
HAL Id: inria-00277344
https://inria.hal.science/inria-00277344

Submitted on 6 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Solvability of Anonymous Partial Grids
Exploration by Mobile Robots

Roberto Baldoni, François Bonnet, Alessia Milani, Michel Raynal

To cite this version:
Roberto Baldoni, François Bonnet, Alessia Milani, Michel Raynal. On the Solvability of Anonymous
Partial Grids Exploration by Mobile Robots. [Research Report] PI 1892, 2008, pp.21. �inria-00277344�

https://inria.hal.science/inria-00277344
https://hal.archives-ouvertes.fr

I
 R

 I
 S

 A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO

R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U B L I C A T I O N
I N T E R N E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

1892

ON THE SOLVABILITY OF ANONYMOUS PARTIAL GRIDS

EXPLORATION

BY MOBILE ROBOTS

R. BALDONI F. BONNET A. MILANI M. RAYNAL

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES

Campus de Beaulieu – 35042 Rennes Cedex – France
Tél. : (33) 02 99 84 71 00 – Fax : (33) 02 99 84 71 71

http://www.irisa.fr

On the Solvability of Anonymous Partial Grids Exploration

by Mobile Robots

R. Baldoni* F. Bonnet** A. Milani*** M. Raynal****

Systèmes communicants
Projet ASAP

Publication interne n˚1892 — Mai 2008 — 19 pages

Abstract: Given an arbitrary partial anonymous grid (a finite grid with possibly missing vertices or
edges), this paper focuses on the exploration of such a grid by a set of mobile anonymous agents (called
robots). Assuming that the robots can move synchronously, but cannot communicate with each other, the
aim is to design an algorithm executed by each robot that allows, as many robots as possible (let k be this
maximal number), to visit infinitely often all the vertices of the grid, in such a way that no vertex hosts
more than one robot at a time, and each edge is traversed by at most one robot at a time.

The paper addresses this problem by considering a central parameter, denoted ρ, that captures the view
of each robot. More precisely, it is assumed that each robot sees the part of the grid (and its current
occupation by other robots, if any) centered at the vertex it currently occupies and delimited by the radius
ρ. Based on such a radius notion, the paper investigates the following cases and presents associated results.
It first shows that there is no solution (i.e., k = 0) when ρ = 0. It then shows that k ≤ p − q is a necessary
and sufficient requirement when ρ = +∞, where p is the number of vertices of the grid, and q a parameter
whose value depends on the actual topology of the partial grid. The paper finally analyzes the case ρ = 1
showing that it is the borderline from which the considered problem can be solved.

Key-words: Anonymity, Grid exploration, Partial grid, Mobile agent, Mutual exclusion, Robot, Syn-
chronous system.

(Résumé : tsvp)

* Università di Roma “La Sapienza”, Italy, baldoni@dis.uniroma1.it
** IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France Francois.Bonnet@irisa.fr

*** Università di Roma “La Sapienza”, Italy, Alessia.Milani@dis.uniroma1.it
**** IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France raynal@irisa.fr

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(UMR 6074) Université de Rennes 1 – Insa de Rennes et en Automatique – unité de recherche de Rennes

Exploration avec contraintes de graphes par des robots

Résumé : Ce rapport présente (1) des bornes sur le nombre maximal de robots lorsque ceux-ci doivent
visiter infiniment souvent chaque sommet d’un graphe connexe sous les contraintes d’exclusion mutuelle sur
les arcs et les sommets du graphe, ainsi que (2) des algorithmes réalisant ces bornes.

Mots clés : Algorithme distribué, collision, contrainte d’exclusion mutuelle, robot, système synchrone.

Solvability of Partial Grids Exploration by Robots 3

1 Introduction

Graph exploration by robots The graph exploration problem consists in making one or several mobile
entities visit each vertex of a connected graph. The mobile entities are sometimes called agents or robots
(in the following we use the word “robot”). The exploration is perpetual if the robots have to revisit forever
each vertex of the graph. Perpetual exploration is required when robots have to move to gather continuously
evolving information or to look for dynamic resources (resources whose location changes with time). If nodes
and edges have unique labels, the exploration is relatively easy to achieve.

The graph exploration problem becomes more challenging when the graph is anonymous (i.e., the vertices,
the edges, or both have no label). In such a context, several bounds have been stated. They concern the
total duration needed to complete a visit of the nodes (e.g. [6, 11, 13]), or the size of the memory of the
robot necessary to explore a graph (e.g., it is proved in [8] that a robot needs O(D log d) bits of local memory
in order to explore any graph of diameter D and maximum degree d). Impossibility results for one or more
robots with bounded memory (computationally speaking, a robot is then a finite state automaton) to explore
all graphs have been stated in [5, 15]. The major part of the results on graph exploration consider that the
exploration is made by a single robot. Only very recently, the exploration of a graph by several robots has
received attention also from a practical side [10]. This is motivated by research for more efficient graph
explorations, fault-tolerance, or the need to overcome impossibilities due to the limited capabilities of a
single robot.

The constrained exploration problem Considering the case where the graph is an anonymous partial
grid (the grid is connected but has missing vertices/edges), and where the robots can move synchronously
but cannot communicate with each other, the paper considers the following instance of the graph exploration
problem, denoted the Constrained Perpetual Graph Exploration problem (CPGE). This problem consists
in designing an algorithm executed by each robot that (1) allows as many robots as possible (let k be this
maximal number), (2) to visit infinitely often all the vertices of the grid, in such a way that the following
mutual exclusion constraints are always satisfied: no vertex hosts more than one robot at a time, and each
edge is traversed by at most one robot at a time. These constraints are intended to abstract the problem
of collision that robots may incur when moving within a short distance from each other or the necessity for
the robots to access resources in mutual exclusion (This mutual exclusion constraint has been considered in
[12] in a robot movement problem in a grid).

Results exposed in the paper rest on three parameters, denoted p, q and ρ. The first parameter p is
related to the size of the grid, namely, it is the number of vertices of the partial connected grid. The second
parameter q is related to the structure of the partial grid. This parameter is defined from a mobility tree
(a new notion introduced in the paper) that can be associated with each partial grid. So, each pair (p, q)
represents a subset of all possible partial grids with p vertices. Finally, the third parameter ρ is not related
to the grid, but captures the power of the robots when we consider the part of the grid they can see. More
precisely, a robot sees the part of the grid centered at its current position and covered by a radius ρ. From
an operational point of view, the radius notion allows the robots that are at most ρ apart one from the other
to synchronize their moves without violating the vertex and edge mutual exclusion constraints.

The paper analyzes the solvability of the CPGE problem with respect to the number of robots k that
can be placed in a partial grid characterized by the pair p and q when considering a given ρ for robots. The
paper shows the following results.

• Case ρ = 0. In that case, the CPGE problem cannot be solved (i.e., we have k = 0) for any grid
such that p > 1 (a grid with more than one vertex). This means that, whatever the grid, if the robots
cannot benefit from some view of the grid, there is no algorithm run by robots that can solve the
CPGE problem.

• Case ρ = +∞. In that case, k ≤ p− q is a necessary and sufficient requirement for solving the CPGE
problem. Let us observe that ρ = +∞ means that the robots knows the structure of the grid and the
current position of the robots on that grid. (The initial anonymity assumption of the vertices and the
robots can then easily be overcome.)

