by a
ontinuous dynami
s, the subthreshold behavior, and a dis
rete dynami
s, the spike and re-set pro
ess. Interestingly enough, the reset indu
es in bidimensional models behaviors onlyobserved in higher dimensional 
ontinuous systems (bursting, 
haos,. . . ). The subthresholdbehavior (
ontinuous system) has been studied in previous papers. Here we study the dis-
rete dynami
s of spikes. To this purpose, we introdu
e and study a Poin
aré map whi
h
hara
terizes the dynami
s of the model. We �nd that the behavior of the model (regularspiking, bursting, spike frequen
y adaptation, bistability, ...) 
an be explained by the dy-nami
al properties of that map (�xed point, 
y
les...). In parti
ular, the sytem 
an exhibita transition to 
haos via period doubling, whi
h was previously observed in Hodgkin-Huxleymodels and in Purkinje 
ells.Key-words: No keywords
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The Spike-and-reset dynami
s for non-linearintegrate-and-�re neuron modelsRésumé : Non-linear integrate and �re neuron models introdu
ed in [22℄, su
h as Izhi-kevi
h and Brette-Gerstner neuron models, are hybrid dynami
al systems, de�ned both bya 
ontinuous dynami
s, the subthreshold behavior, and a dis
rete dynami
s, the spike andreset pro
ess. Interestingly enough, the reset indu
es in bidimensional models behaviorsonly observed in higher dimensional 
ontinuous systems (bursting, 
haos,. . . ). The subthre-shold behavior (
ontinuous system) has been studied in previous papers. Here we study thedis
rete dynami
s of spikes. To this purpose, we introdu
e and study a Poin
aré map whi
h
hara
terizes the dynami
s of the model. We �nd that the behavior of the model (regularspiking, bursting, spike frequen
y adaptation, bistability, ...) 
an be explained by the dyna-mi
al properties of that map (�xed point, 
y
les...). In parti
ular, the sytem 
an exhibit atransition to 
haos via period doubling, whi
h was previously observed in Hodgkin-Huxleymodels and in Purkinje 
ells.Mots-
lés : Pas de mot
lef



The Spike-and-reset dynami
s for non-linear integrate-and-�re neuron models. 3Introdu
tionThis introdu
tion has to be 
hanged: 
opied from SIAP paperDuring the past few years, the neuro-
omputing 
ommunity has made a huge e�ort to �nda 
omputationally simple and biologi
ally realisti
 model of neuron. Indeed, there is moreand more need to to 
ompare experimental re
ordings with numeri
al simulations of large-s
ale brain models. The key problem is to �nd a model of neuron realizing a 
ompromisebetween its simulation e�
ien
y and its ability to reprodu
e what is observed at the 
elllevel, often 
onsidering in-vitro experiments [12, 16, 20℄.Among the numerous neuron models, from the detailed Hodgkin-Huxley model [9℄ still
onsidered as the referen
e, but unfortunately 
omputationally intra
table when 
onsideringneuronal networks, down to the simplest integrate and �re model [7℄ very e�e
tive 
ompu-tationally, but unrealisti
ally simple and unable to reprodu
e many behaviors observed, twomodels seem to stand out [12℄: the adaptive quadrati
 (Izhikevi
h, [11℄, and related modelssu
h as the the theta model with adaptation [4, 8℄) and exponential (Brette and Gerstner,[1℄) neuron models. These models are based on the viewpoint that neurons are ex
itablesystems and that the main e�e
t to model is the transition from silen
e to spike. Thesemodels all �t in a general 
lass of nonlinear bidimensional neuron models sharing 
ommonproperties, introdu
ed in [22℄. Models of this 
lass are 
omputationally almost as e�
ientas the linear integrate and �re model. They are also biologi
ally plausible, and reprodu
eseveral important neuronal regimes with a good adequa
y with biologi
al data, espe
ially inhigh-
ondu
tan
e states, typi
al of 
orti
al in-vivo a
tivity. One of these models has re
entlybeen used in order to simulate a large s
ale brain model (see [13℄).These models are spiking models. They are de�ned by a subthreshold dynami
s de�nedby a 
ontinuous dynami
al system, whi
h has been studied in [22℄. It is also de�ned by aspiking pro
ess, whi
h de�nes the spike emission and adaptation in the neuron. As observedin [11, 1, 22℄, these systems show very interesting dynami
s whi
h 
annot exist in twodimensional 
ontinuous dynami
al systems, su
h as bursting and 
haos. These e�e
ts aredire
tly linked with the spiking pro
ess.The aim of this paper is to study this spiking pro
ess, to get a grasp on the di�erent ob-served behaviors, and to get insights on the ranges of parameters to obtain a given behavior.In the �rst se
tion of this paper, we introdu
e the model we study and basi
 de�nitions whi
hwill be useful in the rest of the paper. We then introdu
e a Poin
aré fun
tion des
ribingthis spiking dynami
s, and 
hara
terize some of its prin
ipal features, in the general 
ase.We then �nd some simple 
onditions on Φ to get regular spiking, spike frequen
y adaptationand mixed mode. We then des
ribe some simple features on this fun
tion dire
tly linkedwith bursting solutions. Transient behaviors su
h as phasi
 spiking or bursting are notstudied here. We then give an interpretation of the di�erent kinds of ex
itability observedin the model. The third se
tion is linked with results whi
h had been not yet observed sofar as we know: these models present 
haoti
 spiking a
tivity. The route to this 
haoti
a
tivity is a period doubling 
as
ade, as previously observed in Hodgkin-Huxley model andin intra
ellular re
ordings of the Prukinje 
ell.
RR n° 1