• Case ρ = 1. In that case, assuming a grid with more than one vertex, k ≤ p − 1 when q = 0, and
k ≤ p − q otherwise, are necessary and sufficient requirements for solving the CPGE problem.

PI n˚1892

4 R. Baldoni & F. Bonnet & A. Milani & M. Raynal

Finally, the paper discusses issues related to solvability of the CPGE problem when 1 < ρ < +∞. It is
important to notice that the previous investigations show that ρ = 1 is a critical radius value as it defines
the fundamental demarcation line for the solvability of the CPGE problem.

Roadmap The paper is made up of 7 sections. Section 2 presents related works. Section 3 first presents
the computation model, and defines formally the CPGE problem. Then, Section 4, 5 and 6 address the cases
ρ = 0, and ρ = +∞, ρ = 1, respectively. Section 7 concludes the paper by discussing the case 1 < ρ < +∞.

2 Related work

On the initial assumptions As already indicated, graph exploration is the process by which each vertex
of a graph is visited by some entity. A great research effort on graph exploration by robots has been done
on the minimal assumptions (in terms of robots/network requirements) required to explore a graph (e.g.,
[4, 9]). Some works focus on robots endowed with a finite persistent storage and direct communication with
other robots (e.g., [2]). Some works assume that each robot has the capability to see where other robots are
currently placed (e.g., [7]). Some other works study how the knowledge of the map (graph) by the robots
reduces the complexity of the exploration (e.g., [14]).

On the type of graph exploration Graph exploration is mainly divided into perpetual graph exploration
(e.g., [6]) where the robots have to travel the graph infinitely often, and graph exploration with stop (e.g.,
[9]) where each robot has to eventually stop after having explored the graph. Some papers focus on the
exploration of the graph by a single robot (e.g., [1, 2, 8]). Cooperative graph exploration by a team of
mobile robots has also received attention (e.g., [4, 7, 12]). As an example of multi-robot exploration, it is
shown in [7] that the minimum number of robots required to solve the exploration with stop of a ring of size
n is O(log n) when the exploration is done by oblivious anonymous robots that move asynchronously.

Lower bounds have been established for the perpetual graph exploration problem (e.g., [6, 11]). These
bounds concern the period necessary for a robot to complete the visit of the graph, assuming constraints
either on the robots, or on the graph. Differently, the upper bound introduced in the Section 3.3 concerns
the maximum number of robots that can visit the graph infinitely often without ever colliding.

Constrained graph exploration The CPGE problem defined in Section 3.2 is the perpetual graph ex-
ploration problem augmented with the mutual exclusion property on the vertices and the edges of the graph.
These mutual exclusion constraints have been already stated and used [12] where the graphs considered are
grids. The problem addressed in that paper is different from CPGE. More precisely, in [12], each robot
has to visit some target vertices of the grid, and any two distinct robots have different targets. That paper
establishes a lower bound on the time (number of rounds in a synchronous system) necessary to solve that
problem and presents an optimal algorithm.

The problem of robots collision in also addressed in [17], where is proposed a collision prevention algorithm
for robots moving on the plane.

3 Computation model, Problem specification and Mobility tree

3.1 Computation model

The grid The underlying grid is made up of a finite set of vertices, each vertex being connected to at least
one and at most four other vertices according to the classical grid pattern. If two vertices are connected,
we say there is an edge connecting them. The grid is anonymous in the sense no vertex has an identity.
Moreover, there is a global sense of direction present in the grid: each vertex is able to distinguish its north,
east, south and west neighbors The grid is represented as graph G = (S, E) with |S| = p. An example of a
partial grid (with p = 25 vertices) is depicted in Figure 1.

Irisa

Solvability of Partial Grids Exploration by Robots 5

A

B

ρ = 0

ρ = 2

Figure 1: Example of a partial finite grid

The robots A mobile agent (robot) is an automaton whose computational power is a Turing machine.
The moves of a robot are defined by the algorithm it executes. All the robots execute the same algorithm.
It is assumed that local computation takes no time.

The finite set of robots R is such that |R| ≤ |S|. The robots are anonymous. The robots have a common
clock, and the time is divided into synchronous rounds [16]. At each round a robot can move from the vertex
where it currently stays to a neighbor vertex, or stays at the same vertex. A move of a robot from a vertex
to a neighbor vertex is done in one round.

Notation 1 Given a robot a and a round r, V (a, r) denotes the (single) vertex where the robot a is located
at the beginning of round r.

Radius The radius an algorithm is instantiated with is a non-negative integer ρ that provides each robot
with the following information.

Let us first consider the case ρ 6= 0. At the beginning of any round r, ∀a ∈ R, the robot a, that is
currently located at the vertex V (r, a), sees the sub-grid centered at V (r, a), including the vertices whose
distance to V (r, a) is at most ρ. It also sees whether these vertices are currently occupied by robots or not
(i.e., for any such vertex v, whether the predicate ∃ x ∈ R : V (r, x) = v is true or false). An example of
radius ρ = 2 is depicted in Figure 1: the robot located in the vertex denoted B knows the part of the grid
surrounded by the corresponding dotted line (for the vertices at distance ρ = 2, it knows only their edges
within distance ρ = 2).

With a light abuse of the previous notation of radius we consider the following definition for ρ = 0: a
robot knows the edges of the vertex it is located in. An example is depicted in Figure 1: the robot in the
vertex denoted A knows that this vertex has a east edge and a south edge. The fundamental difference
with ρ = 1 lies in the fact that, when ρ = 0, the robot located in A cannot know whether the end vertices
associated with these edges are occupied or not by robots.

More generally, the radius notion captures the possibility for robots to synchronize their moves when
they are apart from each other at a distance ≤ ρ.

3.2 The constrained perpetual grid exploration problem

The Constrained Perpetual Grid Exploration Problem (CPGE) can be formally defined by the following
three properties.

• Perpetual Exploration. ∀v ∈ S : ∀a ∈ R : {r | V (a, r) = v} is not finite.
For any vertex v and any robot a, there are infinitely many rounds where a visits v.

• Vertex Mutual Exclusion. ∀r ≥ 0 : ∀(a, b) ∈ R × R : (a 6= b) ⇒ V (a, r) 6= V (b, r).
At the beginning of any round, no two robots are at the same vertex.

PI n˚1892

6 R. Baldoni & F. Bonnet & A. Milani & M. Raynal

• Edge Mutual Exclusion.

∀r ≥ 0 : ∀(a, b) ∈ R × R : (a 6= b) ⇒
(
(V (a, r + 1) = V (b, r)) ⇒ (V (b, r + 1) 6= V (a, r))

)
.

During a round, no two robots move on the same edge (i.e., they cannot exchange their positions).

This paper is on solving the CPGE problem for as many robots as possible. More precisely, we are
interested in finding the greatest number of robots and designing an algorithm A (executed by each robot)
that solves the CPGE problem whose precise definition appears in Section 3.4.

3.3 The mobility tree associated with a grid

The notion of mobility tree defined in this section is instrumental to extract from a grid a parameter q
associated with the grid structure. This parameter contributes to state an upper bound (on the number
of processes) beyond which the CPGE problem cannot be solved. We originally expressed it for arbitrary
undirected connected graph [3]. As we consider here that the map on which the robots move is an incomplete
grid, the results exposed in [3] are still valid when we replace the word “graph” by the word “grid”.