4 Touboul & Brette1 Basi
 de�nitionsIn this paper we 
onsider a nonlinear integrate neuron model of the 
lass of models introdu
edin [22℄. This 
lass in
ludes for instan
e the adaptive exponential integrate-and-�re model[1℄, the quadrati
 adaptive model [11℄, and the quarti
 adaptive model [22℄. This model isdes
ribed by a nonlinear subthreshold dynami
s of type:
{dvdt

= F (v) − w + Idwdt
= a(bv − w)

(1.1)where a, b and I are real parameters and F is a real fun
tion satisfying the following as-sumptions (see [22℄:Assumption (A1). F is at least three times 
ontinuously di�erentiable.Assumption (A2). The fun
tion F is stri
tly 
onvex.Assumption (A3).






lim
x→−∞

F ′(x) < 0

lim
x→+∞

F ′(x) = +∞In this equation, v represents the membrane potential of the neuron, w is the adaptationvariable, I represents the input intensity of the neuron, 1/a the 
hara
teristi
 time of theadaptation variable and b a

ounts for the intera
tion between the membrane potential andthe adaptation variable 1.We also assume there exists ε > 0 su
h that F grows faster than v1+ε when v → ∞. Inthis 
ase, the solution of �rst equation (with a 
onstant w) 
an blow up in �nite time. Ifthe solution of the two-dimensional equation blows up at time t∗, we 
onsider that a spikeis emitted, and subsequently we have the following reset pro
ess:
{

v(t∗) = vr

w(t∗) = w(t∗−) + d
(1.2)where vr is the 
onstant value of the reset of the membrane potential and d > 0 a realparameter a

ounting for the adaptation.Proposition 1.1. The equations (1.1) and (1.2), together with initial 
onditions (v0, w0)give us the existen
e and uniqueness of a forward solution on R+.Proof. Be
ause of the regularity 
ondition (A1), Cau
hy-Lips
hitz theorem of existen
e anduniqueness of solution applies untill the solution blows up. If the solution keeps bounded,then we have existen
e and uniqueness of solution. If the solution blows up at time t∗, thenwe are reset to a unique point, de�ned by the reset 
ondition 1.2, and we are again in the
ase we already treated, hen
e we have existen
e and uniqueness of forward solution.1Brette and Gerstner [1℄ made a great e�ort in relating these 
onstant to known biologi
al 
onstants, andobtain a good �t with biologi
al re
ordings. INRIA



The Spike-and-reset dynami
s for non-linear integrate-and-�re neuron models. 5This system is an hybrid dynami
al system: it is de�ned by both a 
ontinuous time dy-nami
al system given by the equations (1.1) and a dis
rete dynami
al system 
alled the spikeand reset me
hanism, given by the equations (1.2), with �ve real parameters (a, b, I, vr, d).The parameters (a, b, I) govern the subthreshold dynami
s, while the parameters vr and dgovern the spike and reset me
hanism. In the arti
le [22℄, the author studies the bifur
ationsof the subthreshold dynami
s with respe
t to these three parameters. It appears that a isnot a bifur
ation parameter, and that the system undergoes a sub
riti
al Bogdanov-Takensbifur
ation. He also shows that under a simple 
ondition on F the model 
an undergo aBautin bifur
ation. This analysis a

ounts for the subthreshold behavior of the neuron,and for instan
e explains the existen
e for self-sustained subthreshold os
illations when themodel undergoes a Bautin bifur
ation.Nevertheless, this former study does not explain the spiking behaviors of the neuron,whi
h are governed by the spike and reset me
hanism. One of the greatest 
omputationalproperty is 
ontained in the spike sequen
e. In the present paper we adress the question of
hara
terizing these behaviors.Be
ause of existen
e and uniqueness of solution obtained in proposition 1.1, we 
on
ludethat the whole dynami
s between two spikes depends only on the initial 
ondition of theneuron, (vr, w0). The di�eren
es in the spikes emitted is hen
e governed by the sequen
e ofreset positions of the adaptation variable w. If there is a �nite number of spikes, this meansthat the neuron stops �ring after a while, whi
h means that the traje
tory of the neuronremains bounded in �nite time. This behavior 
an be thus explained by the subthresholddynami
s after a spiking transient, and this is why it will not be our �rst interest in thispaper.We will be in this paper mainly interested in the 
ase when there are in�nitely manyspikes emitted by the neuron. In this 
ase, one of our main tool to qualify the dynami
s willbe the Poin
aré map governing the evolution of the adaptation reset point.Let us de�ned by D the domain of w su
h that the solution of (1.1) with initial 
ondition
(vr, w0) blows up in �nite time.De�nition 1.1. Let w0 ∈ D, and denote (v(t), w(t)) the solution of (1.1) with initial
ondition (vr, w0) and t∗ the blowing time of v. The Poin
aré map Φ is the unique fun
tionsu
h that

Φ(w0) = w(t∗) + dRemark 1. Assume that in the dynami
al system de�ned by (1.1) have a repetitive �ring(i.e. it �res after any given time T ). Then let (tn)n≥0 be the sequen
e of spike times, and Wede�ne the sequen
e of adaptation reset points by wn := w(tn) = w(t−n ) + d. The Poin
aremap of this dynami
al system is the fun
tion Φ su
h that
Φ(wn) = wn+1Hen
e we will be able to apply te
hniques of nonlinear analysis of iterations of maps to studythe spiking lo
ation sequen
es and the spiking times.

RR n° 1



6 Touboul & BretteRemark 2. The Poin
are map is only de�ned in D. It will be parti
ularly interesting tostudy 
ases when D is the greatest possible. This will be the 
ase for instan
e when there isneither stable �xed point nor attra
ting limit 
y
le, for instan
e when the two null
lines donot 
ross or when after the Hopf bifur
ation. In other 
ases, there will be bounded solutions,and return to �rest�, rest meaning there that the solution 
onverges either to a �xed pointor to a limit 
y
le (Poin
aré Bendixon theorem).2 Repetitive spiking behaviorsIn this se
tion we assume that the subthreshold dynami
al system do not have any �xedpoint, i.e. I > −m(b) where m(b) is the unique minimum of fun
tion G(b) = F (v) − bv(see [22℄), and that there is no attra
tive limit 
y
le (for instan
e for Izhikevi
h or Brette-Gerstner models or for the quarti
 model before the Bautin bifur
ation). In this 
ase, thenull
lines are of the form presented in �gure Fig.1 and the neuron will spike for any initial
ondition.
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Diagram of Φ

 

 

Φ(w)

Identity(w)

w=w*

Figure 2: An example of Φ fun
tion in the quarti
 model. We 
an see the 
ontinuity, themonotony and the 
onvergen
e for w → ∞.Theorem 2.1. Let us de�ne the interse
tions of the 
urve {v = vr} and the null
lines:
{

w∗ = F (vr) + I

w∗∗ = bvr

(2.1)The Poin
aré map satis�es the following properties:� It is in
reasing on (−∞, w∗] and de
reasing on [w∗,∞),� For all w < w∗∗ then Φ(w) ≥ w + d > w,� The map Φ is regular,� It has a unique �xed point in R,� It 
onverges to a �xed point when w → ∞This theorem is quite important to understand the main properties of the reset sequen
e.These properties are straightforwardly proved if we had a spiking threshold, the only te
h-ni
al intri
a
y is the fa
t that the spike o

urs when the membrane potential blows up. Fotthis reason, we put the proof of theorem 2.1 in the appendix A
RR n° 1



8 Touboul & Brette
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(
) Non bije
tive TFigure 3: Spike times T fun
tion for the quarti
 model for di�erent values of a and b. We
an see that the fun
tion is not always in
reasing as we suggested in the text, even if it isalways in
reasing untill w∗. We also observe that for reasonnable values of the parametersthe fun
tion T is monotonousAnother important fun
tion to study is the map T : w 7→ t∗(w) where t∗(w) is thespike time if the membrane potential starts at (vr , w) at time t = 0. If this map was one-to-one, then the reset lo
ation would be dire
tly linked with the interspike interval (ISI).Nevertheless, this is not always the 
ase in this type of models, as we 
an see in Fig. 3(
),even if in most of the 
ases for a reasonnable range of parameters, we will see that the map
T will be one-to-one.A des
ription of the shape of the appli
ation T is also given in appendix A. Figure Fig.3represents the map T in the 
ase of the quarti
 model.In the 
ase where the map T is in
reasing, the interspike interval and the spike timesare dire
tly linked with the reset lo
ation. The 
ase where the neuron has 
y
les of periodtwo with two points having the same spike time is nevertheless still 
onsidered as bursting,hen
e the study of the properties of the map Φ is the most important.Now that we have showed some properties of the map Φ, we relate dynami
al propertiesof the iteration of this map to the neuro
omputational behaviors observed.2.1 Regular spiking behaviorsIn the original paper [22℄, the author des
ribes the existen
e of a generalized limit 
y
le,whi
h he 
alled spiking limit 
y
le, virtually 
ontining a point at in�nity (see Fig. 4). Theregular spiking behavior, whatever the phasi
 behavior, is linked with the presen
e of su
ha 
y
le. This 
y
le des
ribed is exa
tly a �xed point of the Poin
aré appli
ation Φ, and the
onvergen
e to a regular spiking behavior is simply linked with the 
onvergen
e of the resetlo
ation sequen
e to this �xed point.These two properties imply a simple su�
ient 
ondition for regular spiking we makeexpli
it in the following theorem.Theorem 2.2. Assume that Φ(w∗) ≤ w∗. Then the sequen
e of reset positions (wn)n≥0will 
onverge whatever the initial 
ondition. INRIA
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Figure 4: Spiking generalized limit 
y
le. In the simulation, we have 
ut the traje
tories toa given threshold. At this threshold, we are sure that the solution will blow up, and thetraje
tory is almost horizontal, hen
e the real pi
ture is very similarProof. First of all, we deal with the 
ase w0 ≤ w∗. The sequen
e (wn)n≥0 is monotonoussin
e we have Φ in
reasing on (−∞, w∗]. Indeed, assume that Φ(w) ≤ w, then by indu
tionon n we have
Φn+1(w) ≤ Φn(w)and hen
e the sequen
e is non-in
reasing. If Φ(w) ≥ w, the same argument gives us thatthe sequen
e (wn)n is non-de
reasing.Note that in this 
ase, we ne
esarilly have w∗∗ < w∗. Indeed, if it was not the 
ase,then proposition A.2 would imply that Φ(w) > w whi
h 
ontradi
ts the hypothesis of thetheorem.If w ∈ [w∗∗, w∗], then we know by the hypothesis of the theorem and by the result of theproposition A.2 that this interval is invariant under Φ, and hen
e (wn)n is a monotonoussequen
e in a 
ompa
t set, and hen
e will ne
essarily 
onverge to a �xed point in [w∗∗, w∗].If w < w∗∗ then Φ(w) ≥ w + d and hen
e there exists an index N su
h that wN ≥ w∗∗.We apply the result previously proved to obtain that (wn)n 
onverges to a �xed point in