3.3.1 Preliminary definitions

A vertex v is a leaf of a graph G = (S, E) if there is a single vertex v′ such that (v, v′) ∈ E. The degree d
of a vertex v is the integer

∣
∣{v′ | (v, v′) ∈ E}

∣
∣. A bridge is an edge whose deletion disconnects the graph.

A graph without bridge is a bridgeless graph. A path from a vertex v to a vertex v ′ is simple if no vertex
appears on it more than once.

A graph G′ = (S′, E′) is a subgraph of a graph G = (S, E) if S ′ ⊆ S and E′ ⊆ E. In that case, we
also say that G = (S, E) is a supergraph of G′ = (S′, E′). A non-singleton subgraph contains at least two
vertices. The subgraph G′ = (S′, E′) is induced by the set of vertices S ′, if E′ contains all the edges of E
whose end-points are in S ′. As, in the following, all the subgraphs we consider are induced subgraphs we
omit the term “induced” to not overload the presentation.

A subgraph G′ is maximal with respect to a property P if G′ satisfies P , while none of its supergraphs
satisfies P . So, “bridgeless” and “non-singleton” are properties that a (sub)graph satisfies or does not satisfy.

3.3.2 From a graph to a tree: the reduction procedure

Definition 1 (Mobility Tree) Let the labeled mobility tree associated with a graph G = (S, E) be the labeled
tree G′ = (S′, E′) derived from G through the following reduction procedure:

1. Initial labeling. Each vertex v ∈ G is first labeled as follows:

• Label 0: if v does not belong to a bridgeless subgraph of G and its degree is two;

• Label 1: if v is a leaf of G or belongs to a non-singleton bridgeless subgraph of G;

• Label 2: otherwise.

2. Compression. Each maximal non-singleton bridgeless subgraph of G is reduced to a vertex with label 1.

Figure 2 shows an example of the previous reduction procedure. The initial grid G is the grid depicted
in Figure 1. The result of the initial labeling of its vertices is described in Figure 2(a). The non-singleton
maximal bridgeless subgraphs of G are surrounded by a circle in that figure. Finally, the resulting labeled
mobility tree obtained from the compression of the non-singleton maximal bridgeless subgraphs is shown in
Figure 2(b).

The mobility tree of a graph G is intended to point out the noteworthy features of G as far the solvability
of CPGE is concerned. First, it points out those subgraphs of G (corresponding to vertices with label 1
in the mobility tree) where CPGE could be solved in each of such subgraphs in isolation with a number
of robots equal to the number of vertices of the subgraph. These subgraphs are indeed either leafs of G or
non-singleton bridgeless subgraphs of G. Second, the mobility tree shows those paths of G that have to be
traversed by a single robot at a time to move from one of the previous subgraphs of G to another one in
order to extend the solvability of CPGE in G. Let us therefore introduce the notion of Mutual Exclusion
Path.

Irisa

Solvability of Partial Grids Exploration by Robots 7

1

0

1

1

1

1110

1

0

21

11

1

1 1

2 1

11

1

1

1

(a) Initial labeling and identification
of subgraphs to be compressed

1

0

1

10

0

21 2

1

1

(b) Labeled mobil-

ity tree G′

1

0

1

10

0

21 2

1

1

P3

P2

P1

(c) Three mutual exclusion
paths

Figure 2: A graph, its labeled mobility tree, and exclusion paths

Definition 2 (Mutual Exclusion Path) Let P be a path (v, v1), (v1, v2) . . . (vm, v′) of the mobility tree G′

from vertex v to v
′

. P is a mutual exclusion path of G′ iff:

• The labels of v and v
′

are different from 0;

• If there are vertices vh, 1 ≤ h ≤ m, (i.e., the path from v to v′ contains more than one edge), those
vertices are labeled 0.

As an example, Figure 2(c) shows three mutual exclusion paths, P1, P2 and P3, of the labeled mobility
tree shown in Figure 2(b).

Definition 3 (Length of a Mutual Exclusion path) In a labeled mobility tree G′ = (S′, E′), let the length of
a Mutual Exclusion path between any two vertices v, v′ ∈ G′ be the number of edges from v to v′ augmented
with j, where j is the number of vertices with label 2 in that path.

The length of P1 depicted in Figure 2(c) is 2 + j = 3 (as j = 1). The length of P2 is 1 + j = 3 (as j = 2)
while the length of P3 is 2 + 0 = 2 (as j = 0). Intuitively, the length of a mutual exclusion path represents
the minimum number of vertices that have to be initially empty (i.e., without robot assignment) in order
for the robots to be able to solve the CPGE problem with respect to that path. Therefore computing the
maximal length of the mutual exclusion paths of a mobility three associated with a graph G becomes a key
factor to compute the upper bound on the number of robots to keep CPGE solvability in G.

Definition 4 For any p > 0 and q ≥ 0, let G(p, q) the set of graphs such that ∀ G ∈ G(p, q): (1) G has p
vertices, and (2) q is the maximal length of the mutual exclusion paths of the mobility tree associated with
G.

Two graphs belong to the same class G(p, q) if they both have the same number of vertices p and the same
maximal length q of the mutual exclusion path of their respective mobility trees. The following theorem
defines a bound on the number of robots beyond which CPGE cannot be solved.

Theorem 1 [3] Let G be a graph of the class G(p, q). There exists no algorithm solving the CPGE problem
for G when there are more than k = p − q robots.

Proof The proof is by contradiction. Let us assume that there is an algorithm A that solves CPGE for a
graph G ∈ G(p, q) and any initial configuration with at least p − q + 1 robots. There is no restriction on A:
its computational power is the one of a Turing machine with an unbounded memory.

PI n˚1892

8 R. Baldoni & F. Bonnet & A. Milani & M. Raynal

The contradiction for the case q = 0 is obvious: it is not possible to place p + 1 robots on a graph with
p vertices without violating the vertex mutual exclusion property. So, the rest of the proof considers q > 0.

Let us observe that, due to the vertex mutual exclusion property, any configuration reachable from the
initial configuration, contains q − 1 vertices without robots. According to definition of G(p, q), q is the
maximal length of the mutual exclusion paths of the mobility tree of G. Let u be such a path, with X and
Y being its end-point vertices. According to the labels of X and Y , three cases can be distinguished (but
thanks to the labeled mobility graph abstraction, the reasoning is simple and identical in all cases).

• Both X and Y have label 1. This means that, if the path from X to Y in G contains more than one
edge, its vertices different from X and Y have degree 2 and are labeled 0.

Let GX and GY be the the maximal subgraphs of G that include X and Y , respectively, and satisfy
the following property P : any simple path in G from any v ∈ GX to any v′ ∈ GY includes both X and
Y . (See an illustration in Figure 3.) As both X and Y have label 1, it follows from Definition 3 that
u is a sequence of q + 1 vertices (and, as already observed, each vertex in this sequence different from
X and Y has degree 2).