[w∗∗, w∗].If w > w∗, then Φ is de
reasing on this interval, and hen
e Φ(w) ≤ Φ(w∗) ≤ w∗, hen
ewe 
an use the previous analysis to prove that the system will 
onverge to a �xed point in
[w∗∗, w∗].Remark 3. This result implies the property of regular spiking we observed in numeri
alsimulations. This would 
orresponds by analogy to the 
ondu
tan
e based models to ageneralized attra
ting spiking limit 
y
le, generalized be
ause 
ontaining a spike in the 
lassof modeld of interest means 
ontaining a point (v = ∞, w) for some w.This result implies a su�
ient 
ondition for having a regular spiking behavior. Notethat the regular spiking behavior is linked with the 
onvergen
e of the sequen
e (wn)n≥0.Indeed, if this sequen
e 
onverges, then the frequen
y of the spikes will 
onverge also. If itRR n° 1



10 Touboul & Brette
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e towards �xed point.does not, the only way to have regular spiking is to have a 
y
le and ea
h point of the 
y
le
orresponds to the same spike time in the 
ase where the map T is not one-to-one. This
ase 
an o

ur, but it is 
learly not generi
.Theorem 2.3. Assume that Φ(w∗) > w∗ and Φ2(w∗) > w∗. Then the sequen
e of resetpositions will 
onverge to a �xed point whatever the initial 
ondition.Proof. First of all, we already noted that there exists a unique �xed point for the map Φand that this �xed point is in [w∗, Φ(w∗)]. If we have
w∗ < Φ2(w∗) < Φ(w∗)Then be
ause of the monotony of Φ on (w∗,∞), we have (by indu
tion) for all n ≥ 1:

Φ2n(w∗) < Φ2n+1(w∗) < Φ2n−1(w∗)

Φ2n(w∗) < Φ2n+2(w∗) < Φ2n+1(w∗)Hen
e the sequen
e (w2n)n≥0 is an in
reasing sequen
e and (w2n+1)n≥1 is de
reasing, andfor all n, we have w2n < w2n+1. Hen
e the two sequen
es 
onverge.We know that be
ause of the monotony 
onditions on Φ and the plateau that Φ2 haseither a unique �xed point (the same as Φ) or three �xed points. Let w1 := min{Φ−1(w∗)}.Then Φ2 is in
reasing on (−∞, w1), de
reasing on (w1, w
∗) and in
reasing again on (w∗, ∞),and 
onverges to a �nite limit when w → ∞. On (−∞, w∗), Φ2(w) > w be
ause it is 
learlythe 
ase on (−∞, w1) and the minimum of Φ2 is rea
hed at w∗ where Φ2(w∗) > w∗, hen
e

Φ2 has a unique �xed point, whi
h is the same as Φ. INRIA



The Spike-and-reset dynami
s for non-linear integrate-and-�re neuron models. 11Thus the two sequen
es 
onverge to this same �xed point.Let now w0 be an initial 
ondition. Then ne
esarilly the sequen
e wn will be in theinvariant interval [w∗, Φ(w∗)]. Indeed, assume that w0 < w∗. Then we know that thesequen
e will not be bounded by w∗, sin
e there is no �xed point in (−∞, w∗). Hen
e therewill be an integer p su
h that Φp(w0) ≤ w∗ and Φp+1(w0) ≥ w∗. Then be
ause of themonotony of Φ we have Φp+1(w0) ≤ Φ(w∗).Interestingly enough, the input 
urrent has a stabilizing e�e
t on the behavior of theneuron. We 
an even prove that for I large enough the sequen
e will always 
onverge to a�xed point. Nevertheless, the 
omplexity we des
ribed in the previous se
tions will 
learlya�e
t the dynami
s when we vary I.Proposition 2.4. Let a, b, vr, d be �xed parameters. There exists Is su
h that for all
I > Is the sequen
e of iterates of Φ 
onverges.Proof. Indeed, 
onsider the point w∗(I) and let I in
rease. From this point w∗(I), the ve
tor�eld in the dire
tion of v does not 
hange, and in the dire
tion of the adaptation variable w,it de
reases linearly (i.e. in
reasing I by δI amounts adding −δI to the ve
tor �eld in thedire
tion of w). This new dynami
al system 
an be dedu
ed from the original one 
hanging
w in w̃ = w − I.The traje
tories are ordered and the order de
reases with I. Indeed, let I1 < I2. Theequation of the taje
tory reads: dw̃dv

=
a(bv − w) − aI

F (v) − wand hen
e is de
reasing with I. Furthermore, at the point w̃∗ = F (vr), the ve
tor �eldis verti
al and the amplitude of the ve
tor �eld in
reases with I. Hen
e all the traje
toriesare ordered, and Φ(w∗) − I is de
reasing with I. Moreover, the traje
tories are diverging,i.e. the distan
e between two traje
tories in
rease with time.Finally, it is 
lear that the traje
tory in w is not bounded at the beginning of theevolution. Indeed, the ve
tor �eld at the initial instant is verti
al and its amplitude tendsto −∞ when I → ∞.This 
an be proved easily by a redu
tio ad absurbum proof. Assume that w̃ had a lowerbound winf for any I. Then in this 
ase, we would have:
v̇ = F (v) − w̃ ≤ F (v) − w1 (2.2)and hen
e v(t) ≤ v1(t) the solution of this equation. This equation do not depend on I.Let dt be a �nite time smaller than the explosion time of the equation (2.2) su
h that for