GY
GX

X Y
0 0 0 11

︷ ︸︸ ︷

(q − 1) empty vertices

Figure 3: Mutual Exclusion path, from a label 1 to a label 1, of length q = 4

Let us consider the initial configuration where the q−1 vertices without robots are exactly the vertices
of u \ {X, Y }. Then, the p − (q − 1) robots fill completely all the vertices of both subgraphs GX and
GY . As there are only q − 1 vertices without robots (the vertices of u \ {X, Y }), it follows that no
robot in a vertex v ∈ GX can move to a vertex v′ ∈ GY (or vice-versa) without violating either the
vertex mutual exclusion property or the edge mutual exclusion property, which proves the theorem for
that case.

• X and Y have label 2 and 1, respectively. We conclude from Definition 3 and the labels of X and
Y that the path u is a sequence of q vertices. Let G1X , G2X (and possibly G3X , G4X , . . .) denote
the maximal subgraphs of G that do not contain X and such that any path in G from any vertex
v ∈ G1X ∪ G2X ∪ · · · to any vertex v′ ∈ GY (where GY includes Y), includes both X and Y (see
Figure 4).

Similarly to the previous case, let us consider the configuration where the q−1 vertices without robots
are the vertices of u \ {Y }. As previously, the p − (q − 1) robots fill completely GY , G1X and G2X

(and G3X , G4X , . . . if they exist). As before, the chain from X to Y does not contain enough vertices
without robots in order for a robot located at a vertex v ∈ G1X ∪ G2X ∪ G3X ∪ · · · to move to a
vertex v′ ∈ GY (or vice-versa), without violating either the vertex mutual exclusion property or the
edge mutual exclusion property. This proves the theorem for the second case.

• Both X and Y have label 2. Due to Definition 3, u is then a sequence of q − 1 vertices. Let G1X ,
G2X (and possibly G3X , G4X , . . .), and G1Y , G2Y (and possibly G3Y , G4Y , . . .) be the maximal
subgraphs of G such that X /∈ G1X ∪ G2X ∪ . . . , Y /∈ G1Y ∪ G2Y ∪ . . . , and the maximal subgraphs
of G such that any path in G from any v ∈ G1X ∪ G2X ∪ · · · to any v′ ∈ G1Y ∪ G2Y ∪ · · · includes
both X and Y (see Figure 5).

Let us consider the configuration where the q − 1 vertices without robots are all the vertices of u. The
p−(q−1) robots fill completely G1X , G2X , G1Y and G2Y (and G3X , G3Y , . . . if they exist). It follows

Irisa

Solvability of Partial Grids Exploration by Robots 9

GY

G1
X

G2
X

0 0
Y

12
X

(q − 1) empty vertices

︷ ︸︸ ︷

Figure 4: Mutual Exclusion path, from a label 1 to a label 2, of length q = 4

G1
X

G2
X

G1
Y

G2
Y

X Y

2 0 0 2

(q − 1) empty vertices
︷ ︸︸ ︷

Figure 5: Mutual Exclusion path, from a label 2 to a label 2, of length q = 5

that, despite the fact that all the vertices of the path u have no robot, there are not enough vertices
without robots to allow a robot in a vertex v ∈ G1X∪G2X∪. . . to move to a vertex v′ ∈ G1Y ∪G2Y ∪. . . ,
which proves the theorem for this last case.

2Theorem 1

3.4 f-Solving the CPGE problem

Let Aρ denote an algorithm instantiated with the radius value ρ, and let y, 1 ≤ y ≤ p, denote the actual
number of robots initially placed on a grid G of p vertices.

Definition 5 Let f be a function from the set of classes G(p, q) to the set of non-negative integers, i.e.,
f(p, q) ∈ {0, 1, . . .}, and y (0 ≤ y ≤ p) the number of robots initially placed on the grid under consideration.

Given such a function f , an algorithm Aρ f -solves the CPGE problem if Aρ (1) never violates the vertex
and edge mutual exclusion properties (i.e., whatever the value of y ∈ {1 . . . , p}), and (2) solves the CPGE
problem for any graph in the class G(p, q) and any number y of robots such that 0 ≤ y ≤ f(p, q).

PI n˚1892

10 R. Baldoni & F. Bonnet & A. Milani & M. Raynal

Let us notice that Theorem 1 states that, whatever the value of ρ and the class G(p, q), there is no Aρ

algorithm that f -solves the CPGE problem when f(p, q) > p − q.
As we can see the algorithms we are interested in always preserve the safety properties (here vertex and

edge mutual exclusions) whatever the number y of robot, 0 ≤ y ≤ p, i.e., even when y > f(p, q). From a
practical point view, always preserving the safety properties is crucial as it guarantees that, whatever their
number, the robots never collide.

4 f-Solvability of the CPGE problem when ρ = 0

This section shows that, when ρ = 0 (i.e., when a robot does not know whether an adjacent vertex is occupied
or not by another robot), the CPGE problem can be f -solved only in the very particular case where the
grid is made up of a single vertex.

Theorem 2 There is an algorithm A0 that f -solves the CPGE problem iff (1) f(p, q) = 0 when (p, q) 6=
(1, 0), and (2) f(1, 0) ≤ 1 otherwise.

Proof The direction ⇐ follows directly from the value of f(p, q). If the grid contains a single vertex (p = 1),
we have q = 0, and the algorithm that never moves the single robot (f(1, 0) = 1) from the unique vertex
solves trivially the problem. So the main part of the proof consists in proving the direction ⇒. The proof
is by contradiction. Let A be an algorithm that f -solves the CPGE problem for f(p, q) > 0 robots. We
consider three cases.

• Case f(1, 0) ≥ 2. In that case, p = 1, i.e., the grid has a single vertex. It is trivially impossible to place
more than one robot on a unique vertex without violating the vertex mutual exclusion property.

• Case where there is a pair p > 0 and q > 0 such that f(p, q) > 0. Let G be a grid in the class G(p, q).
As A f -solves the CPGE problem, it follows from Definition 5 that A (1) solves the CPGE problem
for y robots when 1 ≤ y ≤ f(p, q), and (2) preserves the vertex and edge mutual exclusion properties
when f(p, q) < y ≤ p.

As A solves the CPGE problem for f(p, q) > 0 robots, it solves it for one robot. Let us consider this
case (a single robot) and let α be this robot. Due to the value of the radius A is instantiated with
(namely, ρ = 0), the behavior of α cannot depend on the actual number of robots, which means that,
be α the single robot in the grid, or be the grid filled with p robots, A imposes the same behavior to
α.

As q > 0, there is a at least one bridge in the grid. If the grid if full of robots, the traversal of this
bridge by α violates the vertex mutual exclusion property, which proves that, in that case, A cannot
f -solves the CPGE problem.

• Case where there is a pair p > 0 and q = 0 such that f(p, q) > 0. Let G be a grid in the class G(p, q).
As f(p, q) > 0, A solves CPEG for one robot (say α) whatever its initial position in G. As in the
previous case, as A is valid and ρ = 0, the algorithm executed by α is the same, be G filled with p
robots or a single robot.

Considering the case where G is filled with p robots, let us examine the first round r where a robot
moves. As G is full of robots, it follows that more than one robot has to move during r (in order not
to violate the vertex mutex exclusion property). More precisely, this can be obtained only if there is
at least one cycle C of G on which the robots move are coordinated (in order they all synchronously
move to the next vertex on the cycle).