t ∈ [0, dt], v(t) ≤ v1 a given value ≥ vr. Then we have for I large enough:










a(bv − w) − aI ≤ a(bv1 − w1) − aI ≤ 0

0 ≤ F (v) − w ≤ F (v) − w1

−dwdv
= −a(bv−w)−aI

F (v)−w
≥ −a(bv1−w1)+aI

F (v)−w1RR n° 1
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y Adaptation(multiplier 0.355)
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(
) Mixed Mode (multiplier 10−4)Figure 6: Di�erent types of 
onvergen
e for the quarti
 model, when all the parameters are�xed but the time s
ale of the adaptation variable a. The faster the adaptation is, the slowerthe 
onvergen
e is.This is not possible sin
e for v ∈ [vr , v1], when I in
reases, w will be as small as one wants.Hen
e we have to simple 
riteria for regular spiking. Moreover, we have proved that foran input 
urrent large enough, the neuron will spike regularly. Nevertheless, this analysisdoesn't distinguishes the simple toni
 spiking from the mixed mode or the spike frequen
yadaptation. The di�eren
es between these behaviors is only the transient phase of spiking,whi
h 
orresponds from a mathemati
al point of view to the 
onvergen
e of the sequen
e ofiterates towards the �xed point (see Fig.6). From the biologi
al point of view, the distin
tionbetween these behaviors is not so 
lear either. In our framework, we 
an quanti�ate the
onvergen
e speed, whi
h is dire
tly linked with the multiplier of the �xed point. If themodulus of this multiplier is very small (
lose to 0), then the 
onvergen
e will be very fast,and we will see a short transient before the regular spiking, and hen
e we will have a mixedmode (see Fig. 6(
)). If the multiplier modulus is 
lose to 1, then the 
onvergen
e will bevery slow, and we will have spike frequen
y adaptation (see Fig. 6(a)).2.2 BurstingIn the original paper [22℄ again, the author observed that bursting a
tivity was linked withthe existen
e of an attra
ting generalized limit 
y
le, whi
h he 
alled bursting limit 
y
le,virtually 
ontining many points having an in�nite membrane potential (see Fig. 7). Theregular bursting behavior, whatever the transient behavior, is linked with the presen
e ofsu
h a 
y
le, and this 
y
le 
orresponds exa
tly to periodi
 points for the the Poin
aré map
Φ. We 
an prove that there exists 
y
les of any period. Indeed, one of the simplest appli-
ation of Sarkovskii's theorem (see e.g. [2℄) is that if there exist a periodi
 point of periodINRIA



The Spike-and-reset dynami
s for non-linear integrate-and-�re neuron models. 13

−2 0 2 4 6 8 10
1

2

3

4

5

6

7

8

v

w

Figure 7: Bursting generalized limit 
y
le. In the simulation, we have 
ut the traje
toriesto a given threshold. At this threshold, we are sure that the solution will blow up, and thetraje
tory is almost horizontal, hen
e the real pi
ture is very similar
3, then there exist periodi
 points of any period, hen
e bursts of any period. Theorem 2.5gives us a simple 
riterion on the dynami
s of Φ to have a period 3 
y
le.Theorem 2.5 (Cy
les of any period). Let w1 := min{Φ−1(w∗)}. Assume that:











Φ(w∗) > w∗

Φ2(w∗) < w1

Φ3(w∗) > w∗

(2.3)Then there exists a non-trivial period 3 
y
le, hen
e the reset pro
ess has 
y
les of any period.Proof. The only thing to prove is that there exist a real T su
h that
{

Φ3(T ) = T

Φ(T ) 6= TWe know that there exists a unique �xed point of Φ, whi
h we denote w∞ and whi
h liesin the interval [w∗, Φ(w∗)]. Here we prove that there exists another solution of Φ3(x) = x.Indeed, let us des
ribe the fun
tion Φ3:� It is in
reasing on (−∞, w2) where w2 = min{Φ−2(w∗)}, and above the 
urve y = xon this interval.� de
reasing on (w2, w1) and Φ3(w1) = Φ2(w∗) < w1 hen
e the 
urve 
rosses on
e the
urve y = x, at a point stri
tly inferior to w∗.RR n° 1
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(a) Period three point (b) Period four point (
) Period two pointFigure 8: Di�erent types of bursts and the periodi
 orbits of Φ asso
iated. The last exampleof a point of period two shows that the system is quite ex
itable. Indeed, the pre
ision ofour integration s
heme is very high in this 
ase. This irregularity we observe is linked withnumeri
al errors asso
iated with the ex
itability of the system: we are very 
lose of thedisappearan
e of this 
y
le.Hen
e we have proved that there exists a period 3 
y
le. Sarkovskii's theorem (see e.g. [2℄)ensures us that there are 
y
les of any period for the map Φ .Remark 4. This theorem gives us a quite simple 
ondition on Φ to get period 3 
y
les.This implies that the system is 
haoti
, as shown in the ex
ellent paper of Li and Yorke [17℄.We will talk a little bit more of this point in the se
tion dedi
ated to 
haos.We 
an easily �nd in our appli
ations periodi
 points of period 3, when vr varies. We
an also �nd experimentally periodi
 points of di�erent periods, as shown in �gure 8.2.3 Bifur
ations and ChaosNow we have seen that varying parameters 
an 
hange the behavior of the sequen
e ofiterates, from the 
onvergen
e to a single point to the 
onvergen
e towards 
y
les. Hen
e anatural question arises: how does the behavior of the sequen
e of iterates depend upon theparameters.To understand better the transition between these di�erent types of behaviors, it isimportant to understand better the dependen
y of the Poin
aré map Φ in fun
tion of theparameters. The parameter having the simplest e�e
t on the dynami
s is the adaptationparameter d whi
h only shifts the Poin
aré map. Hen
e when d is very small, the �xed pointwill be attra
tive with a positive multiplier. When d will be very large, then the �xed pointwill be attra
tive with a negative multiplier, 
lose to 0 (the �xed point will be on the �atregion 
orresponding to the horizontal asymptote).As we have already seen, when I in
reases, after a 
ertain value of I, the sequen
e will
onverge towards a �xed point. In
reasing I has the e�e
t of linearly translating the point

w∗ = F (vr) + I, indu
ing a smooth 
hange of the 
urve Φ (see �gure Fig.9. INRIA
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Figure 9: Poin
aré appli
ation for the quarti
 model with a = 1, b = 0.5, vr = 3, d = 1 and
I ranging from 1 to 20.The behaviors with respe
t to these two parameters are hen
e quite regular. When d isbig or I is big, then we have regular spiking.The dependen
y in the parameters a and b are also very smooth and monotonous. Themap Φ hardly depends on b and the dependen
y in a is similar to the dependen
y in I.A very interesting parameter would be the reset lo
ation vr. As we will see in thesimulations, the behavior of the system with respe
t to this parameter is very interestingand 
omplex. The behavior of the set of 
urves Φ when varying vr is not monotonous, and
annot be des
ribed very easily. First of all, the maximum if Φ, the point w∗ = F (vr) + I,will �rst dea
rease with vr when vr is inferior to the point where F takes its minimum, andthen will in
rease again. The 
onvexity of F makes the behavior of Φ quite sharp in fun
tionof vr. Figure Fig.10 represents many 
urves when vr varies. As we 
an see, for reasonnablevalues of the parameter vr, the 
ruve Φ gets very sharp very fast and keeps sharper andsharper. As we see, the �xed point has a multiplier of absolute value stri
tly greater than 1in the 
ase presented for vr large. It is also interesting to see that for very small values of
vr the Poin
aré map is very �at.If we study the �xed point and the stability of this map, we observe a very interestingbehavior. The only �xed point loses quite fast its stability via a period doubling bifur
ation.We numeri
ally observe a 
as
ade of period doubling bifur
ations with some 
haoti
 regionswhere we observe the period 3 (see �gure Fig.11). It is quite interesting to observe 
haos inthis model. Indeed, the �ring patterns observed in the nervous system are often 
haoti
. Forinstan
e in the Purkinje 
ell, it has been observed that as the temperature in
reases for agiven input 
urrent, the 
al
ium spiking presented a 
onse
utive period doublings during invitro experiments (see [19, 5, 18, 10℄). The appearan
e of doublets was also observed in vivoon re
ordings done by Jaeger and Bower on the ketamine-anesthetized guinea pig when the
RR n° 1
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(b) A detail of the diagramFigure 10: Poin
aré appli
ation for the quarti
 model with a = 1, b = 0.5, d = 1, I = 7 and
vr ranging from −5 to 20. The transition is very sharp, and the zoom let us see a little bitmore pre
isely what happens before the fast 
hange of Φ.inhibition is blo
ked [14℄. This type of route to 
haos has also been shown in 
lassi
al neuronmodels. For instan
e Rinzel and Miller in [21℄ lo
ated a period doubling on the interspikeinterval in the Hodgkin-Huxley model by 
omputing eigenvalues along a family of periodi
orbits. It has then been shown in other neuronal models, for instan
e in a version of theHodgkin-Huxley model taking into a

ount the temperature [6℄. In this 
ase, the systemundergoes a period doubling 
as
ade when varying the temperature.In the �gure Fig.11 we provide a diagram in the 
ase of the adaptive exponentialintegrate-and-�re model. Indeed, this model has the advantage to be based on a biologi
alanalysis and has been �tted 
autiously (see [1, 15℄). For this reason we 
hose to intantiatethe adaptive exponential neuron to be sure that the phenomenon o

urs in a plausible rangeof values.It is 
lear that this behavior in�uen
es the dependen
y in the other parameters, as weshow in Figure �g.12.3 Phasi
 behaviorsIn this se
tion, we 
onsider that there exist bounded traje
tories, i.e. �xed points or attra
t-ing limit 
y
les. As shown in [22℄, there always exist �xed point when the input 
urrent I issmall enough. This is the set of parameters where the two types of dynami
s really intera
t.The aim of this se
tion is to prove qualitatively some of the behaviors observed in thepapers [1, 11, 22℄ in the framework we introdu
e in the present paper. We will be parti
ularlyinterested in the type I and type II ex
itability observed in these models and the bistabilityand the phasi
 behaviors as phasi
 spiking and phasi
 bursting.