Let G′ be G from which one vertex v of C is suppressed. Assuming an arbitrary orientation of C, let
vp (resp., vs) be the vertex that is the predecessor (resp., successor) of v on the cycle C. As ρ = 0,
when they execute the first r rounds, the robots located in C \ {vp, v, vs} have the same behavior in G
and G′. It follows that there is at least one cycle C ′ in G′ on which the robots move are coordinated
during round r′ ≤ r.

Let G′′ be G′ from which one vertex v′ of C ′ is suppressed. The same reasoning as before can be
recursively done, at the end of which we obtain a grid Gω without cycle, and with one robot per

Irisa

Solvability of Partial Grids Exploration by Robots 11

vertex. Trivially, during the round r, no robot can move in Gω without violating the vertex mutual
exclusion property, which completes the proof of the theorem.

2Theorem 2

5 f-Solvability of the CPGE problem when ρ = +∞

This section shows that, when ρ = +∞ (i.e., when, at each round, each robot sees the whole grid and its
current occupation), p − q is the maximal number of robots for which the CPGE problem can be f -solved.

Theorem 3 There is an algorithm A+∞ that f -solves the CPGE problem iff f(p, q) ≤ p − q.

Proof The fact that there is no algorithm that f -solves the CPGE problem when f(p, q) > p − q follows
from Theorem 1. So, let us consider the case where f(p, q) ≤ p − q.

Let us first observe that, as ρ = +∞, any algorithm A executed by the robots “sees” the whole grid and
the current position of the robots. Moreover, as the notion of north, east, south and west is global (chirality
notion), it is the same for all the robots when they “see” the grid. Consequently, A can always guarantee the
vertex and edge mutual exclusion properties. To complete the proof an algorithm A that solves the CPGE
problem when f(p, q) = p − q has to be designed.

operation explore∞ ():
(1) Obtain a global view of the partial grid (thanks to ρ = +∞);
(2) Assign deterministically an id to each robot (from top-left to bottom-right);
(3) Compute a canonical directed cycle C including all the vertices;
(4) while true do

(5) for x from 1 to number of robots do % move the robot x along the cycle C %
(6) Determine the vertex v where the robot x currently is;
(7) Compute the rank i of the first occurrence of v in the cycle C;
(8) while (x has not reached the i− 1 vertex of C) do

(9) Compute the next edge e of C that the robot x has to traverse;
(10) if e belongs to a cycle
(11) then Compute a canonical directed elementary cycle Ce that includes e;
(12) All robots of Ce moves one step ahead on Ce;
(13) else Move robots to obtain an empty vertex at the end of e;
(14) Move the robot x along e

(15) end if

(16) end while

(17) end for

(18) end while

Figure 6: An algorithm that f -solves the CPGE problem for ρ = ∞

An algorithm that f-solves the CPGE problem when ρ = ∞ The algorithm is described in Figure
6. Its underlying principles are the following ones. There is first an initialization part that benefits from
ρ = +∞, followed by a second part that deterministically (in order to prevent collisions) rules the moves of
the robots.

As ρ = +∞, each robot initially knows the whole grid and the initial position of each robot. Fed with
that information, each robot can simulate an omniscient daemon that, at each round, coordinates the moves
of all the robots, directing each of them either to move to another position or to stay at the same vertex, in
such a way that each robot visits each vertex infinitely often.

Init part At line 01, the assignment of distinct identities to each robots (they are at most f(p, q)) can be
done according to a top-down, left-right strategy. A similar deterministic strategy can be used to assign
distinct identities (from 1 to p) to each vertex (line 02).

The “canonical directed cycle” C introduced at line 03 is defined as follows. Let the “canonical directed
path” from vertex i to vertex j be the shortest (directed) path connecting i to j in the partial grid1. The

1If there are several shortest paths from i to j, one of them is selected according to a deterministic rule. This is required in
order all the robots select the same path.

PI n˚1892

12 R. Baldoni & F. Bonnet & A. Milani & M. Raynal

canonical directed cycle C starts at the vertex 1, and is made up of the concatenation of the following
directed canonical paths: first the path from vertex 1 to vertex 2, then the path from vertex 2 to vertex 3,
etc., then path from vertex (p − 1) to vertex p, and finally the from vertex p to vertex 1. (When the path
terminating in y is concatenated to the path starting at y, the vertex y is considered only once.)

Coordinate move part This part is made up of an infinite loop (lines 04-18). It considers each robot x,
one after the other (line 05), and directs it to traverse entirely the partial grid (lines 06-16).

First, the vertex v where the robot x currently stays is computed (line 06), and then the rank i of the
first occurrence2 of v in C is computed (line 07). Once this rank i has been computed, the aim is to adopt
a greedy strategy that moves the robot x along the cycle C from i until i − 1, thereby directing it to visit
all the vertices of the partial grid G. According to the next oriented edge e of C that the robot x has to
traverse, there are two cases to consider. Let v1 be the start vertex of e and v2 its end vertex.

• e belongs to a cycle (lines 11-12). In that case, the algorithm computes a directed cycle e belongs
to3. Let Ce be this cycle. Let us notice that, as all the robots agree on Ce, they can synchronously
coordinate their move in order x progresses along e from v1 to v2.

• e does not belong to a cycle (lines 13-14), so e is a bridge. Let us define three sets of vertices (denoted
Z1, Z2 and Z3) as described in Figure 74. We consider two cases.

Z3Z1

−−−→e

x1 1

v2Y v1

Z2

Figure 7: Configuration used in the description of the algorithm

– There is an empty vertex in Z3. Let us consider a simple path from v2 (end vertex of e) to an
empty vertex of Z3 (as before, this vertex and the path are deterministically chosen). All the
robots on this path synchronously coordinate their moves in order the vertex v2 becomes empty.
The robot x can then progress from v1 to v2.

– There is no empty vertex in Z3. In that case, there are at least q empty vertices in the set Z1.
Let us observe that the vertex v1, on which the robot x is currently located, belongs to a chain
of length at most q (this follows from the definition of the length of a mutual exclusion path in
the mobility tree associated to G).

∗ The robots in Z1 synchronously coordinate their moves to make empty the vertices in Z1∩Z2.

∗ After these moves, the robot x moves to the vertex denoted Y in Figure 7 (end vertex of the
chain x belongs to).

∗ As Y is labeled 1, it belongs to a cycle γ and consequently, the robots on this cycle move in
order the robot x does not remain in the vertex Y (in order not to “block” that vertex).

∗ The robots in Z1 (without involving x) coordinate their moves in order all the vertices in the
chain Z2, but Y , become empty.

2As v can appear several times in the canonical cycle C, it is sufficient to deterministically select one of its occurrence, e.g.,
its first occurrence in C.

3In case there are several cycles, one is deterministically selected.
4This figure considers a path from a vertex labeled 1 to a vertex labeled 1. It could easily be adapted if the labels of the

end vertices of the path are in {1, 2}.

Irisa

Solvability of Partial Grids Exploration by Robots 13

∗ Finally, The robots in the cycle γ (now including x) coordinate their move to move x to the
vertex Y .

∗ Finally, the robot x moves along the empty vertices of Z2 from Y to v2.

It follows that, according to the previous greedy strategy, the robots can synchronously coordinate
their moves in order the robot x eventually moves from v1 to v2, i.e., progresses along the edge e.

After it has moved from v1 to v2, the algorithm directs x to move from v2 to v′2, the next edge e of the
canonical cycle C (while loop, lines 08-16). When the robot x has visited all the vertices of C, the algorithm
proceeds to the next robot, until all robots have traveled along C, after which the algorithm restarts from
the beginning, etc. 2Theorem 3

6 f-Solvability of the CPGE problem when ρ = 1

This section considers the case where the (vision) radius of each robot is ρ = 1. The result of that section
is the following main theorem.

Theorem 4 There is an algorithm A1 that f -solves the CPGE problem iff p = 1 ∧ f(1, 0) ≤ 1, or p >
1 ∧ f(p, 0) ≤ p − 1, or q 6= 0 ∧ f(p, q) ≤ p − q.

This theorem shows two noteworthy things. First, ρ = 1 is the borderline from which the CPGE problem
has a non-trivial solution. Second, it shows that, except for q = 0, the maximal number of robots for which
it can be f -solved is the same as for ρ = +∞, namely, p − q.

6.1 Two simple lemmas

Lemma 1 When p = 1 (single vertex grid), the CPGE problem can be f -solved iff f(1, 0) ≤ 1.

Proof The proof follows from the fact that the grid is made up of a single vertex. 2Lemma 1

Lemma 2 There is no algorithm A1 that f -solves the CPGE problem when p > 1 ∧ f(p, 0) > p − 1 (then
q = 0) or q 6= 0 ∧ f(p, q) > p − q.

Proof For the case q 6= 0, the proof follows directly from Theorem 1. Let us now consider the case
q = 0 ∧ p > 1. Then, f(p, 0) > p − 1 implies that each vertex is occupied by a robot. As q = 0, the robots
have to move through along cycles to f -solve the CPGE problem. Moreover, as ρ = 1 there is no possibility
for a robot, without moving, to detect a cycle. It follows that there is no possibility of agreement among the
robots to move synchronously along a cycle, which proves the lemma. 2Lemma 2

So, Lemma 1 proves Theorem 4 for the case of the trivial grid (only one vertex), while Lemma 2 proves
its “only if” direction. It remains to prove its ”if” part when p 6= 1.

6.2 An algorithm that f-solves the CPGE problem

This section presents an algorithm that f -solves the CPGE problem when p > 1∧f(p, 0) ≤ p−1, and when
q 6= 0 ∧ f(p, q) ≤ p − q.

The algorithm is based on the following two intuitions: (i) to let robots move while avoiding collision, a
single vertex without robots (hole) is sufficient if at any given round all the robots that move, move towards
a same direction and a robot moves only if the destination vertex is free (this requests ρ ≥ 1); (ii) if it exist a
round where every robot knows the map of the partial grid, the fact that robots are at most p− q and where
they are located; then, even without any vision, they can globally synchronize their moves to perpetually
explore the grid.

Thus, the whole algorithm consists of the following three steps (precisely described in the following):

PI n˚1892

14 R. Baldoni & F. Bonnet & A. Milani & M. Raynal

Step 1: Map Building. First, each robot runs an algorithm to know (1) the map (i.e., the whole structure
of the partial grid, so; it then knows p, q and the grid diameter d) and (2) to attain a round in which
each robot knows that all the robots know the map (Section 6.2.1). Each robot progressively learns the
map (1) directly by moving and (2) by making deduction from observing the fact that either another
robot in a given round reaches or leaves a vertex in its current neighborhood or it does not.

Step 2: Evaluate if there are at most p − q robots. Once robots attain the round in which each robot knows
that all the robots know the map, each robot runs an algorithm to learn whether there are more
than p − q robots. The algorithm implementing this step is described in Section 6.2.2 and at round
4d(p − q) every robot is able to evaluate if there are at most p − q robots on the partial grid. If the
number of robots bypasses p − q, a robot stops, which f -solves the CPGE problem. Otherwise, the
algorithm moves robots in the first R vertices of the partial grid (where R is the number of robots).
This positioning takes p × 4d rounds.

Step 3: Perpetual Exploration. If the number of robots is ≤ p − q, each robot supposes there are exactly
p − q robots in the system, completing the R real robots by “virtual” robots (R ≤ p − q is unknown).
Thanks to the repositioning, each robot agrees on the current (real or virtual) robots location. Then,
each robot can run the exploration algorithm explore∞() depicted in Figure 6 with p−q robots starting
from line (3) to ensure the perpetual exploration property.

6.2.1 Every robot learns the map of the grid

Context-sensitive moves For each given vertex v ∈ S, its context is a subset Cv ⊆ {north, west, south, east}
such that for each direction in Cv , v has a neighbor in such direction. We define a context-sensitive move,
denoted cs-move, to be a move of a robot to a given vertex in its neighborhood (only if this latter is free),
provided that the vertex where the robot is located has a given context.

For example, the cs-move requiring a robot to move east from a vertex with a east and south neighbors,
is different from the cs-move requiring it to move east from a vertex with a east, south and west neighbors.
There are 32 possible cs-moves: 4 from the vertices with one edge, 12 from the vertices with two edges, 12
from the vertices with three edges, and 4 from the vertex with four edges.

Lemma 3 Consider a partial grid with p vertices and a number of robots ≤ p− 1, and radius ρ = 1. There
is an algorithm and an integer kmax such that after kmax rounds, every robot knows (1) the map (i.e., the
structure of the grid), (2) the value of kmax, and (3) the fact that each other robot knows both the map and
kmax.

An algorithm proving the lemma is described in Figure 8. The main idea behind this algorithm is that,
for any 1 ≤ k < kmax, all robots incrementally perform all possible sequences of k cs-moves. kmax is the
minimum value such that for any initial configuration with at most p − 1 robots, every robot completely
knows the grid after trying all the possible sequences of kmax cs-moves.

In particular, after executing a given sequence L (the same for all robots), robots return to their initial
position by executing the sequence L, i.e. L in the reverse order. It is possible to show that, after exhausting
all the sequences of cs-moves of length k, a robot knows the part of the grid that is at most at distance
bk+3

2
c from its initial position.

We explain here the underlying principles of the algorithm by presenting its behavior in a particular case,
the one depicted in Figure 9(a) where 5 robots are located on a grid of 6 vertices. At the initial state, there
is a robot A located in a leaf of the grid, and its only neighbor vertex is free. The goal is to prove that after
exhausting all possible sequences composed of up to kmax cs-moves, A is able to deduce all the vertices of
the grid.

Sequences composed of a single cs-move. Among these sequences there is one that will move the robot A
to the west. A then discovers the context of the vertex adjacent to its initial position. It is a vertex where
the only missing neighbor is the one at the north. After this, A comes back to its initial position. Among the
sequences of length 1, there is also one that will move robot C to its north (and then back) and another that
will move robot B to its east neighbor (and then back). After each of those moves, A sees a robot located
in its west neighbor vertex. From this observation A can deduce the type of the initial vertex both of robot
C and B. This is because all the robots execute the same algorithm, and thus A knows the cs-moves that

Irisa

Solvability of Partial Grids Exploration by Robots 15

operation get map1 ():
(1) k← 1; kmax ← +∞;
(2) while (k < kmax)
(3) Try deterministically all possible moves composed of k cs-moves

memorizing all the states;
(4) if (the graph can be entirely deduced)
(5) then Compute the parameters p and q of the graph;
(6) Compute kmax

(7) end if;
(8) k← k + 1
(9) end while

Figure 8: The algorithm get map1()

B

DE C

A

(a) Initial state

A

(b) A’s knowledge
after all sequences
of 1 cs-moves

(c) Se-
quence of
cs-moves

A

(d) A’s knowledge
after 3 steps

(e) Sequence
of cs-moves

Figure 9: A simple example

respectively forced C and B to move to its west neighbor. Figure 9(b) summarizes the knowledge of A after
all sequences of a single cs-move.