INRIA
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Figure 11: The period doubling route to 
haos in the reset sequen
e for the adaptive expo-nential integrate-and-�re neuron, for the original parameters (see [1℄), with a = 0.01, and Vrranging from −55mV whi
h is the original value, to −43mV . We 
an 
learly see the periodthree and the 
haos it generates around, before the next period doubling bifur
ation.
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(b) Bifur
ations with respe
t to the param-eters dFigure 12: Fixed points and �xed 
y
les in fun
tion of the adaptation parameter I and d.The period doubling observed generated strange behaviors whi
h are stabilized when theparameters in
reaseA Chara
terization of the Poin
aré mapIn this se
tion we assume that the subthreshold dynami
al system do not have any �xedpoint, i.e. I > −m(b) where m(b) is the unique minimum of fun
tion G(b) = F (v) − bv(see [22℄), and that there is no attra
tive limit 
y
le (for instan
e for Izhikevi
h or Brette-Gerstner models or for the quarti
 model before the Bautin bifur
ation). In this 
ase, thenull
lines are of the form presented in �gure Fig.1 and the neuron will spike for any initial
ondition.First of all, we will state and prove some general properties on the Poin
are map. In thenext se
tion, we will instantiate a model and prove that the systems indeed has the expe
tedbehaviors we propose here.We re
all that the interse
tions of the 
urve {v = vr} and the null
lines are denoted (seeequation (2.1)):
{

w∗ = F (vr) + I

w∗∗ = bvr

(A.1)As already stated, between two spike times, subthreshold dynami
s of the neuron satis�esthe Cau
hy Lips
hitz 
onditions on the de�nition interval of the solution. Hen
e two orbits
annot 
ross between two spikes, sin
e we have uniqueness of the solution for a given initial
ondition.Let us 
onsider the Jordan se
tion de�ned by the 
urve {v = vr}. By appli
ation ofJordan's theorem (see for instan
e [3, Chap. 9, appendix, p. 246℄), the solutions are alwaysordered on this se
tion. It means that if w0
1 < w0

2 and the two solutions 
ross again the
INRIA
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tion, then the order of the new 
rossing positions w1
1 and w1

2 is 
hanged, i.e.
w1

2 < w1
1 .Theorem A.1 (Monotony of Φ). The Poin
aré map Φ is in
reasing on (−∞, w∗] andde
reasing on [w∗,∞).Proof. Let w1(0) < w2(0) ≤ w∗ two points in D. Let v1(t) and v2(t) be the solutions ofthe equations (1.1) with initial 
onditions {v1(0) = vr, w1(0)} and {v2(0) = vr, w2(0)}respe
tively. Then we just have to show that the monotony of the solutions is 
onservedasymptoti
ally when v → ∞. Indeed, the solutions will not 
ross the v-null
line and hen
ewill spike dire
tly. Sin
e the solutions will not 
ross and v is always in
reasing, then thesolutions are ordered the same way as the initial 
ondition all along the traje
tory and hen
e

w1(ts) ≤ w2(ts) where ts is the spike time. Hen
e Φ is in
reasing on (−∞, w∗].Let now w∗ ≤ w1(0) < w2(0). Then the related solutions will de
rease in v at the begin-ning of the traje
tory, will 
ross the v null
line, and then in
rease. Hen
e those solutionswill 
ross the Jordan se
tion vr an odd times, and thus the order of the solutions will beinverted, so w1(ts) > w2(ts) and Φ is de
reasing on [w∗,∞).Let us now des
ribe the in�uen
e of the relative position of w with respe
t to w∗∗ on Φ.Proposition A.2. If w < w∗∗ then Φ(w) ≥ w + d > w.Proof. Indeed, if w < w∗∗, then w will in
rease along the traje
tory, and hen
e w(ts) ≥ wand hen
e Φ(w) ≥ w + d.Theorem A.3 (Continuity of Φ). The map Φ is 
ontinuous.Proof. First of all, the 
ontinuity of Φ for w < w∗ is 
lear. Indeed, we re
all that the orbitsform a partition of the phase plane. All the orbits are all oriented the same way for w < w∗,and the orbits are have verti
al asymptotes (the equation of the orbit reads: dwdv
= a(bv−w)

F (v)−w+Ifor v large enough) and that the orbits do not 
ross, then the map is 
ontinuous.For w > w∗, the orbit will turn around the point (vr, w
∗). Hen
e Φ is the 
ompositionof the appli
ation giving the �rst 
rossing lo
ation of the orbit with the 
urve {v = vr} and

Φ for w < w∗. The se
ond is 
ontinuous be
ause of the latter argument, and the �rst one is
learly 
ontinuous. Indeed, we know that at the initial time both w and v will is de
rease.Fix w1 > w2 > w∗. Here again, the partition argument and the dire
tion of the ve
tor �eldensures us that the position of the new 
rossing point is 
ontinuous with respe
t to the intial
ondition.At the point w = w∗, the same argument is still valid, hen
e our theorem is proved.Theorem A.4 (Existen
e and uniqueness of the �xed point). Assume that I > −m(b).Then there is no �xed point in the system and the v-null
line is everywhere greater than the
w null
line (see [22℄). Then the Φ fun
tion has a unique �xed point in R.RR n° 1



20 Touboul & BretteProof. Let w0 < w∗.The solution of equation (1.1) will never 
ross the v null
line. Let us write the solutionof the orbit 
urves: dwdv
= g(v, w) :=

a(bv − w)

F (v) − w + I
(A.2)We 
onsider the �ow of the dynami
al system (A.2) whi
h we denote ϕ(w0, v0, v) and weprove the 
onvexity 
ondition on ϕ :

∂2ϕ

∂w2
0

< 0 ∀ (w, v)Indeed, we have:










∂g
∂w

= −a F (v)−bv+I
(

F (v)−w+I
)

2

∂2g
∂w2 = 2 bv−F (v)−I

(

F (v)−w+I
)

3and we know that on the traje
tory F (v) − w + I > 0 and that be
ause of the null
linespositions bv − F (v) − I < 0. Hen
e we have
{