Sequences composed of two cs-moves. During these sequences, A does not increase its knowledge of the
map.

Sequences composed of three cs-moves. A is able to deduce the context of the vertex where D is initially
located. Indeed, among all the sequences of three cs-moves, there is the one described in Figure 9(c). The
execution of this sequence of cs-moves entails first a move of C to the north, then (during the next round)
a move of D to the east, and finally (during the third and last round of the sequence) no move. During
the last of those three rounds, only C is located in a vertex that has the context required to move, but it
cannot move to the south because the corresponding vertex is occupied. This sequence of 3 cs-moves allows
A to learn that a robot D has moved to the initial position of C. Otherwise, C would have moved to the
south during the third move. Hence, A deduces the type of D’s initial vertex. Figure 9(d) summarizes the
knowledge of A after executing the sequences composed of 3 cs-moves. .

Sequences composed of four cs-moves. A does not increase its knowledge during these sequences of
cs-moves.

Sequences composed of five cs-moves. A is able to deduce E’s initial vertex when the algorithm will
execute the sequence of cs-moves described in Figure 9(e). Indeed, in this sequence of cs-moves, C moves
south, but is not able to go back north on the fifth move. This means that the robot E has blocked D which
in turn has blocked C. After the moves composed of five cs-moves, A knows entirely the graph.

After discovering the graph. As soon as A knows the graph, it can simulate the behavior of all the robots
in the system and consequently know their knowledge. More precisely, (1) A simulates the execution of the
algorithm with any initial state of at most p − 1 robots. Then (2), A computes the maximum value kmax

needed for any robot in any configuration to know entirely the graph. (3) After testing all the sequences
of moves composed of kmax cs-moves, A knows that all robots knows (i) the map of the partial grid, and
also that (ii) each robot has computed the same kmax. The robots can then enter the second step of the
algorithm as described in the next section.

PI n˚1892

16 R. Baldoni & F. Bonnet & A. Milani & M. Raynal

6.2.2 Evaluating the predicate P1 ≡ “are there at most p − q robots?”

Once each robot knows that all the robots know the map of the partial grid, they can compute the value
of the parameters p and q. Then, the robots have to evaluate the predicate P1 ≡”are there at most p − q
robots?”.

To this end, each robot executes the following sequence of operations, where d is the diameter of the grid
and R is the actual number of robots:

operation evaluating P1 ():
(1) Deterministically assign an id to each vertex and define a tree;
(2) Move the robots to vertices whose ids goes from 1 to R (in p × 4d rounds);
(3) Evaluate the predicate P1.
(4) Move the robots to vertices whose ids goes from 1 to R (in p × 4d rounds);

evaluating P1: Line 01 Due to the global sense of direction (as defined in Section 3.1), the robots can
agree on a same predetermined vertex of the partial grid (e.g., the more “north-west” vertex of the grid).
Starting from that vertex, each robot can assign an identifier to each vertex using a Depth First Search (DFS)
algorithm where the identifiers are assigned according to the Post-Ordering rule. (Note that this labeling,
from 1 to p, is done locally without any move.)

Due to the fact that the labeling is produced by a post-ordering DFS algorithm, it satisfies the following
properties:

Property 1 If all vertices labeled from 1 to l (with l < p) are suppressed from the grid, the remaining grid
(made up of the vertices labeled l + 1 to p) remains connected. (An example is depicted in Figure 10.)

Property 2 There is a tree rooted at p such that each vertex has for father his adjacent vertex with the
smallest id among the id greater than itself. (For example, the vertex labeled 4 with adjacent vertices 3, 5
and 7 has the vertex 5 for father.)

11

10 9 7 4 3

256

8

1

Root

(a) Post Ordering

11

10 9 7 4 3

256

8

1

Root

(b) Corresponding Tree

Figure 10: Example of labeling from a post-ordering DFS

Irisa

Solvability of Partial Grids Exploration by Robots 17

evaluating P1: Line 02 During this step, the robots move5 to reach the vertices with the lowest |R| ids.
Initially, each robot moves in order to try to reach the vertex 1. Each robot computes the shortest path
from its current position to vertex 1 and then moves along this path.

In the following, we explain how each robot follows its path without colliding with the other robots.
Each direction is associated with a value in the set {0, 1, 2, 3}. Let s be the direction where a robot has to
move according to the next step of its path. Then this robot moves to its s neighbor at round r if (i) (r
mod 4) = i where i is the value associated to the direction s and (ii) the s neighbor vertex is free.

As a result, after at most 4d rounds, there is a robot that occupies vertex 1. Starting from the 4d + 1
round, the remaining robots try now to reach the vertex 2. This process can continues until the p-th vertex
thanks to the Property 1. Therefore, after p×4d rounds, the R robots occupy the vertices of the grid labeled
1, 2, . . . , R. It is important to notice that, up to now, no robot knows the value of R.

evaluating P1: Line 03 If the graph belongs to a (p, q) class of graphs with q = 0, the evaluation of the
predicate is easy: since all robots know the graph, they know this value of q = 0 and then they evaluate the
predicate to true. The following text concerns then only cases when q > 0.

The main idea is that at the beginning of this step, there is a set of robots (possibly empty) that is able to
trivially evaluate the predicate P1. Then these robots (if any) coordinate to communicate to the remaining
robots the result of the evaluation. Remember that the only way for robots to communicate is to move and
to observe the occupation of vertices.

At the beginning of this step, the robots occupy the vertices of the grid labeled 1, 2, . . . , R, if there are
some robots on the vertices labeled from p − q + 1 to p, they can trivially compute the predicate to false:
indeed since any robot of this set occupy a vertex whose label is greater than p− q, it means that there are
more than p − q robots in the grid, thus these robots immediately evaluate the predicate to false.

In (p−q) phases (starting at phase 1) all the other robots in the grid will be able to evaluate the predicate.
Each phase takes 4d synchronization rounds. In particular, in the i-th phase the only robot which evaluates
P1 is the one (if any) located at the vertex p − q − i + 1 (notice that for the first phase it corresponds to
the vertex p − q which is the highest one that could not compute immediately the predicate). This latter
evaluates the predicate P1 as false if at the end of the i-th phase, it observes that its father vertex (as defined
in Property 2) is occupied by a robot; true otherwise (i.e. its father vertex is free at that point).

At the beginning of phase i, the robots (if any) that occupy the vertices labeled from p until p− q− i+2
knows if the predicate P1 is true or false, because they evaluated it during the previous phases (or initially).
So, they coordinate to ensure that at the end of the i-th phase, the robot located on the p− q − i + 1 vertex
evaluates P1 correctly. In particular, if the predicate is false, by the end of the i-th phase these robots move
to let one of them occupy the father of the vertex p − q − i + 1. On the contrary, if the predicate is true,
they move in order to make the father of the vertex p − q − i + 1 empty.