∂g
∂w

< 0
∂2g
∂w2 < 0Now let us 
ompute the se
ond derivative of ϕ with respe
t to w0. We have ϕ(w0, v0, v) =

w0 +
∫ v

v0

g(u, ϕ(w0, v0, u)) du and hen
e:
∂2ϕ

∂w2
0

=

∫ v

v0

∂2g

∂w2

(

∂ϕ

∂w0

)2

+
∂g

∂w

∂2ϕ

∂w2
0

,and hen
e we have ∂2ϕ

∂w2

0

≤
∫ v

v0

∂g
∂w

∂2ϕ

∂w2

0

. On the other hand, we 
an see using this equationthat ∂2ϕ

∂w2

0

(w0, v0, v0) = 0. Thus using Gronwall's theorem we obtain the 
onvexity of thefun
tion ϕ(·, v0, v) for all v0 and all v.The Poin
aré appli
ation Φ is de�ned by
Φ(·) = lim

v→∞
ϕ(·, vr , v)and hen
e Φ has the same 
onvexity property for w < w∗.Sin
e we have for all x < w∗∗ the property: Φ(x) ≥ x + d and for x > w∗, Φ(x) is anon-in
reasing fun
tion, we have existen
e of at least one �xed point. The uniqueness isgiven by the 
on
avity of Φ when it in
reases and the de
rease after.Theorem A.5 (Limit of Φ at ∞.). Then the Poin
aré map Φ 
onverges to a 
onstant when

w → ∞. INRIA



The Spike-and-reset dynami
s for non-linear integrate-and-�re neuron models. 21Proof. The only thing to prove is the existen
e of a solution diverging to −∞ when t → −∞.To do so, we sea
h for an invariant subspa
e of the phase plane for the inverse dynami
s (i.efor the dynami
al system (v(−t), w(−t)) whi
h does not 
ross the v null
line : N := {w =
F (v) + I}.For instan
e, we sear
h for a domain bounded by two lines:

B := {(v, w) | v ≤ v0, w ≤ w0 + α(v − v0)}We show that we 
an �nd real parameters (v0, w0, α) su
h that this domain is invariantby the dynami
s and does not 
ross N .First of all, for the boundary {v = v0, w ≤ w0}, we want v̇ ≥ 0, whi
h only means
w ≤ w∗(v0) = F (v0) + I.Now we have to 
hara
terize both v0 , w0 and α su
h that the ve
tor �eld is �owing outof this a�ne boundary. This simply means that 〈( v̇

ẇ

)

|
(

α
−1

)

〉 ≤ 0, i.e.: αv̇ − ẇ ≤ 0, on ea
hpoint of the boundary, whi
h is equivalent to:
a
(

bv − w0 − α(v − v0)
)

≥ α(F (v) − w0 − α(v − v0) + I) (A.3)Using the assumption lim
v→−∞

F ′(v) < 0, hen
e there exists an a�ne fun
tion su
h thatfor all v ∈ R F (v) + I ≥ uv + β.We 
onsider now α < 0. Then 
ondition (A.3) implies that
(

ab − α(u − α) − aα
)

v +
(

− aw0 + αav0 + αw0 − α2v0

)

≥ 0Hen
e the only thing to ensure is that (

ab − α(u − α) − aα
)

< 0. This 
ondition isa
hieved when the dis
riminant of this equation is stri
tly positive, i.e. for all u > 2
√

ab− aor u < −2
√

ab − a.The initial 
ondition on u was to be greater than the minimum of F ′, hen
e any u >
max

(

2
√

ab − a, min
v∈RF ′(v)

) will be 
onvenient, and α = a+u
2 .In this 
ase, for all v < vm and w0 < wu the interse
tion of {v = vm} and the tangent at

F at the point xu solution of F ′(xu) = u, the ve
tor �eld is �owing out D and hen
e whenwe invert the time dire
tion, the ve
tor �eld is �owing in this zone, hen
e D is �ow invariant,hen
e every solution in this zone does not 
ross the null
line, hen
e goes to in�nity with aspeed minored by the minimal distan
e between le null
line and D.Hen
e we have proved that there is a solution going to −∞, and whi
h will spike byassumption. This solution 
rosses ne
essarily the line {v = vr}, and denote wL the wasso
iated to this interse
tion. This solution 
uts the phase spa
e in two subspa
es whi
hdo not 
ommuni
ate: every orbit starting in one of the two subspa
es will stay in thissubspa
e. Hen
e for all w > w∗, Φ(w) ≥ Φ(wL), hen
e Φ is de
reasing and minored, hen
e
onverges to a 
ertain value.Another important fun
tion to study is the map T : w 7→ t∗(w) where t∗(w) is the spiketime if the membrane potential starts at (vr, w) at time t = 0. It would be quite interestingRR n° 1



22 Touboul & Bretteto be able to show that this map is one-to-one. If it was the 
ase, then the reset lo
ationwould be dire
tly linked with the ISI. Nevertheless, as we 
an see in Fig. 3(
), it will notbe always the 
ase. Nevertheless, we 
an state some simple results on the fun
tion T , andwe will see that in the situations where the parameters are reasonnable, the map T will beone-to-one.Proposition A.6. The map T is in
reasing for w ≤ w∗.Proof. This is a straightforward appli
ation of the monotony of the modulus of the ve
tor�eld with respe
t to w and the shape of the phase diagram partition in traje
tories.For w > w∗, the traje
tory turns around the point (vr, w
∗) and 
rosses again the 
urve

v = vr. Here again, it is 
lear that the time it takes for 
rossing again the 
urve v = vrin
reases with w. This time in
rease is 
ompensated by the fa
t that when w in
reases, these
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t that the fun
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