At round 4d of the phase i = (p−q), all the robots agree on the value of the predicate P1. If the predicate
is true, then they can start the last step and run the exploration algorithm explore∞() defined in Section 5
to ensure the perpetual exploration property.

evaluating P1: Line 04 In order to execute (when R ≤ p − q) the algorithm explore∞() starting from line
3 as remarked in step 3 of Section 6.2, each robot has to know the location of every other robots. This is
why we repeat line 02 in order to place robots in the first R position and after p × 4d rounds every robot
knows this positioning. However this repositioning is not enough since robots do not know the exact number
R of robots, they just know R ≤ p − q. The solution consists for each robot to suppose there are exactly
p− q robots and then the execution of the algorithm explore∞() is done with (p− q)−R virtual robots that
occupy vertices labeled from R + 1 to p− q. This introduction of virtual robots ensure that each robot start
the execution with the same configuration.

7 Conclusion

To conclude, the following table summarizes the results of the paper:

5Here the algorithm considers simple moves, not cs-moves.

PI n˚1892

18 R. Baldoni & F. Bonnet & A. Milani & M. Raynal

Value of ρ f -solvability of the CPGE problem

ρ = 0 f(1, 0) ≤ 1 and f(p, q) = 0 otherwise

ρ = 1 f(p, 0) ≤ p − 1 when p > 1, and f(p, q) ≤ p − q otherwise

1 < ρ < +∞ f(p, 0) ≤ p − 1 when (p > 1 ∧ Qρ), and f(p, q) ≤ p − q otherwise

ρ = +∞ f(p, q) ≤ p − q

It is easy to see that f(p, q) ≤ p − q is an upper bound on the number of robots in all cases (recall that
q = 0 when p = 1). The case ρ = 0 requires that the grid be trivial (only one vertex), while there is no
requirement on the structure of the grid for f -solving the CPGE problem when 1 ≤ ρ ≤ +∞. It follows that
ρ = 1 is a strong demarcation line delineating the cases from which f -solving the CPGE problem becomes
relevant.

The case 1 ≤ ρ ≤ +∞ shows that, the maximal number of robots for which one can f -solve the CPGE
problem, depends on the structure of the grid. This is captured by the parameter q derived from its structure
(thanks to the notion of mobility tree).

When 1 ≤ ρ < +∞ and q 6= 0, (p − q)-solving the CPGE problem is always possible, and is optimal
(in the number of robots). When q = 0, there are cases where the maximal number of robots for which the
CPGE problem can be f -solved is smaller than p − q = p − 0, namely it is p − 1. The paper has identified
the corresponding grid structures when ρ = 1: they are all the non-trivial grids (more than one vertex). As
far as the cases 1 < ρ < +∞ are concerned, we conjecture that f(p, 0) ≤ p− 1 when (p > 1∧ Qρ) where Qρ

is a property that depends on the cycles that can be seen within the radius ρ. Moreover, we also conjecture
that, given a grid, this property is such that Q1 = true, Q+∞ = false , and ∀ρ : Qρ+1 ⇒ Qρ.

References
[1] Albers S. and Henzinger M.R., Exploring Unknown Environments. SIAM Journal on Computing, 29(4):1164-

1188, 2000.

[2] Awerbuch B., Betke M., Rivest R.L. and Singh M., Piecemeal Graph Exploration by a Mobile Robot. Information
and Computation, 152(2):155-172,1999.

[3] Baldoni R., Bonnet F., Milani A. and Raynal M., Anonymous Graph Exploration without Colli-
sion by Mobile Robots. Tech Report #1886, 10 pages, IRISA, Université de Rennes 1, France, 2008.
ftp.irisa.fr/techreports/2008/PI-1886.pdf

[4] Bender M.A. and Slonim D., The Power of Team Exploration: Two Robots can Learn Unlabeled Directed
Graphs. Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science (FOCS’94),
IEEE Computer Press, pp. 75-85, 1974.

[5] Budach L., Automata and Labyrinth. Mathematische Nachrichten 1948-1999, 86(1):195-282, 1978.

[6] Dobrev S., Jansson J., Sadakane K. and Sung W.K., Finding Short Right-Hand-on-the-Wall Walks in Undi-
rected Graphs. Proc. of the 12th Colloquium on Structural Information and Communication Complexity
(SIROCCO’05), Springer-Verlag, LNCS #3499, pp. 127-139, 2005.

[7] Flocchini P., Ilcinkas D., Pelc A. and and Santoro N., Computing Without Communicating: Ring Explo-
ration by Asynchronous Oblivious Robots. In Proc. 11th Int’l Conference On Principles Of Distributed Systems
(OPODIS’07), Springer-Verlag, LNCS #4878, pp. 105-118, 2007.

[8] Fraigniaud P., Ilcinkas D., Peer G., Pelc A. and Peleg D.. Graph Exploration by a Finite Automaton. Theoretical
Computer Science, 345(2-3):331-344, 2005.

[9] Fraigniaud P., Ilcinkas D., Rajsbaum S. and Tixeuil S., Space Lower Bounds for Graph Exploration via Reduced
Automata. In Proc. 12th Colloquium on Structural Information and Communication Complexity (SIROCCO’05),
Springer-Verlag, LNCS #3499, pp. 140-154, 2005.

[10] Franchi A., Freda L., Oriolo G., Vendittelli M., A Randomized Strategy for Cooperative Robot Exploration.
Int’l Conference on Robotics and Automation (ICRA’07), IEEE press, pp. 768-774, 2007.

[11] Gasieniec L., Klasing R., Martin R.A. Navarra A. and Zhang X., Fast Periodic Graph Exploration with Constant
Memory. In Proc. 14th Colloquium on Structural Information and Communication Complexity (SIROCCO 2007),
Springer-Verlag, LNCS #4474, pp. 26-40, 2007.

[12] Grossi R., Pietracaprina A. and Pucci G., Optimal Deterministic Protocols for Mobile Robots on a Grid.
Information and Computation, 173(2):132-142, 2002.

[13] Ilcinkas D., Setting Port Numbers for Fast Graph Exploration. In Proc. 13th Colloquium on Structural Inf. and
Communication Complexity (SIROCCO’06), Springer-Verlag, LNCS #4056, pp. 59-69, 2006.

Irisa

Solvability of Partial Grids Exploration by Robots 19

[14] Panaite P. and Pelc A., Impact of Topographic Information on Graph Exploration Efficiency. Networks, 36(2):96-
103, 2000.

[15] Rollik H.A., Automaten in Planaren Graphen. Acta Informatica, 13:287-298, 1980.

[16] Suzuki I. and Yamashita M., Distributed Anonymous Mobile Robots: Formation of Geometric Patterns. SIAM
Journal on Computing, 28(4):1347-1363, 1999.

[17] Yared R., Defago X. and Wiesmann M., Collision Prevention Using Group Communication for Asynchronous
Cooperative Mobile Robots. In Proc. 21st Int’l IEEE Conference on Advanced Information Networking and
Applications (AINA 2007), IEEE Computer Press, pp. 244-249, 2007.

PI n˚1892

